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ABSTRACT

The steady-state solutions of a barotropic double-gyre ocean model in which the wind stress curl input of
vorticity is balanced primarily by bottom friction are studied. The bifurcations away from a unique and stable
steady state are mapped as a function of two nondimensional parameters (dI, dS), which can be thought of as
measuring respectively the relative importance of the nonlinear advection and bottom damping of relative vorticity
to the advection of planetary vorticity.

A highly inertial branch characterized by a circulation with transports far in excess of those predicted by
Sverdrup balance is present over a wide range of parameters including regions of parameter space where other
solutions give more realistic flows. For the range of parameters investigated, in the limit of a large Reynolds
number, dI/dS → `, the inertial branch is stable and appears to be unique. This branch is antisymmetric with
respect to the midbasin latitude like the prescribed wind stress curl. For intermediate values of dI/dS, additional
pairs of mirror image nonsymmetric equilibria come into existence. These additional equilibria have currents
that redistribute relative vorticity across the line of zero wind stress curl. This internal redistribution of vorticity
prevents the solution from developing the large transports that are necessary for the antisymmetric solution to
achieve a global vorticity balance. Beyond some critical Reynolds number, the nonsymmetric solutions are
unstable to time-dependent perturbations. Time-averaged solutions in this parameter regime have transports
comparable in magnitude to those of the nonsymmetric steady state branch. Beyond a turning point, where the
nonsymmetric steady-state solutions cease to exist, all the computed time-dependent model trajectories converge
to the antisymmetric inertial runaway solution. The internal compensation mechanism, which acts through
explicitly simulated eddies, is itself dependent upon an explicit dissipation parameter.

1. Introduction and motivation

Numerical ocean models are an indispensable tool for
understanding the climate system and possibly for pre-
dicting climate change. Ocean models are not only used
in conjunction with observations to estimate the current
state of the oceans, but also to estimate the state of the
ocean under different mechanical and thermodynamical
forcing. These models depend on boundary conditions
and subgrid-scale parameterizations that are poorly
known from observations. For climate studies, the time
evolution of ocean models over hundreds to thousands
of years is of paramount importance. This makes the
choice of suitable parameterizations of dissipation rather
crucial, since dissipative forces, no matter how small,
have enough time to become important.

For the wind-driven ocean circulation, the subgrid-
scale parameterization of mixing processes provides an
explicit dissipation term in the governing equation. Ped-
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losky (1996) reviews the role played by dissipation in
theories of the wind-driven circulation within the con-
text of homogeneous models. In all cases that have been
studied, the explicit frictional dissipation is responsible
for balancing the continuous input of vorticity by the
action of the wind stress. The hope that as the boundary-
layer Reynolds number is increased, the total circulation
would become independent of the particular frictional
model adopted has been disappointed. As demonstrated
by Ierley and Sheremet (1995), in a single-gyre model
with free-slip boundary conditions, a steady basin-filling
inertial gyre with velocities far in excess of those pre-
dicted by Sverdrup balance is the only solution for a
sufficiently large boundary layer Reynolds number.

Of particular interest to our study is the double-gyre
simulation by Marshall (1984). In this model, a source
of negative vorticity input by the curl of the wind stress
in the southern region of the basin is balanced by a
positive source of vorticity of equal magnitude in the
northern region. Marshall’s (1984) study stands out be-
cause it appears to provide an example in which time-
dependent eddies prevent the development of the inertial
runaway solution. In this simulation, the amount of neg-
ative vorticity put in by the wind in the subtropical gyre
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is roughly balanced by the eddy flux of negative vor-
ticity from the southern gyre to the northern gyre, there-
by eliminating the need for the vorticity input by the
wind to be eliminated in the western boundary layer. It
is important to point out, however, as Pedlosky (1996)
emphasizes, that this internal compensation mechanism
can only apply for the singular case in which there is
no net input of vorticity by the curl of the wind stress
over the entire domain—any imbalance must be re-
moved by the explicit dissipation.

Despite its limited applicability to the real ocean case,
the internal compensation mechanism deserves further
study since its action appears to make the time-averaged
solutions independent of the explicit dissipation param-
eterization. In particular, one would want to know which
type of instabilities allow the internal compensation
mechanism to act and whether inertial runaway can be
truly avoided as the boundary-layer Reynolds number
is increased. The first motivation for this study is to
address these issues.

To this end, we follow the method of Ierley and Sher-
emet (1995) and investigate steady-state solutions and
their stability for a large range of parameters. The tech-
niques of numerical bifurcation theory are used to un-
ravel the bifurcation structure of the steady-state equi-
libria of the ocean model introduced by Marshall (1984).
The model is essentially the same as that used in a study
of steady-state solutions by Cessi and Ierley (1995) but
differs in the choice of dissipation operator and bound-
ary conditions; Cessi and Ierley (1995) used Munk-type
lateral diffusion with free slip at the eastern and western
walls and periodic boundary conditions at the northern
and southern walls. This model’s interesting novelty is
that the boundary conditions are such that no relative
vorticity flux is allowed through the basin walls, despite
the fact that the model has both bottom friction and
lateral diffusion. The boundary conditions are therefore
dynamically equivalent to those of a model having bot-
tom friction alone. The model nonetheless retains a lat-
eral diffusion term that prevents the development of
discontinuities in the relative vorticity field. This for-
mulation of the boundary condition for the eddy dif-
fusion term is based on the observation that geostrophic
eddies act only to redistribute vorticity laterally and not
as sink of vorticity through the basin walls. A discussion
of this super-slip boundary condition, as well as other
choices of boundary conditions, can be found in Ped-
losky (1996).

By studying the steady-state solutions, we will dis-
cover in which region of parameter space the circulation
retains the Sverdrup balance as part of the solution and
in which part of parameter space the circulation is of
the inertial runaway type. By studying the bifurcation
structure of the steady-state solutions, we will map out
where qualitative changes in the nature of the solution
occur and thus carve out regions of parameter space
where the internal compensation mechanism can act.

The second motivation for this study deals with the

issues of low-frequency variability and multiple equi-
libria. As pointed out by Jiang et al. (1995), the oceans’
western boundary currents offer clear examples of low-
frequency variability in the wind-driven ocean circu-
lation. Some examples are provided by the path of the
Kuroshio alternating between a large and a small me-
ander state with a period of several years (Taft 1972)
by the latitude of separation of the Brazil/Malvinas cur-
rent system varying on interannual timescales (Olson et
al. 1988) and by the mean position of the Gulf Stream
that varies interannually (Brown and Evans 1987). In-
terannual and longer timescale variability is a possible
manifestation of the nonlinearity of the wind-driven cir-
culation since it cannot be accounted for by the seasonal
cycle of the forcing.

