HLA 与长寿及寿限关系的初步观察——附超氧化物歧化酶(SOD)检查结果

王赞舜 马永兴 丁佩珍 杨俭英 (华东医院老年医学研究室,上海)

步坤钜 顾文娟 赵桐茂 (上海市中心血站 HLA 分型实验室)

> 朱素敏 杨天兰 (上海市江苏路地段医院)

沈玉云 丁守成 高蕴玉 (上海市普陀街道医院)

费志平 李关兴 (上海市江宁路地段医院)

目前一般认为, 衰老与长寿的机理是受综 合性而非单一因素的影响,其中遗传是一个公 认的重要或主要因素[7,9,12,15,16]。研究各种族或各 地区人体白细胞抗原(HLA)与长寿老人(≥90 岁)的关系,有可能对衰老与遗传的关系提供 有价值的资料及进一步研究的线索。 国外对 HLA 与衰老及寿限的关系尚无一致的意见[5,8]。 鉴于遗传可能仅在极端长寿对象中方可显示其 对寿限的效应[7], 选择长寿老人作为观察对象 可能较为适当[14]。 国外应用长寿老人作 HLA 与寿限相关性的探讨, 只在近年有少数资 料[7,8,10,14], 国内尚未见到这方面的报道。 我们 于 1983 年检查了 50 例长寿老人, 8 例高龄老 人(80-89岁)的 HLA 分型,并与 210例 20-70 岁组对照比较,同时用化学比色法测定红细 胞超氧化物歧化酶(Superoxide Dismutase, SOD) 含量及其他有关检查。 兹将结果分析 讨论 如 下。

材料与方法

(一)调查对象 共调查 50 名长寿老人(平均年龄 93.29 ± 2.62 岁), 8 例高龄老人, 210 名 20-70 岁健康人作为对照组。 长寿老人选自上海市 4 个区。高龄、长寿对象经病史询问、体格检查、血液 SOD 测定、生化检查、免疫球蛋白、高密度脂蛋白 (HDL-C)、心电图等检查。长寿老人祖籍: 江苏省 31 例、浙江省 14 例、广东省 3 例、安徽省 1 例、四川省 1 例。 女 38 例,男 12 例。 24 例长寿老人记得父母年龄,其中父或母死亡年龄 > 70 岁者 13 例(13/24, 54%)。 30 例生活完全自理。 患高血压 13 例,高血压心脏病 1 例,冠心病 2 例,慢性支气管炎

Wang Zanshun et al.: A Preliminary Report on the Relationship between HLA and longevity and Life Span—with SOD Determinations 本文于1984年9月3日收到。

