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Abstract: Let γ′

s(G) and γ′

l(G) be the numbers of the signed edge and local signed edge
domination of a graph G [2], respectively. In this paper we prove mainly that γ′

s(G) ≤
⌊ 11

6
n − 1⌋ and γ′

l(G) ≤ 2n − 4 hold for any graph G of order n(n ≥ 4), and pose several open
problems and conjectures.
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1. Introduction

We use Bondy and Murty[1] and Xu[2] for terminology and notation not defined here and

consider simple graphs only.

Let G = (V,E) be a graph. If e = uv ∈ E, then NG[e] = {u′v′ ∈ E|u′ = u or v′ = v}

is called the closed edge-neighbourhood of e in G, and NG(e) = NG[e]\{e} is the open one. If

v ∈ V , then EG(v) = {uv ∈ E|u ∈ V }. For simplicity, sometimes, NG[e] and EG(v) are denoted

by N [e] and E(v), respectively. In [2] we introduced the signed edge domination of graphs as

follows:

Definition 1[2] Let G = (V,E) be a nonempty graph. A function f : E → {+1 − 1} is called

the signed edge domination function (SEDF ) of G if
∑

e′∈N [e] f(e′) ≥ 1 for every e ∈ E(G). The

signed edge domination number of G is defined as γ′s(G) = min{
∑

e∈E f(e)|f is an SEDF of G}.

And define γ′s(K̄n) = 0 for all totally disconnected graphs Kn.

Next we introduce a new concept of edge domination in graphs:

Definition 2 Let G = (V,E) be a graph without isolated vertices. A function f : E → {+1−1}

is called the local signed edge domination function ( LSEDF ) of G if
∑

e∈E(v) f(e) ≥ 1 for every

v ∈ V (G). The local signed edge domination number ofG is defined as γ′l(G) = min{
∑

e∈E f(e)|f

is an LSEDF of G }. Obviously, |γ′l(G)| ≤ |E(G)|. It seems natural to define γ′l(K̄n) = 0 for all

totally disconnected graphs Kn.

Clearly, γ′l(G1 ∪G2) = γ′l(G1) + γ′l(G2) and γ′s(G1 ∪G2) = γ′s(G1) + γ′s(G2) for any two

disjoint graphs G1 and G2. In comparison with the above two definitions, we see that each
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LSEDF of G is an SEDF of G, and hence we have

Lemma 1 For all graphs G, γ′s(G) ≤ γ′l(G).

By Definition 2, we have

Lemma 2 For all graphs G, v ∈ V (G), then γ′l(G) ≤ γ′l(G− v) + dG(v).

In recent years, some kinds of domination in graphs have been investigated. Most of those

belong to the vertex domination of graphs, such as signed domination[3,4], minus domination[5],

majority domination[6], domination[7], etc. A few of results have been obtained about the edge

domination of graphs[2]. In this paper we discuss mainly the upper bounds for (local) signed

domination numbers of graphs, and pose several open problems and conjectures.

A graph G is said to be a θ-graph if G is a connected graph with degree sequence d =

(2, 2, · · · , 2, 3, 3). That is, a θ-graph consists of a cycle and a path such that two end-vertices of

the path are on the cycle.

Lemma 3 Any θ-graph contains a cycle of even length (even cycle).

Proof It is obvious.

Lemma 4 For any graph G, if δ(G) ≥ 3, then G contains a θ-graph as subgraph, and hence G

contains an even cycle.

Proof Without loss of generality, we may suppose that G is a connected graph. Let T be a

spanning tree of G, and v a pendant-vertex of T . That is, dT (v) = 1. Since δ(G) ≥ 3, there exist

at least two vertices u and w such that uv, wv ∈ E(G)\E(T ). Define H = T + {uv,wv}. Then

obviously, H contains a θ-graph as subgraph, which is the maximum 2-connected subgraph of

H . In view of H ⊆ G and Lemma 3, we have completed the proof of Lemma 4. 2

For a graph G, if there exist some subgraphs Gi (i = 1, 2, · · · , q) of G such that E(G) =

U q
i=1E(Gi) and E(Gi)∩E(Gj) = φ (1 ≤ i 6= j ≤ q), then we say that G can be decomposed into

G1, G2, · · · , Gq.