Because of the nonlinearity of the equations govern-
ing the oceans, oceanic currents can exhibit a rich va-
riety of dynamical behaviors, including multiple equi-
libria, self-sustained oscillations, and chaos. Dynamical
systems theory has been applied extensively to the ther-
mohaline circulation because of its clear role in the
earth’s climate system: it transports large amounts of
heat poleward. The gyre dynamics associated with the
wind-driven circulation has received much less attention
from the point of view of low-frequency variability and
multiple equilibria. It is surely no less important, how-
ever. For example, the midlatitude gyres of the North
Pacific are probably the main agents of poleward heat
transport in that ocean, and in the North Atlantic the
modeling study of Spall (1996a, b) has demonstrated
how the surface wind-driven circulation can be coupled
to the deep western boundary current and thus affect
the strength of the thermohaline circulation. Using a
primitive equation model of the Gulf Stream/deep west-
ern boundary current crossover, Spall (1996b) found
low-frequency variability associated with the transition
between two preferred dynamical states, which included
a high energy state with the Gulf Stream extension pen-
etrating deep into the basin and a low energy state with
a weakly penetrating Gulf Stream extension. The mech-
anism controlling the transition between the two states
involved the interaction between the surface wind-driv-
en currents and the deep western boundary current.

In a simpler reduced gravity quasigeostrophic (QG)
model of the double-gyre circulation, McCalpin and
Haidgovel (1996) also found low-frequency variability.
This low-frequency variability was associated with ir-
regular transitions among several preferred dynamical
regimes, including a high energy state with a jet pen-
etrating deep into the basin, a low energy state with a
weakly penetrating jet, and an intermediate energy state
with intermediate jet penetration. Despite the differ-
ences between the models of Spall and McCalpin and
Haidgovel, the preferred dynamical regimes were sim-
ilar from one model to the other: the jet penetration
scale and the intensity of the eddy energy field varied
among states in a similar fashion for both models. Even
though the mechanism for the transition between states
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is different for the models, the similar nature of the
preferred regimes suggest that the existence of these
regimes might be the result of the dynamics of the wind-
driven circulation alone. The preferred dynamical re-
gimes are likely to be linked to unstable steady states,
or fixed points, of the equations governing the wind-
driven circulation. Studying the steady-state solutions
of the simpler QG wind-driven model may lead to a
better understanding of the dynamical balances that al-
low preferred dynamical states.

The ideas of dynamical systems theory can be used
to investigate the low-frequency variability associated
with the transition among different regimes. In general
the fixed point solutions have associated with them a
stable and an unstable manifold. Almost all trajectories
that begin in a neighborhood of the fixed point are even-
tually expelled along the unstable manifold. These tra-
jectories can, however, sometimes return to the neigh-
borhood of the fixed point by following a trajectory
close to the stable manifold. In this sense the unstable
fixed points act to ‘‘steer’’ the trajectory of the time-
dependent models (Legras and Ghil 1985), thus provid-
ing a mechanism for recurrent and persistent dynamical
regimes.

Recently, several studies have introduced the con-
cepts of attractors and fixed points to help characterize
the behavior of wind-driven ocean models. For dissi-
pative dynamical systems, all solutions converge, as t
→ `, to a complicated set called the global attractor,
which may be fractal. This set is, in general, finite di-
mensional and embodies the long time evolution of the
model, including turbulent states. Although it is not yet
numerically feasible to fully map out the global attractor
of general circulation ocean models, it is possible to
find their fixed points. These fixed points lie in the glob-
al attractor and can be useful in characterizing the long
time evolution of the model. Recent work on the at-
tractors of wind-driven ocean models is the study of
Jiang et al. (1995) and of Speich (1995), who studied
multiple equilibria of a wind-driven shallow-water mod-
el. Ierley and Sheremet (1995) studied multiple equi-
libria of a barotropic single-gyre wind-driven model.
Meacham and Berloff (1997) and Berlof and Meacham
(1997) studied the low-dimensional attractors of a sin-
gle-gyre wind-driven model. Cessi and Ierley (1995)
studied multiple equilibria of a barotropic double-gyre
model with lateral diffusion and free-slip boundary con-
ditions.

The above considerations make it crucial that the long
time evolution (t → `) of ocean models of varying
complexity and with differing subgrid-scale parameter-
izations and boundary conditions be investigated in a
systematic way for a wide range of parameter values.
As a contribution toward this goal, we present in this
study the fixed points and their stability properties for
a wind-driven circulation model having a super-slip
boundary condition.

The paper is organized as follows. In section 2 we

formulate the model. In section 3 we discuss the mul-
tiple equilibria and their stability properties. In section
4 we give an overview of the bifurcation structure of
the model. In section 5 we briefly summarize the results
and provide a final discussion.

2. Model formulation

As mentioned in the introduction, the model config-
uration is the same as that used in Marshall (1984). The
governing equation, in nondimensional form, is the bar-
otropic vorticity equation with bottom friction and bi-
harmonic lateral diffusion:

]z 1
5 41 u·=q 5 = 3 t 2 d z 2 d ¹ z in D, (1)S H]t p

where
2 2z 5 ¹ c and q 5 d z 1 y (2)I

are the relative and potential vorticities.
The dimensionless parameters in the problem are

1/2 1/2
pt f A 10 yd 5 , d 5 ,I S2 31 2 1 2rHb L H 2 f bL

and

1/5AHd 5 , (3)H 51 2bL

the inertial, Stommel, and diffusive layer thicknesses
scaled by the width of the basin L. The scales that lead
to the nondimensional parameters and that must be used
to reconstruct the dimensional variables are the follow-
ing:

pt 0 21c 5 c , t 5 (bL) t,dim dimrbH

x 5 Lx, and y 5 Ly. (4)dim dim

The domain of integration is a rectangular basin given
by

D 5 {(x, y) | 0 , x , 1 and 21 , y , 1}. (5)

The boundary conditions are the following:

c 5 0, on ]D, (6)

=z·n 5 0, on ]D, (7)
2=(¹ z)·n 5 0 on ]D. (8)

Note that the integral of the lateral diffusive term over
the entire basin vanishes because of the no-flux bound-
ary conditions in Eq. (8), so that no net source or sink
of vorticity is introduced by the lateral diffusion. The
source of vorticity due to the curl of the wind stress is
given by

= 3 t 5 p sin(py). (9)

As Veronis (1966) discusses, the fact that many com-
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plicating physical processes are assumed out of the sys-
tem means that we cannot think of such a simple model
as the first term in a sequence that converges to the
‘‘real’’ ocean. Rather, the utility of such a model is that
it can be used to check and build our intuition about
the behavior of oceanic models. In this respect, it is
better thought of as being at the base of a hierarchy of
models that have successive levels of sophistication and
realism. Investigating the behavior of the model as pa-
rameters are allowed to tend to various limits is fun-
damental in characterizing its behavior. Thus, the goal
of this study is to consider a wide range of parameter
(dI, dS, dH) values.

It is useful to consider some typical values for the
model’s parameters that give results reproducing the ma-
jor gross featurs of the wind-driven circulation. Follow-
ing Marshall (1984), the inertial layer thickness dI 5

1 3 1023 5 0.0316 corresponds to an ocean in whichÏ
t 5 1021 N m22, r 5 103 kg m23, b 5 2 3 10211 m21

s21, H 5 5 3 102 m, and L 5 106 m; the nondimensional
Stommel layer thickness dS 5 1022 corresponds to f 5
1024 s21, Ay 5 1 3 1024 m2 s21, and the horizontal
hyperdiffusive thickness dH 5 0.0313 corresponds to AH

5 6 3 1011 m2 s21. The timescale is given by T 5 1/
bL so that one can relate dS to a damping timescale of
s 5 1/(dSbL) 5 58 days. The lateral diffusion parameter
is usually chosen to be the smallest possible value that
will keep the vorticity fields free of grid-scale oscilla-
tions. It is often justified as an effective eddy viscosity.
Eddy viscosities are difficult to estimate from obser-
vations. Many physical processes contribute to the ef-
fective dissipation. Most of these processes cannot be
directly simulated in a barotropic QG model and are
lumped in the effective eddy diffusivity, while others
like the internal compensation mechanism, can be sim-
ulated provided the model resolution is sufficient to al-
low eddies. The model behavior is relevant even where
it does not produce realistic flows, since it helps to
understand how processes that are being simulated de-
pend on those processes parameterized by eddy diffu-
sivity. The method of solution is discussed in detail in
appendix A.

