T o R 5 O o® Vol.27, No.1
200742 JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION Feb., 2007

Article ID: 1000-341X(2007)01-0007-06 Document code: A

On Signed Edge Domination of Graphs

XU Bao-gen

(Department of Mathematics, East China Jiaotong University, Jiangxi 330013, China )
(E-mail: Baogenxu@163.com)

Abstract: Let v,(G) and 7;(G) be the numbers of the signed edge and local signed edge
domination of a graph G [2], respectively. In this paper we prove mainly that v;(G) <
\_1—6171 — 1] and 4;(G) < 2n — 4 hold for any graph G of order n(n > 4), and pose several open
problems and conjectures.
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1. Introduction

We use Bondy and Murty!l and Xul® for terminology and notation not defined here and
consider simple graphs only.

Let G = (V,E) be a graph. If e = uv € E, then Ngle] = {vv' € E|u/ = u or v/ = v}
is called the closed edge-neighbourhood of e in G, and Ng(e) = Ngle]\{e} is the open one. If
v €V, then Eg(v) = {uv € E|u € V}. For simplicity, sometimes, Ng[e] and Eg(v) are denoted
by Nle] and E(v), respectively. In [2] we introduced the signed edge domination of graphs as

follows:

Definition 112! Let G = (V, E) be a nonempty graph. A function f : E — {+1 — 1} is called

the signed edge domination function (SEDF ) of G if 3¢ n(.) f(€') = 1 for every e € E(G). The

signed edge domination number of G is defined as v¢(G) = min{)_ . f(e)|f is an SEDF of G}.
And define v/ (K, ) = 0 for all totally disconnected graphs K,,.

Next we introduce a new concept of edge domination in graphs:

Definition 2 Let G = (V, E) be a graph without isolated vertices. A function f : E — {+1—1}
is called the local signed edge domination function ( LSEDF ) of G if }_ ¢, f(€) = 1 for every
v € V(G). The local signed edge domination number of G' is defined as v;(G) = min{}_ ., f(e)|f
is an LSEDF of G }. Obviously, |v,(G)| < |E(G)|. It seems natural to define ~,(K,) = 0 for all
totally disconnected graphs K,,.

Clearly, 7/(G1U G2) = 7/(G1) +7/(G2) and 7,(G1 U G2) = 7,(G1) + 7,(G2) for any two

disjoint graphs G; and G3. In comparison with the above two definitions, we see that each
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LSEDF of G is an SEDF of G, and hence we have

Lemma 1 For all graphs G, v.(G) < v/(G).
By Definition 2, we have

Lemma 2 For all graphs G, v € V(G), then v/(G) < /(G —v) + dg(v).

In recent years, some kinds of domination in graphs have been investigated. Most of those

[3,4]

belong to the vertex domination of graphs, such as signed domination!®*, minus domination!®!,

(6] (7]

, domination'”), etc. A few of results have been obtained about the edge

(2]

majority domination
domination of graphs!?l. In this paper we discuss mainly the upper bounds for (local) signed
domination numbers of graphs, and pose several open problems and conjectures.

A graph G is said to be a f-graph if G is a connected graph with degree sequence d =
(2,2,---,2,3,3). That is, a 6-graph consists of a cycle and a path such that two end-vertices of

the path are on the cycle.
Lemma 3 Any 0-graph contains a cycle of even length (even cycle).
Proof It is obvious.

Lemma 4 For any graph G, if §(G) > 3, then G contains a 0-graph as subgraph, and hence G

contains an even cycle.

Proof Without loss of generality, we may suppose that G is a connected graph. Let T be a
spanning tree of G, and v a pendant-vertex of T'. That is, dr(v) = 1. Since 6(G) > 3, there exist
at least two vertices w and w such that uv, wv € E(G)\E(T). Define H = T + {uv,wv}. Then
obviously, H contains a #-graph as subgraph, which is the maximum 2-connected subgraph of

H. In view of H C G and Lemma 3, we have completed the proof of Lemma 4. o

For a graph G, if there exist some subgraphs G; (i = 1,2,---,q) of G such that E(G) =
UL,E(G;) and E(G;)NE(G;) = ¢ (1 <i+# j < q), then we say that G can be decomposed into
G1, Ga, -, Gy

Lemma 5 Any forest F' can be decomposed into some paths Pp,, (i =1,2,---,¢q;m; > 2) such

that all end-vertices of all these paths are pairwise distinct.

Proof We use the induction on m = |E(F)|.

It is trivial for m = 0. Suppose that the lemma is true for all forests of size k < m —1. Now
we consider a forest F' of size m (m > 1). In F we choose a path P; (t > 2) whose end-vertices
are two pendant-vertices of F.