Lemma 5 Any forest F can be decomposed into some paths Pmi
(i = 1, 2, · · · , q;mi ≥ 2) such

that all end-vertices of all these paths are pairwise distinct.

Proof We use the induction on m = |E(F )|.

It is trivial for m = 0. Suppose that the lemma is true for all forests of size k ≤ m−1. Now

we consider a forest F of size m (m ≥ 1). In F we choose a path Pt (t ≥ 2) whose end-vertices

are two pendant-vertices of F .

Let F1 = F − E(Pt). Clearly, F1 is a forest of size at most m − 1. By the induction

hypothesis, F1 can be decomposed into some paths Pmi
(i = 1, 2, · · · , q;mi ≥ 2) such that all

end-vertices of all these paths are pairwise distinct. Thus, F can be decomposed into the paths

Pmi
(i = 1, 2, · · · , q) and Pt, all end-vertices of the q + 1 paths are pairwise distinct. So, the

lemma is true for all forests F of size m. We have completed the proof of Lemma 5. 2
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For cycles Cn(n ≥ 3) and complete graphs Kn(n ≥ 1), we have

Lemma 6[8] γ′s(Cn) = n− 2⌊n
3 ⌋ and γ′s(Kn) = ⌈n−1

2 ⌉.

2. Main results

We first give an upper bound of γ′l(G) for all graphs G.

Theorem 1 For any graph G of order n (n ≥ 4), γ′l(G) ≤ 2n− 4 , and this bound is sharp.

Proof We use the induction on m = |E(G)|. The result is clearly true for m ≤ 3 (note that

n ≥ 4).

Suppose that the theorem is true for all graphs of size k(k ≤ m − 1). Now we consider a

graph G with |E(G)| = m. By Lemma 2, we may suppose δ(G) ≥ 1.

Case 1. δ(G) ≤ 2

There exists a vertex v ∈ V (G) such that dG(v) = δ(G) ≤ 2. Note that |E(G − v)| ≤ m−1.

By the induction hypothesis, we have γ′l(G− v) ≤ 2(n− 1)− 4 = 2n− 6. We see from Lemma 2

that γ′l(G) ≤ γ′l(G− v) + dG(v) ≤ 2n− 6 + 2 = 2n− 4.

Case 2. δ(G) ≥ 3

We see from Lemma 4 that G contains an even cycle C. Let H = G − E(C). By the

induction hypothesis, H has an LSEDF f with
∑

e∈E(H) f(e) ≤ 2n− 4. Extending f from H by

signing +1 and −1 alternatively along C, we obtain an LSEDF for G, and hence γ′l(G) ≤ 2n−4.

Since γ′l(K2,n−2) = 2n− 4(n ≥ 4), the upper bound given in Theorem 1 is sharp. We have

completed the proof of Theorem 1. 2

For signed edge domination number, by Theorem 1 and Lemma 1, we have

Corollary 1 For all graphs G of order n(n ≥ 3), γ′s(G) ≤ 2n− 4.

For the lower bound of γ′l(G), we have

Corollary 2 For all graphs G of order n, if δ(G) ≥ 1, then γ′l(G) ≥ ⌈n
2 ⌉.

Proof Let f be an LSEDF ofG such that γ′l(G) =
∑

e∈E(G) f(e). For every edge e = uv ∈ E(G),

e ∈ E(u) and e ∈ E(v). Thus, we have

γ′l(G) =
∑

e∈E(G)

f(e) =
1

2

∑

v∈V (G)

∑

e∈E(v)

f(e) ≥
1

2

∑

v∈V (G)

1 =
n

2
.

Note that γ′l(G) is an integer. The proof is complete. 2

We know from Definition 2 that the inequality γ′l(G) ≤ |E(G)| holds for all graphs G.

This equality holds for some graphs only.

Theorem 2 Let G be a graph, D3(G) = {v ∈ V (G)|dG(v) ≥ 3}. Then γ′l(G) = |E(G)| if and

only if either D3(G) = φ or D3(G) is an independent set of G.