3. Multiple equilibria

a. Bifurcation structure as a function of dI and dS

Using a continuation algorithm for finding both
steady-state solutions and the corresponding least stable
eigenmode (or one of the unstable eigenmodes if the
solution is unstable), the bifurcations of the steady-state
equilibria were mapped as a function of the nondimen-
sional parameters dI and dS. All of the solutions pre-
sented in this section used Nx 5 33 and Ny 5 65 grid
points in the x and y directions, respectively, with uni-
form grid spacing of dx 5 dy 5 0.03. The lateral dif-
fusivity was fixed at dH 5 0.04, which is slightly larger

than the grid spacing. Section 3g discusses the sensi-
tivity of the solutions to the magnitude of dH.

For parameter values in the range 0.01 , dS , 0.1
and 0 , dI # 0.4, up to six different types of equilibria
were found. Each will be discussed in turn in the next
subsections. Before proceeding it is useful to give a
review of the multiple equilibria results of Cessi and
Ierley (1995) followed by a brief overview of the mul-
tiple equilibria found in this study.

It is important to recall that the model formulation
used by Cessi and Ierley, as well as the one used here,
satisfies the symmetry property c → 2c, y → 2y.
Equilibrium states that satisfy the above symmetry prop-
erty are said to be antisymmetric and those that do not
are said to be nonsymmetric. Because of this symmetry
property, nonsymmetric equilibria always come in pairs
that are related to each other by c → 2c, y → 2y.
Cessi and Ierley (1995), identified five different types
of equilibria in a parameter space defined by (dI, dM),
where dM is the nondimensional Munk boundary layer
thickness. Their multiple equilibria included three dif-
ferent antisymmetric equilibria, which they called type
A1, A2, and A3, as well as two pairs of nonsymmetric
equilibria, which they called type N1 and N2.

For the entire region of parameter space explored in
the present study, only one antisymmetric equilibrium
was found. In the terminology of Cessi and Ierley, this
equilibrium solution is said to be of type A. Other
regions of parameter space have alternate equilibria that
come into existence via bifurcations of this antisym-
metric equilibrium. These equilibria are nonsymmetric
and come in pairs. Three types of nonsymmetric equi-
libria bifurcate from the antisymmetric equilibrium,
those of type N1 and N2, as well as a third not found
by Cessi and Ierley, which we define to be of type N3.
Finally, the solution branch of type N1 undergoes a fold
catastrophe, whereby two additional nonsymmetric
equilibria come into existence. We call these type N11

and N12. Each of these solution types are discussed in
the following subsections.

b. Antisymmetric equilibria (type A)

In Fig. 1, a parameter plot indicates the bifurcations
of the antisymmetric equilibria, discussed below. Typ-
ical antisymmetric streamfunction and potential vortic-
ity fields are shown in Fig. 2. This sequence of anti-
symmetric equilibria is taken along the left-most side
of the parameter plot shown in Fig. 1. Apart from being
antisymmetric, these equilibrium solutions are charac-
terized by the formation of inertial recirculation cells
flanking the southern and northern edge of the intergyre
boundary. It is important to mention that the formation
of closed recirculation cells trapped near the western
wall does not occur when dS is bigger than dH. This
point will be further discussed in section 3g. The re-
mainder of this section is restricted to the case dH .
dS.
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FIG. 1. Parameter plot for dH 5 0.04 showing the bifurcations of
the antisymmetric equilibrium (type A). Dashed lines indicate pitch-
fork bifurcations and dotted lines indicate Hopf bifurcations. The
antisymmetric equilibrium exists for the full range of parameters
shown in the plot. It is unstable in the shaded region and stable
elsewhere. The lower dashed lobe, indicates where nonsymmetric
equilibria of type N1 (lower part of lower dashed lobe) and of type
N2 (upper part of lower dashed lobe) bifurcate from the antisymmetric
equilibrium via a symmetry-breaking pitchfork bifurcation. The upper
dashed lobe indicates where nonsymmetric equilibria of type N3 bi-
furcate from the antisymmetric branch via a pitchfork bifurcation.

For moderate values of dI, the recirculation cells are
small and trapped near the western wall (Fig. 2, dI 5
0.03). In the region of parameter space near the first
pitchfork bifurcation (lower part of the lower dashed
lobe in Fig. 1), both viscous effects and advection of
planetary and relative vorticity are important near the
western boundary layer and in the region near the re-
circulation gyres. Note how the q contours run almost
parallel to the western wall and form a sharp front where
the latitude of zero wind stress curl intersects the west-
ern boundary. Away from the western boundary and
recirculation cells, the flow is essentially in Sverdrup
balance. In this region, the q contours are now parallel
to the latitude lines. For increasing values of dI, the
recirculation cells expand in size, in both the zonal and
meridional directions. For parameter values close to the
second pitchfork bifurcation (upper part of the lower
dashed lobe in Fig. 1), the recirculation gyres have ex-
panded across the basin to the eastern wall (Fig. 2, dI

5 0.06). Further increasing dI leads to basin-filling in-
ertial gyres (Fig. 2, dI 5 0.12). Note how the q or z
contours are parallel to the streamlines. The Sverdrup
balance is then no longer valid anywhere in the basin.
The dominant balance is quasi inertial, that is, J(c, ¹2c)
; 0. Bottom friction, which is not important in any
local balance, is nevertheless important in maintaining
the gyre-integrated vorticity balance.

The lower dashed lobe in Fig. 1 is the location of
bifurcation points at which nonsymmetric equilibria of
type N1 and N2 bifurcate from the antisymmetric equi-
librium. The lower part of the dashed curve gives rise

to fixed points of type N1 and the upper part gives rise
to fixed points of type N2. The nonsymmetric equilib-
rium of type N1 and N2 will be described in subsections
3c and 3d, respectively. The upper-dashed lobe inside
the dotted lobe in Fig. 1 is the location of bifurcation
points leading to nonsymmetric equilibria of type N3.
Equilibria of type N3 are described in section 3e. Figure
3, which is fully discussed in section 4, shows a bifur-
cation plot of maxc 1 minc (a measure of the assymetry
of the solution) versus dI for a value of dS 5 0.01, which
is along the left-most side of the parameter plot shown
in Fig. 1. It shows the four symmetry breaking picthfork
bifurcations that occur as one moves upward and accross
the dashed lobes in Fig. 1.

