On Signed Edge Domination of Graphs

XU Bao-gen

(Department of Mathematics, East China Jiaotong University, Jiangxi 330013, China) (E-mail: Baogenxu@163.com)

Abstract: Let $\gamma_s'(G)$ and $\gamma_l'(G)$ be the numbers of the signed edge and local signed edge domination of a graph G [2], respectively. In this paper we prove mainly that $\gamma_s'(G) \leq \lfloor \frac{11}{6}n-1 \rfloor$ and $\gamma_l'(G) \leq 2n-4$ hold for any graph G of order $n(n \geq 4)$, and pose several open problems and conjectures.

Key words: local signed edge domination function; local signed edge domination number; signed edge domination function; signed edge domination number.

MSC(2000): 05C22 CLC number: 0157.5

1. Introduction

We use Bondy and $Murty^{[1]}$ and $Xu^{[2]}$ for terminology and notation not defined here and consider simple graphs only.

Let G=(V,E) be a graph. If $e=uv\in E$, then $N_G[e]=\{u'v'\in E|u'=u \text{ or } v'=v\}$ is called the closed edge-neighbourhood of e in G, and $N_G(e)=N_G[e]\setminus\{e\}$ is the open one. If $v\in V$, then $E_G(v)=\{uv\in E|u\in V\}$. For simplicity, sometimes, $N_G[e]$ and $E_G(v)$ are denoted by N[e] and E(v), respectively. In [2] we introduced the signed edge domination of graphs as follows:

Definition 1^[2] Let G = (V, E) be a nonempty graph. A function $f : E \to \{+1 - 1\}$ is called the signed edge domination function (SEDF) of G if $\sum_{e' \in N[e]} f(e') \ge 1$ for every $e \in E(G)$. The signed edge domination number of G is defined as $\gamma'_s(G) = \min\{\sum_{e \in E} f(e) | f \text{ is an SEDF of } G\}$.

And define $\gamma'_s(\overline{K}_n) = 0$ for all totally disconnected graphs \overline{K}_n .

Next we introduce a new concept of edge domination in graphs:

Definition 2 Let G=(V,E) be a graph without isolated vertices. A function $f:E\to \{+1-1\}$ is called the local signed edge domination function (LSEDF) of G if $\sum_{e\in E(v)} f(e) \geq 1$ for every $v\in V(G)$. The local signed edge domination number of G is defined as $\gamma'_l(G)=\min\{\sum_{e\in E} f(e)|f$ is an LSEDF of G. Obviously, $|\gamma'_l(G)|\leq |E(G)|$. It seems natural to define $\gamma'_l(\bar{K}_n)=0$ for all totally disconnected graphs \overline{K}_n .

Clearly, $\gamma'_l(G_1 \cup G_2) = \gamma'_l(G_1) + \gamma'_l(G_2)$ and $\gamma'_s(G_1 \cup G_2) = \gamma'_s(G_1) + \gamma'_s(G_2)$ for any two disjoint graphs G_1 and G_2 . In comparison with the above two definitions, we see that each

Received date: 2004-09-20; Accepted date: 2005-03-01

Foundation item: the National Natural Science Foundation of China (10661007); the Natural Science Foundation of Jiangxi Province (0311047).

LSEDF of G is an SEDF of G, and hence we have

Lemma 1 For all graphs G, $\gamma'_{\circ}(G) \leq \gamma'_{\circ}(G)$.

By Definition 2, we have

Lemma 2 For all graphs $G, v \in V(G)$, then $\gamma'_l(G) \leq \gamma'_l(G-v) + d_G(v)$.

In recent years, some kinds of domination in graphs have been investigated. Most of those belong to the vertex domination of graphs, such as signed domination^[3,4], minus domination^[5], majority domination^[6], domination^[7], etc. A few of results have been obtained about the edge domination of graphs^[2]. In this paper we discuss mainly the upper bounds for (local) signed domination numbers of graphs, and pose several open problems and conjectures.

A graph G is said to be a θ -graph if G is a connected graph with degree sequence $d = (2, 2, \dots, 2, 3, 3)$. That is, a θ -graph consists of a cycle and a path such that two end-vertices of the path are on the cycle.

Lemma 3 Any θ -graph contains a cycle of even length (even cycle).