表 1 长寿老人组、高龄组和对照组的 HLA-A、B、C 抗原频率

		表 1 长寿老人组、高龄组和对照组的 ————————————————————————————————————				HLA-A、B、C 抗原频率						
HLA 抗原	20-70 岁(对照 80-89 岁(高龄 细), 里女会计 80-89 岁(高龄			≥90岁(长寿组)50例								
	210	组),男女合计 210 例		组),男女合计8例		男 12 例		女 38 例		合计 50 例		
	观察数	%	观察数	%	观察数	%	观察数	%	观察数	%		
Al	8	4	0	0	0	0	2	5	2	4		
A2	107	51	3	38	5	42	18	47	23	46		
A 9	51,	24	. 4	50	5	42	14	37	19	38		
A10	16	8]]	13	0: .	0	3	8	3	6		
A11	93	44	4	50	7	58	16	42	23	46		
A28	6	- 3	0	0	0	0	1	3	1	2		
A29	2	1	0 .	0	0	0	1	3	1	2		
$A_{\omega}30$	35	17	0	0	2	17	4	11	6	12		
A _∞ 32	5	2	1	13	0	0	e	0	0	0		
$A_{\omega}33$	31	15	1	13	0	i 0	5	13	5	10		
一个A抗原	64	30	2	25	5	42	12	32	17	34		
A空白	2	1	0	e	0	0	6	0	Ű	0		
В5	34	16	3	38	·. 4	33	8	21	12	24		
В7	5	2	0	. 0	0	0	2	5	2	4		
В8	4	2	0	0	0	0	0	0	0	0		
В12	14	7	0	0	0	0	2	5	2	4		
B13	37	18	1	13	3	25	4	11	7	14		
$B_{\omega}15$	51	24	1	13	3	25	6	24	12	24		
B _ω 16	31	15	2	25	1	8	4	11	5	10		
F _ω 17	32	15	1	13	2	17	5	13	7	14		
Β _ω 21	0	0	1	13	0	0	0	0	0	0		
B _o 22	25	12	0	0	I	8	2	5	3			
B _∞ 27	14	7	0	0	2	17	1	3	3	6		
B _ω 35	25	12.	1	13	2	17	5	13	7	6		
$B_{\omega}37$	1	0.5	0	0	0	()	!		1	14		
B _ω 40	67	32	3	38		17	1	3 37	1	2		
B _w 46	22	10	0		2		14		16	- 32		
B _ω 47	0	0	0	0	1	8' -	8	21 -	9 .	18		
B _ω .48		0.5	}.	0	1	8	2	5	3	6		
B_{ω}^{-59}	1	0.5	0	0	0	0	1	3	1	2		
	55		0	0	0	0	0	0.	0	0		
	1 1	26	3	38	2	17	8	21	10	20		
B控白	1	0.5		0	0	0	. 0	6	0			
Cω1	66	31	1	13	2	17	11	29	13	26		
C _ω 2	7	3	0	0	0	0	2	5	2	4		
C ₆₆ 3	130	62	4	50	6	50	18	47	24.	48		
C _∞ 4	26	1.2	1	13	2 -	17	4	11	6	12		
$C_{\omega}6$	24	21	3	38	1	8	4	11	5	10		
$C_{\omega}7$	36	31	1	13	0	0	4	11	4	8		
一个C抗原	-	-	4	50.	3	25	16	42	19	38		
C空白	-		2	25	10	83	18	47 .	28	56		

注 (1) $C_{\omega}6$, $C_{\omega}7$ 对照组男女合计为 117 例,其余为 210 例; (2) 女性长寿组中 HLA-C 有 1 例为 3 个抗原。

表 2 长寿老人与对照组相比, Fisher's P<0.05 的 HLA 抗原

组别	HLA 抗原	R值	χ,	Fisher's P 值	
男性组	C _ω 3	0.3326	3.70	0.0389	
	A9	1.8445	2.8371	0.0420	
女性组	Β _ω 46	2.2901	3.2866	0.0406	
男女 合计组	Λ ⁹ C _ω 3 C _ω 7	1.9293 0.5774 0.1957	4.0477 3.1140 8.5317	0.0206 0.037 7×10-4	

表 3 长寿老人与对照组 A、B 位点杂合率比较

位. 点		20—70 岁			≥90 岁			显著性测验	
	总例数	杂合子例数	杂合率(%)	总例数	杂合子例数	杂合率(%)	χ_i	P	
A	210	147	70.0	50	33.0	66.	0.1116	>0.05	
В	210	156	74.3	50	40.0	80	0.5041	>0.05	

伴肺气肿 4 例,有缺血性中风史者 1 例。

- (二) **HLA 分型标准血清** 使用 HLA-A 位点抗原 10 型 (A1、A2、A9、A10、A11、A28、A29、A_ω30、A_ω32、A_ω33)。 B 位点抗原 19 型 (B5、B7、B8、B12、B13、B_ω15、B_ω16、B_ω17、B_ω21、B_ω22、B_ω27、B_ω35、B_ω37、B_ω40、B_ω46、B_ω47、B_ω48、B_ω59、SNI); C 位点抗原 6型 (C_ω1、C_ω2、C_ω3、C_ω4、C_ω6、C_ω7)。 分型方法同文献[1,2]。
- (三) 统计学方法 同文献[1,2]。使用 Woolf 和 Haldane 方法计算相对危险率 (R), 并测验其显著性。
- (四)红细胞超氧化物歧化酶(SOD)测定 用化学比色法同文献[4],其他检查方法从略。