The antisymmetric equilibrium is unstable for param-
eter values in the shaded regions of Fig. 1 and stable
in the unshaded region. The marginal stability curve
separating stable from unstable regions of parameter
space is composed of a curve along which Hopf bifur-
cations occur (dotted line) and a curve along which
pitchfork bifurcations occur (lower dashed lobe). Hopf
bifurcations lead to self-sustained oscillations of the
flow field, and pitchfork bifurcations are at the origin
of symmetry-breaking multiple equilibria.

c. Nonsymmetric equilibrium (type N1)

In Fig. 4, a parameter plot indicates the bifurcations
associated with the nonsymmetric equilibrium state of
type N1. Typical nonsymmetric streamfunction and po-
tential vorticity fields of type N1 are shown in Fig. 5,
along with equilibria of type A and N2 for comparison.
As mentioned above, the nonsymmetric states of type
N1 come into existence via a symmetry breaking pitch-
fork bifurcation of the antisymmetric state. The pitch-
fork bifurcation points that mark the emergence of the
type N1 equilibria are located on the lower dashed curve
in Fig. 4. The nonsymmetric equilibria exist only in the
region bounded by the lower dashed curve, and the up-
per solid curve. Within this region, it is stable in the
unshaded area and unstable in the shaded area. Within
the wedge-shaped region bounded by the saddle node
bifurcations emanating from the cusp point labeled CP1,
there are two additional equilibria defined to be of type
N11 and N12. The distinction between equilibria of types
N1, N11, and N12 is essentially in the geometrical ar-
rangement of the multiple circulation cells within the
basin. A full discussion of equilibria of type N11 and
N12 will be given in section 3f. Along the solid curve
labeled SN1, the N1 branch experiences a saddle-node
bifurcation and nonsymmetric equilibria of type N11

come into existence. The equilibria of type N11 also
experience a saddle-node bifurcation along the lower
solid curve labeled SN2, and nonsymmetric equilibria
of type N12 come into existence. Referring again to Fig.
3, one can see the saddle-node bifurcations as one moves
across the solid curves in Fig. 4.

In the neighborhood of the pitchfork bifurcation point
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FIG. 2. Contour plots of c (top row) and q (bottom row) for the antisymmetric equilibrium (type A) with dS 5 0.01,
dH 5 0.04, and dI as indicated. The dashed lines indicate the negative contours and the solid lines indicate the positive
contours. The thick solid line indicates the zero contour. The contour interval is 0.03 for c and 0.02 for q.

FIG. 4. Parameter plot for dH 5 0.04 showing the bifurcations of
the nonsymmetric equilibria of type N1. Solid lines denote saddle-
node bifurcations, dashed lines indicate pitchfork bifurcations, and
dotted lines indicate Hopf bifurcations. Equilibria of type N1 can be
traced continuously for increasing values of dI from the dashed curve
(where they bifurcate from the antisymmetric equilibrium) up to the
saddle-node curve labeled SN or SN1 depending on whether dS is to
the right or left of the cusp point labeled CP1.

FIG. 3. Bifurcation plot of cmax 1 cmin vs dI, indicating the emer-
gence of nonsymmetric equilibria N1 and N2 and N3 via pitchfork
bifurcations at dI 5 dP1, dP2, and dP3. A fourth pitchfork bifurcation
point at dI 5 dP4 marks the disappearance of the nonsymmetric equi-
libria of type N3. Antisymmetric equilibria lie on the horizontal line
in the center of the figure. Saddle-node bifurcation points at dI 5 dS1,
dS2, and dS3 mark the merging of equilibria of types N1 with N11,
N11 with N12, and N12 with N2. The solid curves indicate stable
equilibria and the dashed lines indicate unstable equilibria (dS 5 0.01,
dH 5 0.04).
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FIG. 5. Typical c and q fields for the branches A, N1, and N2: dI 5 0.1001, dS 5 0.02, and dH 5
0.04. The contour interval is 0.3 for c and 0.2 for q. Negative contours are dashed, and the zero contour
is the thick one.

the equilibria are characterized by moderate recircula-
tion gyres with essentially the same vorticity balance as
the antisymmetric state, provided that dH . dS (see dis-
cussion in section 3g). As dI is increased, and one moves
away from the bifurcation point, one of the recirculation
cells becomes stronger. The weaker of the two recir-
culation cells crosses the line of zero wind stress curl
as it is pulled by its more intense counterpart. As dS is
decreased, and dI is kept near the center of the shaded
region in Fig. 4, the flow field becomes progressively
more asymmetric, with large meanders crossing the lat-
itude of zero wind stress curl. These meanders permit
vorticity to be fluxed across the latitude of zero wind
stress curl so that the integrated vorticity balance need
not be achieved entirely by bottom friction. This allows
equilibria of type N1 to remain of much weaker intensity
than its antisymmetric counterpart of type A, as dI is
increased. Equilibria of type A, N1, and N2 can be
compared in Fig. 5. One should note in particular how
the nonsymmetric equilibrium of type N1 are somewhat
intensified in the western part of the basin and much
weaker than those of type A or N2. A further and more
dramatic example of the different vorticity balance
achieved by nonsymmetric equilibria of type N1 can be
observed in Fig. 6 by comparing equilibria of type A,

N1, and N2. The multiple equilibria in this figure were
computed for the same parameter values as those used
in the time-dependent simulation of Marshall (1984) (dS

5 0.001, dH 5 0.0313, and dI 5 0.0316). The stream-
function field labeled PBAR in Fig. 6 is the time average
of a simulation of the time-dependent flow field. The
equilibria of type N1 are unstable in this region of pa-
rameter space. The time-dependent flow field evolved
in a complicated way with many strong eddies forming.
Nevertheless, the integrated vorticity balance over the
region of negative wind stress curl is similar to that of
time-averaged flow, provided the role of the eddy-in-
duced vorticity flux in the time-dependent case is re-
placed by the flux of vorticity across the line of zero
wind stress curl by stationary meanders in the steady
case. In the steady-state solution, bottom friction re-
moved only 4% of the vorticity input by the wind and
in the time-mean state, bottom friction removed about
5% of the vorticity input by the wind. Furthermore, the
pair of fixed points of type N1 are qualitatively similar
to a typical instantaneous flow field of the time-depen-
dent simulation.

For dS . 0.0161 the nonsymmetric equilibrium of
type N1 can be traced continuously up to a saddle-node
bifurcation curve (labeled SN in Fig. 4), where it merges
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FIG. 6. Contour plots of c for dI 5 0.0316, dS 5 0.001, and dH 5 0.0313. Steady states of types A, N1, and N2
are presented along with the time-averaged streamfunction field (PBAR). The solid lines denote positive contours
and the dashed lines denote negative contours. Contour intervals are as indicated.

with a fixed point of type N2 and ceases to exist. At dS

5 0.0161 and dI 5 0.090, a fold catastrophe occurs
(labeled CP1 in Fig. 4), which leads to a wedge with
two additional equilibrium states called type N11 and
N12. These additional equilibria will be described in
section 3f. Furthermore, for dS , 0.0161, that is, for
values of dS to the left CP1, it is N12 that merges with
N2 at SN.

d. Nonsymmetric equilibrium (type N2)

In Fig. 7, a parameter plot indicates the bifurcations
associated with the nonsymmetric equilibrium state of
type N2. Typical nonsymmetric streamfunction and po-
tential vorticity fields of type N2 were shown in Fig. 5.
As mentioned in section 3c, nonsymmetric equilibria of
type N2 come into existence via a pitchfork bifurcation
of the antisymmetric equilibrium. This pitchfork bifur-
cation has its origin at the cusp point labeled CP in Fig.
7. Equilibria of type N2 are always unstable. This branch
can be traced continuously up to a saddle-node bifur-
cation point lying on the solid curve where it merges

with the equilibrium of type N1 and disappears. The
pitchfork bifurcation and the saddle-node bifurcation
can be seen in Fig. 3 for dS 5 0.01.