Proof It is obvious.

Lemma 4 For any graph G, if $\delta(G) \geq 3$, then G contains a θ -graph as subgraph, and hence G contains an even cycle.

Proof Without loss of generality, we may suppose that G is a connected graph. Let T be a spanning tree of G, and v a pendant-vertex of T. That is, $d_T(v) = 1$. Since $\delta(G) \geq 3$, there exist at least two vertices u and w such that uv, $wv \in E(G) \setminus E(T)$. Define $H = T + \{uv, wv\}$. Then obviously, H contains a θ -graph as subgraph, which is the maximum 2-connected subgraph of H. In view of $H \subseteq G$ and Lemma 3, we have completed the proof of Lemma 4.

For a graph G, if there exist some subgraphs G_i $(i = 1, 2, \dots, q)$ of G such that $E(G) = U_{i=1}^q E(G_i)$ and $E(G_i) \cap E(G_j) = \phi$ $(1 \le i \ne j \le q)$, then we say that G can be decomposed into G_1, G_2, \dots, G_q .

Lemma 5 Any forest F can be decomposed into some paths P_{m_i} $(i = 1, 2, \dots, q; m_i \ge 2)$ such that all end-vertices of all these paths are pairwise distinct.

Proof We use the induction on m = |E(F)|.

It is trivial for m=0. Suppose that the lemma is true for all forests of size $k \leq m-1$. Now we consider a forest F of size m ($m \geq 1$). In F we choose a path P_t ($t \geq 2$) whose end-vertices are two pendant-vertices of F.

Let $F_1 = F - E(P_t)$. Clearly, F_1 is a forest of size at most m-1. By the induction hypothesis, F_1 can be decomposed into some paths P_{m_i} $(i = 1, 2, \dots, q; m_i \ge 2)$ such that all end-vertices of all these paths are pairwise distinct. Thus, F can be decomposed into the paths P_{m_i} $(i = 1, 2, \dots, q)$ and P_t , all end-vertices of the q+1 paths are pairwise distinct. So, the lemma is true for all forests F of size m. We have completed the proof of Lemma 5.

For cycles $C_n (n \geq 3)$ and complete graphs $K_n (n \geq 1)$, we have

Lemma 6^[8] $\gamma'_s(C_n) = n - 2\lfloor \frac{n}{3} \rfloor$ and $\gamma'_s(K_n) = \lceil \frac{n-1}{2} \rceil$.

2. Main results

We first give an upper bound of $\gamma'_l(G)$ for all graphs G.

Theorem 1 For any graph G of order $n \ (n \ge 4), \gamma'_i(G) \le 2n - 4$, and this bound is sharp.

Proof We use the induction on m = |E(G)|. The result is clearly true for $m \leq 3$ (note that $n \geq 4$).

Suppose that the theorem is true for all graphs of size $k(k \le m-1)$. Now we consider a graph G with |E(G)| = m. By Lemma 2, we may suppose $\delta(G) \ge 1$.

Case 1. $\delta(G) \leq 2$

There exists a vertex $v \in V(G)$ such that $d_G(v) = \delta(G) \le 2$. Note that $|E(G-v)| \le m-1$. By the induction hypothesis, we have $\gamma'_l(G-v) \le 2(n-1)-4=2n-6$. We see from Lemma 2 that $\gamma'_l(G) \le \gamma'_l(G-v) + d_G(v) \le 2n-6+2=2n-4$.

Case 2. $\delta(G) \geq 3$

We see from Lemma 4 that G contains an even cycle C. Let H = G - E(C). By the induction hypothesis, H has an LSEDF f with $\sum_{e \in E(H)} f(e) \le 2n - 4$. Extending f from H by signing +1 and -1 alternatively along C, we obtain an LSEDF for G, and hence $\gamma'_l(G) \le 2n - 4$.

Since $\gamma'_l(K_{2,n-2}) = 2n - 4(n \ge 4)$, the upper bound given in Theorem 1 is sharp. We have completed the proof of Theorem 1.

For signed edge domination number, by Theorem 1 and Lemma 1, we have

Corollary 1 For all graphs G of order $n(n \ge 3)$, $\gamma'_s(G) \le 2n - 4$.