Proof It is not difficult to check that the following four statements are equivalent:
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(1) γ′l(G) = |E(G)|;

(2) For any LSEDF f of G satisfying γ′l(G) =
∑

e∈E(G) f(e) and every edge e ∈ E(G),

f(e) = 1;

(3) For any two vertices u and v of degree at least 3, uv /∈ E(G);

(4) D3(G) = φ or D3(G) is an independent set of G.

We have completed the proof of Theorem 2. 2

Next we give an upper bound of γ′s(G) for general graphs G.

Theorem 3 For any graph G of order n, γ′s(G) ≤ ⌊ 11
6 n− 1⌋.

Proof Without loss of generality, we may suppose that G is a connected graph and n ≥ 4.

When G contains a Hamilton cycle Cn, let T = Cn.

WhenG has no Hamilton cycle, we choose a spanning tree T ofG such that |{v ∈ V (T )|dT (v) = 1}|

is as small as possible (taken over all spanning tree of G). It is easy to see that any two pendant-

vertices of T are not adjacent in G. (Otherwise, there exists a spanning tree T ′ of G such that

T ′ contains less pendant-vertices than T , which contradicts the choice of T in G.)

Thus, n− 1 ≤ |E(T )| ≤ n.

For every edge e ∈ E(T ), define f(e) = +1.

Let A = {v ∈ V (T )|dT (v) = 1}, note that A = φ when T = Cn.

T0 = T \A,A0 = {u ∈ V (T0)|dT0
(u) = 1} (it is possible that A0 = φ).

For each vertex u0 ∈ A0, we choose exactly one edge e0 ∈ E(u0)\E(T ) when E(u0)\E(T ) 6= φ,

where E(u0) = {u0u ∈ E(G)|u ∈ V (G)}. Let M be the set of all edges chosen. Clearly, |M | ≤

|A0| ≤ |A| and A ∩A0 = φ, thus |M | ≤ ⌊n
2 ⌋.

For every edge e ∈M , we define f(e) = +1.

It is easy to check the following statements:

For every nonpendant-edge e of T ,NG[e] contains at least three edges of T . For any pendant-

edge e of T , e = uv ∈ E(T ) with dT (u) = 1, when dG(v) ≥ 3; NG[e] has at least three edges in

E(T ) ∪M , when dG(v) = 2 (note that dG(v) 6= 1); NG[e] contains two edges of T . For every

edge e ∈ E(G)\E(T ), since any two vertices of A are not adjacent in G, NG[e] contains at least

three edges of T .

Write G0 = G− (E(T ) ∪M).

If there exist even circuits in G0, then we choose some pairwise edge-disjoint even circuits,

denoted by Hi (1 ≤ i ≤ t), so that the graph G1 = G0 − ∪t
i=1E(Hi) contains no even circuit. If

there is no even circuits in G0, then G1 = G0.

For each even circuitHi, we define f by signing +1 and −1 alternatively alongHi (1 ≤ i ≤ t).

Since G1 does not contain any even circuit, any two odd cycles in G1 are vertex-disjoint.

(Otherwise, there exists an even circuit in G1, which is impossible.)

Let Cri
(1 ≤ i ≤ s) be all odd cycles of G1, where ri ≥ 3 is odd for each i. Noting that

V (Cri
) ∩ V (Crj

) = φ(1 ≤ i 6= j ≤ s), we have s ≤ ⌊n
3 ⌋.
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For every Cri
, let Mi be a maximum matching of Cri

, and define f as follows:

f(e) =

{

−1, when e ∈Mi

+1, when e ∈ E(Cri
)\Mi

Clearly,
∑

e∈E(Cri
) f(e) = 1 for each i (1 ≤ i ≤ s).

Let F = G1 − ∪s
i=1E(Cri

). Obviously, F is a forest. By Lemma 5, F can be decomposed

into some paths such that all end-vertices of these paths are pairwise distinct. These paths are

written as Pmi
(mi ≥ 2, 1 ≤ i ≤ q), namely, E(F ) = ∪q

i=1E(Pmi
) and E(Pmi

)∩E(Pmj
) = φ (1 ≤

i 6= j ≤ q).