Near the cusp point in Fig. 7, there is little difference
between equilibria of types N1 and N2. In this region
of parameter space a three-term balance is achieved be-
tween the advection of planetary vorticity, advection of
relative vorticity, and lateral diffusion. However, the
vorticity balance integrated over the region of either
positive or negative wind stress curl is achieved pri-
marily by bottom friction. As dS is decreased and dI is
kept in the center of the shaded region in Fig. 7, the
equilibria of type N1 and N2 separate themselves
through different balances. The nonsymmetric equilib-
rium of type N2 is characterized by inertial gyres (J(c,
¹2c) ; 0) that extend across the basin. Again, the bot-
tom friction term is unimportant in any local balance
but is nonetheless crucial in maintaining the global vor-
ticity balance. This should be contrasted with nonsym-
metric equilibria of type N1, where viscous effects are
important locally in the region near the western wall,
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FIG. 7. Parameter plot for dH 5 0.04 showing the bifurcations of
the nonsymmetric equilibrium (N2). Solid lines denote saddle-node
bifurcations and dashed lines indicate pitchfork bifurcations. Equi-
libria of type N2 exist only in the shaded region of parameter space
where it is also always unstable. Nonsymmetric equilibria of type N2
come into existence via a pitchfork bifurcation of the antisymmetric
flow and can be traced continuously as dI is increased up to the solid
curve labeled SN where it experiences a saddle-node bifurcation,
merges with equilibria of type N1, and ceases to exist.

FIG. 8. Typical c and q fields for the branches A1 and N3: dI 5
0.1127, dS 5 0.01, and dH 5 0.04. The contour interval is 0.4 for c
and 0.3 for q. The negative contours are dashed, and the zero contour
is the thick one. The nonsymmetric branch N3 has its intergyre bound-
ary shifted northward and tilted from west to east.

and where the intergyre boundary meets the western
wall.

e. Nonsymmetric equilibrium (type N3)

Nonsymmetric equilibria of type N3 exist inside the
region bounded by the upper dashed lobe of Fig. 1.
Typical c and q fields for the nonsymmetric equilibria
of type N3 and, for comparison, antisymmetric equilib-
ria are presented in Fig. 8. Nonsymmetric equilibria of
type N3 come into existence via a pitchfork bifurcation
of the antisymmetric equilibrium. The equilibrium is
characterized by basin-filling inertial gyres with the in-
tergyre boundary shifted either north or south and tilted
in the east–west direction. Both equilibria of types A
and N3 are characterized by a quasi-inertial balance; the
difference in the solution is restricted to their different
symmetry properties.

f. Nonsymmetric equilibria (types N11 and N12)

Nonsymmetric equilibria of type N11 and N12 come
into existence via a fold catastrophe of the solution
branch of type N1. In Fig. 4, the region of parameter
space where this fold takes place is denoted by the
wedged-shaped region emanating from the cusp point
labeled CP1. Figure 9 shows typical contour plots of c
and q. These equilibria are characterized by strongly
nonsymmetric flow fields, with multiple circulation
cells. The essential difference between equilibria of type
N1, N11, and N12 is characterized by the geometrical
arrangement of circulation cells within the basin. The
integrated vorticity balance for the region of either pos-

itive or negative wind stress curl is achieved primarily
by stationary meanders transporting vorticity across the
latitude of zero wind stress curl.

g. Dependence on lateral diffusivity parameter, dH

In this section, the role of the lateral diffusion pa-
rameter dH in modifying the model’s fixed points is ex-
plored. It is interesting to compare two sequences of
antisymmetric equilibrium solutions with alternate or-
derings of lateral friction and bottom friction layer thick-
nesses, that is, dH . dS and dS . dH. In this section,
computations with dH 5 0.01 were performed with Nx

5 33 and Ny 5 129, grid points on a grid stretched in
the y direction with with my 5 0.25. See appendix A
for a definition of mx and my. The grid spacing in the
x direction was uniform dx 5 0.03, and in the y direction
the grid spacing varied from a maximum of dy 5 0.03,
near the northern and southern basin walls, and a min-
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FIG. 9. Typical c and q fields for the branches N1, N11, and N12 for dI 5 0.1, dS 5 0.02, and dH 5
0.04. The contour interval is 0.2 for c and 0.2 for q. The negative contours are dashed, and the zero
contour is the thick one. The difference between the three equilibrium branches is essentially restricted
to the spatial arrangement of the multiple closed circulation cells.

imum of dy 5 0.0031, near the line of zero wind stress
curl. The higher resolution and stretched grid are nec-
essary to resolve the sharp gradient in the relative vor-
ticity field that forms where the intergyre boundary
meets the western wall.

Figure 2 shows a sequence of antisymmetric equilib-
ria for increasing values of dI with dH 5 0.04 . dS 5
0.01 fixed. For this ordering of the friction parameters,
the sequence of streamfunction fields is similar to that
computed by Ierley and Sheremet for the single-gyre
case with Munk-type lateral diffusion. Closed recircu-
lation cells form near the western wall where the coun-
terrotating gyres meet. The cells expand in size and
strength as dI is increased, eventually filling the entire
basin.

Contrast this with Fig. 10, which shows a similar
sequence but with the alternate ordering in the thickness
of the lateral and bottom friction layers, dH 5 0.01 ,
dS 5 0.04. In this case, the sequence of equilibria is
similar to the sequence of solutions computed by Ve-
ronis (1966). The jet separating the northern gyre from
the southern gyre increases in strength and penetrates
progressively deeper into the interior as dI increases.

The circulation pattern does not develop closed recir-
culation cells trapped near the western wall. The limit
dI → ` has basin-filling gyres similar to those for the
case with dH . dS, in the sense that they both have q
versus c scatterplots with negative slope. For the case
of dS . dH, there are, however, intermediate values of
dI for which the scatterplot of q versus c has positive
slope.

Finally, in comparing the single-gyre calculations of
Veronis (1966) to the double-gyre calculations presented
here, one should highlight the importance of the bound-
ary condition experienced by the northern flank of the
subtropical gyre. For a single-gyre calculation, there can
be no flux of vorticity across the northern wall, which
is not the case for the double-gyre calculations. This
difference in boundary condition allows the northern jet
to penetrate clear across the basin for either ordering of
dH or dS. Tight recirculation cells trapped in the north-
western corner of the subtropical gyre can form only if
dH . dS and anomalously high potential vorticity is
allowed to diffuse from the subpolar gyre into the sub-
tropical gyre. To demonstrate this, Fig. 11 shows con-
tour plots of the q and c field for a single-gyre calcu-
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FIG. 10. Contour plots of c (top row) and q (bottom row) for the antisymmetric equilibrium (type A) with dS 5
0.04 and dH 5 0.01 and dI as indicated. The dashed lines indicate the negative contours and the solid lines indicate
the positive contours. The thick solid line indicates the zero contour. Here, C.I. 5 0.02 for c and for q.