For the lower bound of $\gamma'_l(G)$, we have

Corollary 2 For all graphs G of order n, if $\delta(G) \geq 1$, then $\gamma'_l(G) \geq \lceil \frac{n}{2} \rceil$.

Proof Let f be an LSEDF of G such that $\gamma'_l(G) = \sum_{e \in E(G)} f(e)$. For every edge $e = uv \in E(G)$, $e \in E(u)$ and $e \in E(v)$. Thus, we have

$$\gamma'_l(G) = \sum_{e \in E(G)} f(e) = \frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \ge \frac{1}{2} \sum_{v \in V(G)} 1 = \frac{n}{2}.$$

Note that $\gamma'_{l}(G)$ is an integer. The proof is complete.

We know from Definition 2 that the inequality $\gamma'_l(G) \leq |E(G)|$ holds for all graphs G. This equality holds for some graphs only.

Theorem 2 Let G be a graph, $D_3(G) = \{v \in V(G) | d_G(v) \geq 3\}$. Then $\gamma'_l(G) = |E(G)|$ if and only if either $D_3(G) = \phi$ or $D_3(G)$ is an independent set of G.

Proof It is not difficult to check that the following four statements are equivalent:

- (1) $\gamma'_l(G) = |E(G)|;$
- (2) For any LSEDF f of G satisfying $\gamma'_l(G) = \sum_{e \in E(G)} f(e)$ and every edge $e \in E(G)$, f(e) = 1;
 - (3) For any two vertices u and v of degree at least 3, $uv \notin E(G)$;
 - (4) $D_3(G) = \phi$ or $D_3(G)$ is an independent set of G.

We have completed the proof of Theorem 2.

Next we give an upper bound of $\gamma'_s(G)$ for general graphs G.

Theorem 3 For any graph G of order n, $\gamma'_s(G) \leq \lfloor \frac{11}{6}n - 1 \rfloor$.

Proof Without loss of generality, we may suppose that G is a connected graph and $n \geq 4$.

When G contains a Hamilton cycle C_n , let $T = C_n$.

When G has no Hamilton cycle, we choose a spanning tree T of G such that $|\{v \in V(T)|d_T(v)=1\}|$ is as small as possible (taken over all spanning tree of G). It is easy to see that any two pendant-vertices of T are not adjacent in G. (Otherwise, there exists a spanning tree T' of G such that T' contains less pendant-vertices than T, which contradicts the choice of T in G.)

Thus, $n-1 \le |E(T)| \le n$.

For every edge $e \in E(T)$, define f(e) = +1.

Let $A = \{v \in V(T) | d_T(v) = 1\}$, note that $A = \phi$ when $T = C_n$.

$$T_0 = T \setminus A, A_0 = \{u \in V(T_0) | d_{T_0}(u) = 1\}$$
 (it is possible that $A_0 = \phi$).

For each vertex $u_0 \in A_0$, we choose exactly one edge $e_0 \in E(u_0) \setminus E(T)$ when $E(u_0) \setminus E(T) \neq \phi$, where $E(u_0) = \{u_0u \in E(G) | u \in V(G)\}$. Let M be the set of all edges chosen. Clearly, $|M| \leq |A_0| \leq |A|$ and $A \cap A_0 = \phi$, thus $|M| \leq \lfloor \frac{n}{2} \rfloor$.

For every edge $e \in M$, we define f(e) = +1.

It is easy to check the following statements:

For every nonpendant-edge e of T, $N_G[e]$ contains at least three edges of T. For any pendant-edge e of T, $e = uv \in E(T)$ with $d_T(u) = 1$, when $d_G(v) \ge 3$; $N_G[e]$ has at least three edges in $E(T) \cup M$, when $d_G(v) = 2$ (note that $d_G(v) \ne 1$); $N_G[e]$ contains two edges of T. For every edge $e \in E(G) \setminus E(T)$, since any two vertices of A are not adjacent in G, $N_G[e]$ contains at least three edges of T.

Write
$$G_0 = G - (E(T) \cup M)$$
.

If there exist even circuits in G_0 , then we choose some pairwise edge-disjoint even circuits, denoted by H_i $(1 \le i \le t)$, so that the graph $G_1 = G_0 - \bigcup_{i=1}^t E(H_i)$ contains no even circuit. If there is no even circuits in G_0 , then $G_1 = G_0$.