For every path Pmi
(1 ≤ i ≤ q), mi ≥ 2, let Ni be a maximum matching of Pmi

. When

e ∈ Ni, define f(e) = −1; when e ∈ E(Pmi
)\Ni, define f(e) = +1. Note that |Ni| = ⌈mi

2 ⌉ ≥

|E(Pmi
)\Ni|, we have −1 ≤

∑

e∈E(Pmi
) f(e) ≤ 0, i = 1, 2, · · · , q.

We have completed the definition of f on E(G).

Next we check that f is an SEDF of G.

(1) For any edge e = uv ∈ E(G)\E(T );

Since any two vertices of A are not adjacent in G, thus, NG[e] contains at least three edges

of T . Note that u (also, v) is an end-vertex of at most one path defined before, thus NG[e]

contains at most two pendant-edges of all paths Pmi
(1 ≤ i ≤ q). So, we have

∑

e′∈N [e] f(e′) ≥ 1.

(2) For any edge e = uv ∈ E(T );

When e is not any pendant-edge of T , obviously, NG[e] contains at least three edges of T .

Similarly to (1), we have
∑

e′∈N [e] f(e′) ≥ 1.

When e = uv is a pendant-edge of T , where u ∈ A and v ∈ A0. If dG(v) ≥ 3, then NG[e]

contains at least three edges in E(T ) ∪ M . Similarly to (1), we have
∑

e′∈N [e] f(e′) ≥ 1. If

dG(v)=2 (note that dG(v) 6= 1), NG[e] contains two edges of T , and v is not end-vertex of any

path Pmi
(1 ≤ i ≤ q). Thus NG[e] contains at most one pendant-edge in ∪q

i=1E(Pmi
), and we

have
∑

e′∈N [e] f(e′) ≥ 1.

So, f is an SEDF of G. Note n−1 ≤ |E(T )| ≤ n. When T = Cn, A0 = φ and hence M = φ;

when T is a spanning tree of G, |M | ≤ ⌊n
2 ⌋. These imply |E(T )| + |M | ≤ n− 1 + ⌊n

2 ⌋.

Note that s ≤ ⌊n
3 ⌋, we have

∑

e∈E(G)

f(e) = |E(T )| + |M | +

t
∑

i=1

∑

e∈E(Hi)

f(e) +

s
∑

i=1

∑

e∈E(Cri
)

f(e) +

q
∑

i=1

∑

e∈E(Pmi
)

f(e)

≤ n− 1 + ⌊
n

2
⌋ + 0 + s+ 0 ≤ ⌊

11

6
n− 1⌋.

Therefore, γ′s(G) ≤
∑

e∈E(G) f(e) ≤ ⌊ 11
6 n− 1⌋. We have completed the proof of Theorem 3. 2

In particular, if G is a bipartite graph, then in the proof of Theorem 3, s = 0. So we have

Corollary 3 For any bipartite graph G of order n, γ′s(G) ≤ ⌊ 3
2n− 1⌋.

If a graph G has a 2-regular spanning subgraph H , then in the proof of Theorem 3, let

T = H , and hence M = φ. Analogously, we have γ′s(G) ≤
∑

e∈E(G) f(e) ≤ |E(H)|+s ≤ n+⌊n
3 ⌋,

where n = |V (G)|. Namely, we have
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Corollary 4 Let G be a graph of order n. If G has a 2-regular spanning subgraph, then

γ′s(G) ≤ ⌊
4

3
n⌋.

3. Some open problems and conjectures

We know from Lemma 1 that γ′s(G) ≤ γ′L(G). A natural problem is

Problem 1 Characterize the graphs which satisfy the equality γ′s(G) = γ′L(G).

Although in [2] we have determined the exact value of ψ(m) = min{γ′s(G)|G is a graph of

size m} for all positive integers m, it seems more difficult to solve the following

Problem 2[2] Determine the exact value of g(n) = min{γ′s(G)|G is a graph of order n} for every

positive integer n.

Conjecture 1 For any graph G of order n(n ≥ 1), γ′s(G) ≤ n− 1.

If it is true, the super bound is the best possible for odd n. For example, let G be the

subdivision of the star K1, n−1

2

, then clearly, γ′s(G) = |E(G)| = n − 1. (The subdivision of a

graph G is the graph obtained from G by subdividing each edge of G exactly once.)
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