FIG. 11. Contour plots of c and q for the single-gyre case. The no-flux of vorticity across the northern
wall allows the northern jet to penetrate straight across the basin. This should be compared with the double-
gyre antisymmetric equilibria computed for the same parameters (Fig. 2, dI 5 0.03). Here, dS 5 0.01 and
dH 5 0.04 and dI 5 0.03. Also, C.I. 5 0.02 for c and C.I. 5 0.02 for q.
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FIG. 12. Bifurcation plot of maxc 1 minc vs dI indicating the
emergence of nonsymmetric equilibria of type N1 and N2 via pitch-
fork bifurcations for two different values of dH (dH 5 0.04 solid curve,
dH 5 0.01 dotted curve), dS 5 0.04, and their disappearance at saddle-
node bifurcations.

lation with dI 5 0.03, dH 5 0.04, and dS 5 0.01. This
single-gyre calculation should be compared with the
double-gyre steady-state equilibrium for the same pa-
rameter values (Fig. 2). Incidentally, the single-gyre
model with dH 5 0.04 and dS 5 0.01 does not exhibit
a saddle-node bifurcation as dI is increased. This is dif-
ferent from the results of Ierley and Sheremet (1995).
It is not clear whether their bifurcation occurs for dif-
ferent dS and dH or if the different dissipation operator
and boundary condition prevent it from occurring in the
present model.

At least near the region of parameter space explored,
the bifurcation structure leading to nonsymmetric equi-
libria of type N1 and N2 does not depend qualitatively
on the value of dH. Figure 12 shows a plot of maxc 1
minc (a measure of asymmetry) versus dI, for dS 5 0.04
and dH set at either 5 0.04 (solid line) or 0.01 (dashed
line). The plot shows the emergence of nonsymmetric
equilibria of types N1 and N2 as dI is increased. For dH

5 0.01 the pitchfork bifurcations occur for slightly
smaller values of dI than they do for dH 5 0.04. Also
for the smaller value of dH, the saddle-node bifurcation,
where the equilibria of types N1 and N2 merge, happens
at a larger value of dI. The top row of Fig. 13 shows
contour plots of the c field, and the bottom row shows
contour plots of the q field as one moves around the
nose from point marked 1–5 in Fig. 12. The sequence
begins with the antisymmetric equilibria at the location
where N1 bifurcates from the antisymmetric solution
(location 1); continues with a typical nonsymmetric
equilibrium of type N1 (location 2), the nonsymmetric
equilibrium at the nose point NP where equilibria of
type N1 and N2 merge (location 3), and a nonsymmetric
equilibrium of type N2 (location 4); and ends with the
antisymmetric equilibrium at the point where equilibria
of type N2 bifurcates from the antisymmetric branch

(location 5). Note that the tight recirculation cells that
form near the western wall for the case dH . dS are not
present when dS . dH.

4. Overview of bifurcation structure

It is useful to summarize the bifurcation structures
described in the previous sections. In Fig. 3, the dif-
ference in the extreme values of the magnitude of the
streamfunction field in the subpolar and subtropical
gyres (cmax 1 cmin ) is plotted as a function of d I . This
bifurcation plot is taken along the left-most edge of
the parameter plots in Figs. 1, 4, and 7 and thus in-
cludes all the bifurcations described in the previous
sections. It illustrates the successive symmetry-break-
ing bifurcations of the antisymmetric branch. The an-
tisymmetric branch is marked by the horizontal line
in the center of the plot. A pair of nonsymmetric equi-
libria of type N1 emerges as d I is increased past the
first pitchfork bifurcation point at dP1 . The pair of
nonsymmetric equilibria of type N2 emerges as d I is
increased past the second pitchfork bifurcation at dP2 .
The symmetry-breaking equilibria of type N3 emerg-
es as d I is increased past the pitchfork bifurcation
point at dP3 . As d I is increased past the fourth pitch-
fork bifurcation point at dP4 , the pair of nonsymmetric
equilibria of type N3 merges with the antisymmetric
branch and disappears. The plot also shows the sad-
dle-node bifurcation point where the equilibria of type
N11 and N1 2 are created (d I 5 d S1 and d S2 ), as well
as the saddle-node bifurcation point (d I 5 dS3 ) where
the equilibria of type N1 2 and N2 merge.

Figure 14 is a composite figure displaying an overlay
of all the bifurcation curves. In each region of parameter
space a pair of numerals indicates the total number of
steady equilibria coexisting for the same parameter val-
ues and the number of those that are stable. For example
(5, 1) would imply that there are five equilibrium states,
one of which is stable. Regions with multiple stable
equilibria are limited to those marked by (3, 2), where
the pair of equilibria of type N1 are stable and the an-
tisymmetric equilibrium is unstable, as well as to the
region denoted by (5, 3), where the stable equilibria are
of type A and N1, and the unstable equilibria are of
type N2. Regions with up to 11 unstable equilibria are
identified in the figure.

5. Discussion

Using a continuation algorithm for finding both
steady-state solutions and their corresponding least sta-
ble eigenmode (or one unstable eigenmode if it exists),
we mapped the bifurcation structure of the steady-state
solutions of a barotropic wind-driven ocean model as a
function of the two nondimensional parameters: the in-
ertial layer thickness dI and the Stommel layer thickness
dS. One of the goals in carrying out these calculations
was to contribute to the broader objective of mapping
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FIG. 13. Contour plots of c (top row) and q (bottom row) around the nose point where the branches N1 and N2
merge. The solutions correspond to values of dI 5 0.07017, 0.08041, 0.1429, 0.1245, 0.1087, and dS 5 0.04. The first
solution labeled Pf is close to the first pitchfork bifurcation. The second solution labeled N1 is a typical solution of
type N1. The third solution is close to the saddle-node bifurcation where N1 and N2 merge. The fourth solution is a
typical solution of type N2, and the last solution is close to the second pitchfork bifurcation. The dashed lines indicate
the negative contours and the solid lines indicate the positive contours. The thick solid line indicates the zero contour.
Here, C.I. 5 0.02 for c and C.I. 5 0.02.

FIG. 14. Parameter plot for dH 5 0.04 showing an overlay of the
bifurcations for all the branches found. Solid lines denote saddle-
node bifurcations, dashed lines indicate pitchfork bifurcations, and
dotted lines indicate Hopf bifurcations.

the states of ocean models with a varying complexity
of subgrid-scale parameterizations and boundary con-
ditions. The model that we used had bottom friction and
lateral diffusion with super-slip boundary conditions. In
this sense this study is a continuation of the work of
Cessi and Ierley (1995).

a. Inertial runaway

One solution branch (type A) can be traced contin-
uously from the linear regime to the highly inertial re-
gime. Like the forcing function, this branch is antisym-
metric about the midbasin latitude. For sufficiently
strong forcing or sufficiently weak bottom friction, the
antisymmetric solution tended toward a highly inertial
circulation with transports far in excess of those pre-
dicted by Sverdrup balance. Apart from having unreal-
istically large transports, the inertial runaway solution
shows no westward intensification. Furthermore, for all
values of dS explored, increasing dI eventually leads to
a region where the antisymmetric steady state is stable
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FIG. 15. Maximum transport for steady-state solution and time-
averaged solutions as a function of dI. Dotted lines with ‘‘1’’ indicate
time-averaged solutions. Solid lines indicate stable steady-state so-
lutions and dashed lines indicate unstable steady-state solutions. Here,
dS 5 0.01 and dH 5 0.04.