For each even circuit H_i , we define f by signing +1 and -1 alternatively along H_i $(1 \le i \le t)$.

Since G_1 does not contain any even circuit, any two odd cycles in G_1 are vertex-disjoint. (Otherwise, there exists an even circuit in G_1 , which is impossible.)

Let $C_{r_i}(1 \le i \le s)$ be all odd cycles of G_1 , where $r_i \ge 3$ is odd for each i. Noting that $V(C_{r_i}) \cap V(C_{r_i}) = \phi(1 \le i \ne j \le s)$, we have $s \le \lfloor \frac{n}{3} \rfloor$.

For every C_{r_i} , let M_i be a maximum matching of C_{r_i} , and define f as follows:

$$f(e) = \begin{cases} -1, & \text{when } e \in M_i \\ +1, & \text{when } e \in E(C_{r_i}) \backslash M_i \end{cases}$$

Clearly, $\sum_{e \in E(C_{r_i})} f(e) = 1$ for each $i \ (1 \le i \le s)$.

Let $F = G_1 - \bigcup_{i=1}^s E(C_{r_i})$. Obviously, F is a forest. By Lemma 5, F can be decomposed into some paths such that all end-vertices of these paths are pairwise distinct. These paths are written as P_{m_i} ($m_i \ge 2, 1 \le i \le q$), namely, $E(F) = \bigcup_{i=1}^q E(P_{m_i})$ and $E(P_{m_i}) \cap E(P_{m_j}) = \phi$ ($1 \le i \ne j \le q$).

For every path $P_{m_i}(1 \leq i \leq q)$, $m_i \geq 2$, let N_i be a maximum matching of P_{m_i} . When $e \in N_i$, define f(e) = -1; when $e \in E(P_{m_i}) \setminus N_i$, define f(e) = +1. Note that $|N_i| = \lceil \frac{m_i}{2} \rceil \geq |E(P_{m_i}) \setminus N_i|$, we have $-1 \leq \sum_{e \in E(P_{m_i})} f(e) \leq 0$, $i = 1, 2, \dots, q$.

We have completed the definition of f on E(G).

Next we check that f is an SEDF of G.

(1) For any edge $e = uv \in E(G) \setminus E(T)$;

Since any two vertices of A are not adjacent in G, thus, $N_G[e]$ contains at least three edges of T. Note that u (also, v) is an end-vertex of at most one path defined before, thus $N_G[e]$ contains at most two pendant-edges of all paths $P_{m_i}(1 \le i \le q)$. So, we have $\sum_{e' \in N[e]} f(e') \ge 1$.

(2) For any edge $e = uv \in E(T)$;

When e is not any pendant-edge of T, obviously, $N_G[e]$ contains at least three edges of T. Similarly to (1), we have $\sum_{e' \in N[e]} f(e') \ge 1$.

When e = uv is a pendant-edge of T, where $u \in A$ and $v \in A_0$. If $d_G(v) \geq 3$, then $N_G[e]$ contains at least three edges in $E(T) \cup M$. Similarly to (1), we have $\sum_{e' \in N[e]} f(e') \geq 1$. If $d_G(v)=2$ (note that $d_G(v) \neq 1$), $N_G[e]$ contains two edges of T, and v is not end-vertex of any path P_{m_i} ($1 \leq i \leq q$). Thus $N_G[e]$ contains at most one pendant-edge in $\bigcup_{i=1}^q E(P_{m_i})$, and we have $\sum_{e' \in N[e]} f(e') \geq 1$.

So, f is an SEDF of G. Note $n-1 \le |E(T)| \le n$. When $T = C_n$, $A_0 = \phi$ and hence $M = \phi$; when T is a spanning tree of G, $|M| \le \lfloor \frac{n}{2} \rfloor$. These imply $|E(T)| + |M| \le n - 1 + \lfloor \frac{n}{2} \rfloor$.