结 果

- (一) HLA 检查结果 长寿老人组、高龄组和对照组之 HLA-A、B、C 抗原频率见表 1, Fisher's P < 0.05 之 HLA 抗原相对危险率见表 2。长寿老人与对照组 A、B 位点杂合率比较见表 3。
- (二) **SOD 检查结果** 长寿老人组为 644.28±33.42,高龄老人组 648.53±47.13 μg/g

Hb, 与正常老年太组 $593 \pm 45 \mu g/gHb$ 相比,P < 0.01。

(三) 其他检查结果 长寿老人组 胆固 醇>250mg% 者 11 例(22%), 甘油三脂>130 mg% 者 2 例 (4%), HDL-C 为 54.14±12.87 mg%, β -脂蛋白为 355.47±143.46mg%, IgG为 1413.54±316.19mg、IgA 为 306.28±129.15 mg、IgM 为 126.88 ± 58.75 mg%。 总蛋白为 7.12±0.58g%, 低于我院正常老年值(7.4±0.45 g%), P < 0.01。

蛋白电泳:白蛋白占 $58.47\pm5.05\%$, α_1 球蛋白 $2.61\pm0.53\%$, α_2 球蛋白 7.23 ± 1.41 , β 球蛋白 $8.66\pm2.35\%$, γ 球蛋白 $22.09\pm5.23\%$ 。白蛋白低于正常成年、老年人值(成人 63.4 ± 8.5 、老年 $60.81\pm5.4\%$), P < 0.05-0.01。 γ 球蛋白高于正常成人值 $(16.2\pm5.61\%)$, P < 0.01。

讨 论

(一) 关于 HLA 与长寿的关系 从表 1、2 显示: (1)长寿老人组(男女合计)与对照组比较,长寿与 A9 相关 (P < 0.05),长寿老人女性组亦与 A9 相关(P值为 0.042),男性中的 A9 抗原频率亦升高,但例数太少,统计学上无显著意义。女性的 $B_{\omega}46$ 抗原频率亦高于

对照组 (P < 0.05)。(2) 长寿老人组 C_ω7 抗 原频率显著低于对照组(P值7×10-4), Cω3 亦 低于对照组(P值 0.027)。刘氏[3] 发现 C_ω3 在 老年人显著增高 (P < 0.01), $A_{\omega}24$ (本文并人 A9) 明显减少 ($P_c < 0.05$), 其结果适与本文 资料相反, 其确切原因尚待阐明。或许与所选 对象的年龄(刘氏组平均为72.1岁,本文长寿 组平均为93.29岁)及地区(刘氏组为徐州,本 文为上海)不同有关[18]。Blackwelder 分析 58-86 岁(非≥90 岁的长寿者)组中, 未发现 HLA 与年龄关联,而 Proust (14) 对长寿老人调查则 支持某些 HLA 单倍体 (如 Al/Cω7/B8/DR3) 与长寿有关。 显示在"极端长寿对象"中作 HLA 调查的重要性[14]。(3)长寿老人的 HLA-A、B 位点杂合率与对照组无明显差异(表 3), 与 Proust 的观察结果相似⁽⁴⁾。(4) 长寿老人与 对照组比较,空白基因频率在A、B位点无明显 差别。(5)在长寿老人男与女两组比较(表1): 女性 $A_{\omega}33$ 、 $B_{\omega}40$ 的频率似高于男性,女性 B13、B₆27、C 空白似低于男性,但P值>0.05。 女性 C_ω1(29%) 似高于男性(17%),与 Proust 结果一致, C₆7 中女性(11%)高于男性(0%), 与 Proust 的资料则不同。(6)比较长寿老人与 对照组的抗原频率, 其结果与上海徐氏资料相 符^{to}。提示长寿老人的 HLA-A、B、C 频率的 一般规律与普通人群相似。