Let Fi = F — E(P;). Clearly, F; is a forest of size at most m — 1. By the induction
hypothesis, F; can be decomposed into some paths P,,, (i = 1,2,---,¢;m; > 2) such that all
end-vertices of all these paths are pairwise distinct. Thus, F' can be decomposed into the paths
P, (i =1,2,---,q) and P;, all end-vertices of the ¢ + 1 paths are pairwise distinct. So, the

lemma is true for all forests F' of size m. We have completed the proof of Lemma 5. |
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For cycles Cy,(n > 3) and complete graphs K, (n > 1), we have

Lemma 6[8 Y(Cr) =n— 2[%] and v.(K,) = ("771]

2. Main results
We first give an upper bound of 4/(G) for all graphs G.
Theorem 1 For any graph G of order n (n > 4), v,(G) < 2n — 4 , and this bound is sharp.

Proof We use the induction on m = |E(G)|. The result is clearly true for m < 3 (note that
n>4).
Suppose that the theorem is true for all graphs of size k(k < m — 1). Now we consider a

graph G with |E(G)| = m. By Lemma 2, we may suppose §(G) > 1.

Case 1. §(G) <2

There exists a vertex v € V(G) such that dg(v) = 6(G) < 2. Note that |E(G —v)| < m—1.
By the induction hypothesis, we have v/(G —v) < 2(n—1) —4 = 2n — 6. We see from Lemma 2
that 7/(G) < /(G —v) +dg(v) <2n—6+2=2n —4.

Case 2. 6(G) >3
We see from Lemma 4 that G contains an even cycle C. Let H = G — E(C). By the
induction hypothesis, H has an LSEDF f with ZeeE(H) f(e) < 2n—4. Extending f from H by
signing +1 and —1 alternatively along C, we obtain an LSEDF for G, and hence +/(G) < 2n —4.
Since 7, (K2,n—2) = 2n — 4(n > 4), the upper bound given in Theorem 1 is sharp. We have
completed the proof of Theorem 1. O

For signed edge domination number, by Theorem 1 and Lemma 1, we have

Corollary 1 For all graphs G of order n(n > 3), v.(G) < 2n — 4.
For the lower bound of v/(G), we have

Corollary 2 For all graphs G of order n, if §(G) > 1, then +/(G) > [§].

Proof Let f be an LSEDF of G such that 7/(G) = 3_.c () f(€). For every edge e = uv € E(G),
e € E(u) and e € E(v). Thus, we have

1 1 n
NG = > floo=5 > > floz5 > 1=3
e€E(G) veV(G) ecE(v) veV(G)
Note that 7;(G) is an integer. The proof is complete. O

We know from Definition 2 that the inequality v/(G) < |E(G)| holds for all graphs G.
This equality holds for some graphs only.

Theorem 2 Let G be a graph, D3(G) = {v € V(G)|d¢(v) > 3}. Then v/(G) = |E(G)| if and
only if either D3(G) = ¢ or D3(G) is an independent set of G.

Proof It is not difficult to check that the following four statements are equivalent:
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(1) (@) = E@G)];

(2) For any LSEDF f of G satistying 7/(G) = > .cp(q) f(e) and every edge e € E(G),
fle)=1;

(3) For any two vertices u and v of degree at least 3, uv ¢ E(G);

(4) D3(G) = ¢ or D3(G) is an independent set of G.

We have completed the proof of Theorem 2. O

Next we give an upper bound of v.(G) for general graphs G.

Theorem 3 For any graph G of order n, v,(G) < [Hn —1].

Proof Without loss of generality, we may suppose that G is a connected graph and n > 4.

When G contains a Hamilton cycle C,, let T' = C,,.

When G has no Hamilton cycle, we choose a spanning tree T' of G such that [{v € V(T')|dr(v) = 1}
is as small as possible (taken over all spanning tree of G). It is easy to see that any two pendant-
vertices of T are not adjacent in G. (Otherwise, there exists a spanning tree 7" of G such that
T’ contains less pendant-vertices than T, which contradicts the choice of T in G.)

Thus, n — 1 < |E(T)| < n.

For every edge e € E(T), define f(e) = +1.

Let A= {v e V(T)|dr(v) =1}, note that A = ¢ when T = C,,.

To=T\A,Ag ={u € V(Tp)|dr,(u) = 1} (it is possible that Ay = ¢).

For each vertex ug € Ao, we choose exactly one edge eg € E(ug)\E(T) when E(ug)\E(T) # ¢,
where E(ug) = {uou € E(G)|u € V(G)}. Let M be the set of all edges chosen. Clearly, |M| <
|40 < |A| and AN Ay = ¢, thus [M| < [F].

For every edge e € M, we define f(e) = +1.

It is easy to check the following statements:

For every nonpendant-edge e of T, N¢e] contains at least three edges of T. For any pendant-
edge e of T, e = uv € E(T) with dr(u) = 1, when dg(v) > 3; Ngle] has at least three edges in
E(T)UJU M, when dg(v) = 2 (note that dg(v) # 1); Ngle] contains two edges of T. For every
edge e € E(G)\E(T), since any two vertices of A are not adjacent in G, Ngle] contains at least
three edges of T'.