Note that $s \leq \lfloor \frac{n}{3} \rfloor$, we have

$$\begin{split} \sum_{e \in E(G)} f(e) &= |E(T)| + |M| + \sum_{i=1}^t \sum_{e \in E(H_i)} f(e) + \sum_{i=1}^s \sum_{e \in E(C_{r_i})} f(e) + \sum_{i=1}^q \sum_{e \in E(P_{m_i})} f(e) \\ &\leq n - 1 + \lfloor \frac{n}{2} \rfloor + 0 + s + 0 \leq \lfloor \frac{11}{6} n - 1 \rfloor. \end{split}$$

Therefore, $\gamma_s'(G) \leq \sum_{e \in E(G)} f(e) \leq \lfloor \frac{11}{6}n - 1 \rfloor$. We have completed the proof of Theorem 3. \square In particular, if G is a bipartite graph, then in the proof of Theorem 3, s = 0. So we have

Corollary 3 For any bipartite graph G of order $n, \gamma'_s(G) \leq \lfloor \frac{3}{2}n - 1 \rfloor$.

If a graph G has a 2-regular spanning subgraph H, then in the proof of Theorem 3, let T=H, and hence $M=\phi$. Analogously, we have $\gamma_s'(G)\leq \sum_{e\in E(G)}f(e)\leq |E(H)|+s\leq n+\lfloor\frac{n}{3}\rfloor$, where n=|V(G)|. Namely, we have

Corollary 4 Let G be a graph of order n. If G has a 2-regular spanning subgraph, then

$$\gamma_s'(G) \le \lfloor \frac{4}{3}n \rfloor.$$

3. Some open problems and conjectures

We know from Lemma 1 that $\gamma'_s(G) \leq \gamma'_L(G)$. A natural problem is

Problem 1 Characterize the graphs which satisfy the equality $\gamma'_s(G) = \gamma'_L(G)$.

Although in [2] we have determined the exact value of $\psi(m) = \min\{\gamma'_s(G)|G \text{ is a graph of size } m\}$ for all positive integers m, it seems more difficult to solve the following

Problem 2^[2] Determine the exact value of $g(n) = \min\{\gamma'_s(G)|G \text{ is a graph of order } n\}$ for every positive integer n.

Conjecture 1 For any graph G of order $n(n \ge 1)$, $\gamma'_s(G) \le n - 1$.

If it is true, the super bound is the best possible for odd n. For example, let G be the subdivision of the star $K_{1,\frac{n-1}{2}}$, then clearly, $\gamma_s'(G) = |E(G)| = n-1$. (The subdivision of a graph G is the graph obtained from G by subdividing each edge of G exactly once.)

References:

- [1] BONDY J A, MURTY V S R. Graph Theory with Applications [M]. Elsevier, Amsterdam, 1976.
- [2] XU Bao-gen. On signed edge domination numbers of graphs [J]. Discrete Math., 2001, 239: 179–189.
- [3] ZHANG Zhong-fu, XU Bao-gen, LI Yin-zhen. et al. A note on the lower bounds of signed domination number of a graph [J]. Discrete Math., 1999, 195: 295–298.
- [4] COCKAYNÉ E J, MYNHART C M. On a generalization of signed domination functions of graphs [J]. Ars. Combin., 1996, 43: 235–245.
- [5] XU Bao-gen,ZHOU Shang-chao. Characterization of connected graphs with maximum domination number
 [J] J. Math. Res. Exposition, 2000, 20(4): 523-528.
- [6] XU Bao-gen. On minus domination and signed domination in graphs [J]. J. Math. Res. Exposition, 2003, 23(4): 586-590.
- [7] XU Bao-gen, COCKAYNE E J, HAYNES T W. et al. Extremal graphs for inequalities involving domination parameters [J]. Discrete Math., 2000, 216: 1–10.
- [8] XU Bao-gen. On signed edge domination numbers of graphs [J]. J. East China Jiaotong Univ., 2003, 2: 102–105. (in Chinese)

关于图符号的边控制

徐保根

(华东交通大学数学系, 江西 南昌 330013)

摘要: 设 $\gamma_s'(G)$ 和 $\gamma_l'(G)$ 分别表示图 G 的符号边和局部符号边控制数,本文主要证明了: 对任何 n 阶图 $G(n \ge 4)$,均有 $\gamma_s'(G) \le \lfloor \frac{11}{6}n - 1 \rfloor$ 和 $\gamma_l'(G) \le 2n - 4$ 成立,并提出了若干问题和猜想.

关键词: 局部符号边控制函数; 局部符号边控制数; 符号边控制函数; 符号边控制数.