(二) 关于长寿老人红细胞 SOD 含量问题 关于衰老的自由基学说尚无一致意见,但间接反映自由基的 SOD,被认为具有抗氧化、抗衰老的作用。不同年龄的健康人 SOD 动态变化,对探讨衰老及长寿提供有用的资料。我们测定健康人红细胞 SOD 含量结果,显示成人组(不含儿童)SOD 值为 598±39 µg/gHb,儿童、青年、中年及老年值依次为 628 ± 36,616±31,585±37 及 593±45 µg/gHb。自中年开始红细胞 SOD 含量明显下降,维持在这水平至 70—90 岁组。 本组长寿老人多患有各类常见老年病,均可影响 SOD 值的升高。本组长寿老人的 SOD 值 (644.28±33.42 µg/gHb) 升

高可能主要反映病理改变的结果[13]。

将长寿老人按 HLA 型分为 A9 (有利抗原), $C_{\omega}3$ 、 $C_{\omega}7$ (不利抗原)及其他型 (一般抗原) 3组,其 SOD 值在 3组分别为 646.39± $_{2}3.38$ 、650.33±55.40及 643.61±51.38 $_{\mu}g/gHb$, 3组间无明显差别。本组病例虽较少,但可否认为 HLA-A9 并非通过控制 SOD 含量而达到抗衰老和长寿,这是一个有意义并值得探索的问题。

参 考 文 献

- [1] 赵桐茂: 1981。中华内科杂志, 20: 515-517。
- [2] -----1984。 HLA 分型原理与应用,上海科学技术出版社。
- [3] 刘燕玲: 1984。医学资料, 南京市医学研究所, 1: 4-5。
- [4] 徐静娟: 1981。上海免疫学杂志,1(3): 34-37。
- [5] Biackwelder, W. C.: 1982. Tissue Antigens, 20: 188—192.
- [6] Dausset, J.: 1981. Science, 213: 1469—1474.
- [7] Goldman, R.: 1982. in: Cecil Textbook of medicine, Wyngaarden, J. B. (ed), 16nd ed., Philadelphia, Saunders, p. 34—39.
- [8] Greenberg, L. J.: 1978. Fed. Proc., 37: 1258— 1262.
- [9] Groër, M. W.: 1983. in: Basic Pathophysiology, A conceptual approach, Croër, M. W (ed.), 2nd ed, ST Louis, Mosby, p. 587—614.
- [10] Hodge, S. E.: 1980. HLA distribution in aged normals, Joint report VIII, Histocompatibility workshop, p. 722—726.
- [11] Joenge, H.: 1979. Scand. J. Clin. Lab. Invest., 39: 759-764.
- [12] March, J. G. (ed.): 1981. Aging, Biology and Behavior, Newyork, Academic Press, p. 201— 228.
- [13] Michelson, A M.: 1977. in: Superoxide dismutase, London, Academic press, p. 467—499.
- [14] Proust, J.: 1982. Tissue Antigens, 19: 168—173.
- [15] Schofield, J. D.: 1978. *In*: Textbook of Geriatric medicine and Gerontology, Brocklehurst, Je (ed.), 2nd ed, London, Churchill Livingstont, p. 37—67.
- [16] Scoggin, C. H.: 1982. in: Clinical Internal Medicine in the aged, Schrier, R. W. (ed.), Philadelphia, Saunders, p. 24—28.
- [17] Smith, G. S.: 1977. Nature, 270: 727-729.
- [18] Van Rood, J. J: 1981. in The role of the major histocompatibility complex in immunology, Dolf, M. E. (ed.), John, Wileys and Sons, Chichester, p. 59—113.