Write Gy = G — (E(T)U M).

If there exist even circuits in Gy, then we choose some pairwise edge-disjoint even circuits,
denoted by H; (1 <i <), so that the graph G; = Gy — U!_; E(H;) contains no even circuit. If
there is no even circuits in Gy, then G; = Gj.

For each even circuit H;, we define f by signing +1 and —1 alternatively along H; (1 <14 < t).

Since GG; does not contain any even circuit, any two odd cycles in G; are vertex-disjoint.
(Otherwise, there exists an even circuit in G7, which is impossible.)

Let Cp,(1 <4 < s) be all odd cycles of Gy, where r; > 3 is odd for each i. Noting that
V(Cr)NV(Cy;) = ¢(1 <i# j<s), we have s < [ 5].
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For every Ci.,, let M; be a maximum matching of C,,, and define f as follows:

fle) = —1, when e € M;
“ T\ +1, when e € E(C,)\M;

Clearly, ZeeE(Cn) f(e) =1foreach i (1 <i<s).

Let F' = Gy — Ui_; E(Cy,). Obviously, F is a forest. By Lemma 5, F' can be decomposed
into some paths such that all end-vertices of these paths are pairwise distinct. These paths are
written as Pp, (m; > 2,1 <i < q), namely, E(F) = U__, E(Py,) and E(Py,, )NE(Pp,) = ¢ (1 <
i#j<q)

For every path P, (1 < i < ¢), m; > 2, let N; be a maximum matching of P,,,. When
e € Nj, define f(e) = —1; when e € E(P,,;)\N;, define f(e) = +1. Note that |[N;| = [F] >
|E(Pp,; )\ N;|, we have —1 < ZEGE(PM) fle)<0,i=1,2,---,q.

We have completed the definition of f on E(G).

Next we check that f is an SEDF of G.

(1) For any edge e = uwv € E(G)\E(T);

Since any two vertices of A are not adjacent in G, thus, Nge] contains at least three edges
of T. Note that u (also, v) is an end-vertex of at most one path defined before, thus Ngle]
contains at most two pendant-edges of all paths P, (1 < < ¢). So, we have 3, ¢y f(€) 2 1.

(2) For any edge e = uv € E(T);

When e is not any pendant-edge of T', obviously, Ng[e] contains at least three edges of T.
Similarly to (1), we have > ¢y f(e) 2 1.

When e = uv is a pendant-edge of T, where u € A and v € Ay. If dg(v) > 3, then Ngle]
contains at least three edges in E(7) U M. Similarly to (1), we have >, oy f(e') = 1. If
da(v)=2 (note that dg(v) # 1), Ngle] contains two edges of T', and v is not end-vertex of any
path P, (1 <i < ¢). Thus N¢[e] contains at most one pendant-edge in U!_; E(P,,,), and we
have ey £(€) 2 1.

So, f is an SEDF of G. Note n—1 < |E(T)| < n. When T = C,,, Ag = ¢ and hence M = ¢;
when T is a spanning tree of G, [M| < [%]. These imply |[E(T)| + |[M| <n—1+ [F].

Note that s < | %], we have

S e =1BEMI+IMI+> > flo+d, > fle+>, > fle)

e€E(Q) i=1 ecE(H;) i=1ecE(Cyr,;) i=1 e€ E(Pnm,;)
n

§n—1+[2

11
] +0+s+0< LFn—lj.

Therefore, 74(G) < 3 cpq) f(€) < |Xn —1]. We have completed the proof of Theorem 3. O
In particular, if G is a bipartite graph, then in the proof of Theorem 3, s = 0. So we have

Corollary 3 For any bipartite graph G of order n, v.(G) < [3n —1].

If a graph G has a 2-regular spanning subgraph H, then in the proof of Theorem 3, let
T = H, and hence M = ¢. Analogously, we have v, (G) < 3> cpg) f(e) < |[E(H)|+s < n+[5],
where n = |[V(G)|. Namely, we have
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Corollary 4 Let G be a graph of order n. If G has a 2-regular spanning subgraph, then

1(G) < 5n).

3. Some open problems and conjectures

We know from Lemma 1 that v.(G) < v (G). A natural problem is

Problem 1 Characterize the graphs which satisfy the equality v.(G) = 77 (G).
Although in [2] we have determined the exact value of 1)(m) = min{+.(G)|G is a graph of

size m} for all positive integers m, it seems more difficult to solve the following

Problem 22/ Determine the exact value of g(n) = min{~/(G)|G is a graph of order n} for every

positive integer n.

Conjecture 1 For any graph G of order n(n > 1), v.(G) <n — 1.

If it is true, the super bound is the best possible for odd n. For example, let G be the
subdivision of the star K »_1, then clearly, v:(G) = |E(G)] = n — 1. (The subdivision of a
graph G is the graph obtained from G by subdividing each edge of G exactly once.)
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