FIG. 16. Time-averaged streamfunction (top row), and potential vorticity field (bottom row) for an increasing
sequence of dI. Other parameters are held fixed at dS 5 0.01 and dH 5 0.04.

and apparently unique. A limited number of time-de-
pendent calculations with parameters in the region la-
beled (1, 1) in Fig. 14 all converged to the antisymmetric
fixed point, regardless of the initial conditions used,
suggesting that this fixed point is a global attractor at
sufficiently large values of dI.

The stability of the antisymmetric solution as dI →
` should be contrasted with the stability results of Cessi
and Ierley for the nonlinear Munk model with free-slip
boundary conditions at the eastern and western walls.
They found that for dI → ` and dM K 1, where dM is
the nondimensional Munk layer thickness, the only
equilibrium is unstable and has a single unstable ei-
genmode. The difference in stability between Cessi and
Ierley’s model and the one considered in this study can
be attributed to the bottom friction term as opposed to
the choice of lateral diffusion operator and boundary
conditions. To verify this, some of the calculations of
Cessi and Ierley were repeated with and without bottom
friction. The calculations were carried out to values of
dI as high as 300, with dS 5 0. The growth rate of the
unstable eigenmode remained positive but decreased
monotonically. The computations were then repeated
with the addition of a bottom friction term, with a finite
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value of dS, and the unstable mode became stable for a
sufficiently large value of dI.

Another difference between our results and those of
Cessi and Ierley (Cessi and Ierley 1995) is the nonex-
istence of a cusp catastrophe leading to multiple anti-
symmetric equilibria. Recall that the model used here
has bottom friction, lateral diffusion in the form of a
biharmonic operator acting on the vorticity, and super-
slip boundary conditions, which do not allow a flux of
vorticity through the basin walls. We have investigated
whether the choice between free-slip and superslip
boundary conditions as opposed to the form of the dis-
sipation operator could be responsible for the existence
of this cusp catastrophe. Using free-slip boundary con-
ditions (z 5 ¹2z 5 0 on ]D) we deduced the existence
of a cusp for dS between 0.01 and 0.001. On the other
hand, for the superslip case, no cusp leading to multiple
antisymmetric equilibria exists for values of bottom fric-
tion greater than dS . 0.001. It is not clear if the cusp
exists for smaller values of dS and dH or if the super-
slip boundary conditions truly prevents it from forming
for any value of the dissipation parameters. Using a
single-gyre model, Ierley and Sheremet (1995) found
the cusp catastrophe when lateral diffusion and free-slip
boundary conditions were used. However, they did not
find the cusp catastrophe when bottom friction was used
instead of lateral diffusion. A model with bottom friction
alone does not allow vorticity to diffuse through the
basin wall and is similar, in this sense, to a model with
lateral diffusion and a super-slip boundary condition.
Perhaps lateral diffusion of vorticity through the basin
wall is an essential element to the dynamical balance
that allows for the existence of multiple antisymmetric
equilibria. Reducing bottom friction and holding lateral
diffusion fixed at values of dH $ 0.01 does not lead to
a fold of the antisymmetric branch. We have not, how-
ever, eliminated the possibility that a reduction of lateral
diffusion would give rise to a fold in the antisymmetric
branch.

b. Internal compensation

As was already pointed out, for high boundary-layer
Reynolds number, the antisymmetric solution has a ba-
sin-filling inertial gyre with no western intensification
and transports far in excess of those predicted from
Sverdrup balance. As in the case of the single-gyre so-
lutions found by Ierley and Sheremet (1995), a large
eddy viscosity is needed for the model’s antisymmetric
solution to have western intensification and a mass
transport comparable to that observed in the real ocean.
Ierley and Sheremet (1995) point out that a transfer of
vorticity between adjacent gyres—a mechanism that is
precluded in a single-gyre model—should reduce the
need for a large eddy viscosity. Indeed, in idealized
double-gyre models, the intergyre transfer of vorticity
can be the primary mechanism by which the wind stress

curl vorticity input is balanced within each half of the
basin as shown in Harrison and Holland (1981) and
Marshall (1984).

For double-gyre models that have no net input of
vorticity over the entire basin, there is the possibility
that the vorticity balance can be achieved internally
without the need for vorticity to be fluxed through the
basin walls or bottom. Cessi and Ierley (1995) have
demonstrated that double-gyre models with antisym-
metric wind stress curl profile admit nonsymmetric
solutions. We also found symmetry-breaking pitch-
fork bifurcations leading to nonsymmetric equilibria
(types N1, N2, N3). Because of their nonsymmetry
with respect to the wind forcing, these solutions have
currents that transport vorticity across the latitude of
zero wind stress curl. For these nonsymmetric solu-
tion, the input of vorticity by the wind stress curl in
each half of the basin is balanced in part by the export
of vorticity by the current. This additional mechanism
for removing vorticity lessens the burden on the ex-
plicit dissipation for balancing the vorticity budget.
Consequently these solutions have weaker currents
than the antisymmetric solution. Figure 15 shows a
plot of the difference between the maximum and min-
imum of the streamfunction, a quantity proportional
to the maximum transport in the basin, as a function
of d I . The solid curves correspond to equilibria that
are stable and the dashed lines correspond to equilib-
ria that are unstable. The crosses connected by the
dotted line correspond to a series of time-averaged
solutions. The initial condition for these simulations
were the steady state of type N1 plus some random
noise perturbation. One can see that the transport for
the antisymmetric solution (labeled A) is always high-
er than that of the nonsymmetric solutions (labeled
N1, N2, and N3). The time-averaged solutions also
show reduced transports compared to the antisym-
metric steady-state solutions. In fact, the time-aver-
aged transports are of a magnitude comparable to
those of the nonsymmetric branch of type N1. It ap-
pears that unstable fixed points of type N1 are close
to a more complicated attractor that includes the mod-
el trajectories for which the time-averaged solutions
were computed. Whether or not these fixed points are
part of this attractor remains a conjecture since we
have not attempted to compute more complicated or-
bits like limit cycles or homoclinic and heteroclinic
orbits.

The nonsymmetric equilibria only exist for a finite
range of parameters between the first pitchfork bifur-
cation point labeled PF1 and the last turning point la-
beled SN. Beyond the turning point all the computed
model trajectories converged to the antisymmetric in-
ertial runaway solution. Even before the nose point is
reached, some model trajectories asymptote to the stable
antisymmetric branch. In the regions labeled (5,1) in
Fig. 14, it is the initial condition that determines whether
the model trajectory fluctuates in some complicated
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manner in the neighborhood of the N1 fixed points or
asymptotes to the stable equilibrium of type A, which
is where, as already mentioned, all model trajectories
converged for parameter values beyond SN. We can
conclude from these results that inertial runaway is un-
avoidable as the boundary layer Reynolds number, dI/
dS, becomes sufficiently large.

Intergyre fluxes of vorticity prevent the time-av-
eraged solution from developing unrealistically large
transports, but they do not necessarily restore a Sver-
drup-type balance in the interior of the basin. Figure
16 shows a sequence of time-averaged streamfunction
and potential vorticity fields for d I between 0.055 and
0.1725. The duration of the averaging period ranged
from 2500 nondimensional time units to 10 000 non-
dimensional units. This corresponds to averaging pe-
riods of 4–16 yr using the dimensional scales given
in section 2. As the forcing increases (increasing d I )
the western intensification of the solution decreases
despite the fact that the solutions do not become high-
ly inertial. Only close to the marginal stability curve
does the time-averaged solution retain some degree
of western intensification.

c. Future work

Although the idealized antisymmetric wind-forcing is
unrealistic, the artificial symmetry is useful because the
pitchfork bifurcations allows the nonsymmetric branch-
es to be connected to the antisymmetric branch. For a
nonsymmetric model, some of the solution branches
would form isolated curves in parameter space and
might not be accessible using continuation methods.
Once the multiple solution branches have been identified
in the symmetric case, they can be traced continuously
as the wind stress geometry or basin shapes are modified
in a continuous way.

The multiple dynamical regimes identified in the
studies of McCalpin and Haidgovel (1996) and Spall
(1996b) were obtained for basin sizes with larger zon-
al than meridional extent, while our calculations used
a basin with a north–south extent twice as large as its
east–west extent. We are currently exploring the effect
of different basin sizes as well as nonsymmetric wind
stress curl profiles on the bifurcation structure of the
model. Work on the link between multiple equilibria
of a model with the same configuration as that used
by McCalpin and Haidgovel (1996) and the preferred
dynamical regimes they found is in progress.
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APPENDIX A

Method of Solution

The governing equation is discretized using finite dif-
ferences on a nonuniform rectangular grid with Nx grid
points in the x direction and Ny grid points in the y
direction. The scheme is made to be second-order ac-
curate on the nonuniform grid by using a method out-
lined in Marti et al. (1992). The physical coordinates
(x, y) are given terms of the computational coordinates
{(i, j) | i 5 1, 2, · · · , Ny and j 5 1, 2, · · · , Nx} by the
following formulas:

3 3X( j ) 2 m X( j ) Y(i) 1 m Y(i)x yx 5 , and y 5 ,
1 1 m 1 1 mx y

(A1)

where

j 2 1
X( j ) 5 ,

N 2 1x

and

i 2 (N 2 1)/2 1 1yY(i) 5 . (A2)
N 2 1y

The quantities mx and my are adjustable parameters
that control the degree to which grid lines are con-
centrated near the western boundary and near the line
of zero wind stress curl. The Jacobian is discretized
using Arakawa’s (1966) formulation with the appro-
priate modification for the nonuniform grid spacing
(Salmon and Talley 1988). The potential vorticity on
the boundary is treated as an unknown that must be
solved as part of the solution. The no-flux boundary
conditions are treated using second-order accurate
centered differences. After discretization, the PDE is
expressed as a coupled system of nonlinear ordinary
differential equations for the time-dependent case and
a coupled system of nonlinear algebraic equations for
the steady case. There is one unknown for each grid
point that can be organized into a state vector, u.
Elements of u corresponding to grid points in the
interior of the domain are the values of c evaluated
at the interior grid points and those elements of u
corresponding to grid points on the boundary of the
domain are the values of z evaluated at the boundary
grid points. The discretized equation for the steady
state can be written as follows:

F(u; dI, dS, dH) 5 0. (A3)

The steady-state solutions are found using an arc-
length predictor–corrector continuation algorithm. An
Euler predictor step is used as an initial estimate of
the solution, followed by an iterative Newton correc-
tor. The solution branches are parameterized using
pseudoarclength continuation (Seydel 1994), which
allows the solution branches to be traced past singular
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points. Bifurcation points leading to multiple equi-
libria can be detected by monitoring the sign of the
determinant of the Jacobian matrix of partial deriv-
atives of the discretized system of equations. Hopf
bifurcation points are detected by a linear stability
analysis. This is accomplished by looking for eigen-
modes of the form

c9(x, y, t) 5 estf (x, y). (A4)

Substitution of the modal form into the linearized prob-
lem yields the equation

2 2 2 2s¹ f 1 J(c , d ¹ f) 1 J(f, d z 1 y)s I I s

2 5 4 25 2d ¹ f 2 d ¹ (¹ f), (A5)S H

where cs is the steady-state equilibria. Unstable eigen-
modes have eigenvalues with positive real part, and sta-
ble eigenmodes have eigenvalues with negative real
part. A Hopf bifurcation occurs when a pair of complex
conjugate eigenvalues crosses the imaginary axis and
all other eigenvalues are stable (i.e., to the left of the
imaginary axis). The discretizated linear stability equa-
tion can be rewritten in matrix form as a generalized
eigenvalue problem:

Fuv 5 sLv. (A6)

Here Fu is the Jacobian matrix of partial derivatives
and L is a discretized version of the Laplacian op-
erator. The discretized eigenmode is given by v, and
its eigenvalue is given by s. The goal is to find the
eigenvalue with the largest real part, so that one can
detect if a Hopf bifurcation as occurred as one of the
equation’s parameters is varied. A method introduced
by Neubert (1993) is used to efficiently solve the
above problem. The method consists of a predictor–
corrector strategy to follow the curve of the dominant
eigenvalue m as a function of one of the parameters.
A subsequent computation is used to detect the pos-
sibility of the occurrence of an exchange of roles
whereby an eigenvalue not being followed becomes
dominant with respect to the real part.

APPENDIX B

Convergence and Grid Resolution

In this section, the issue of convergence of the
steady-state solutions as the grid resolution is in-
creased is discussed. Some of the computations were
repeated using a uniform grid with half and twice as
many grid points in both the x and y direction. The
three grids had (33 3 17), (65 3 33), and (129 3 65)
grid points in the x and y directions. In all the com-
putations dS and dH are fixed at 0.01 and 0.04, re-
spectively.

The bifurcation structure is not changed qualitatively
in going from a 33 3 17 gridpoint model to a 129 3

65 gridpoint model. The coarse resolution model with
only 33 3 17 grid points is sufficient to capture the

TABLE B1. Comparison of the location of the bifurcation points for
dS 5 0.01 and dH 5 0.04, computed on three grids with uniform grid
point spacing and with 33 3 17, 65 3 33, and 129 3 65 grid points
in the y and x directions. Column 3 gives O(h2) estimate for the
location of the bifurcation points. Column 4 gives the relative dif-
ference of the location of the bifurcation points calculated on the
different grids.

Bifurcation
point Resolution

dI

O(h2) Relative difference

PF N1 33 3 17

65 3 33

129 3 65

0.0362

0.0334

0.0340

2%

0.5%

PF N2 33 3 17

65 3 33

129 3 65

0.0743

0.0737

0.0734

0.2%

0.1%

Hopf 1 33 3 17

65 3 33

129 3 65

0.0762

0.0743

0.0740

0.6%

0.1%

Hopf 2 33 3 17

65 3 33

129 3 65

0.1720

0.1522

0.1514

3%

1%

PF N3 33 3 17

65 3 33

129 3 65

0.1416

0.0991

0.0990

8%

,0.1%

PF N3 33 3 17

65 3 33

129 3 65

0.1577

0.1145

0.1140

7%

0.1%

existence of all the bifurcations of the antisymmetric
branch found using the higher-resolution model with
129 3 65 grid points. Table B1 shows that the discre-
tized model appears to be converging quantitatively as
the grid spacing is reduced.
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