
NOVEMBER 1998 2313M E I E T A L .

q 1998 American Meteorological Society

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer
near a Small Peninsula

CHIANG C. MEI, CHIMIN CHIAN, AND FENG YE

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts

(Manuscript received 16 June 1997, in final form 20 January 1998)

ABSTRACT

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer
when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better
physical understanding the authors adopt the model of constant eddy viscosity and a horizontal seabed. Attention
is focused on a peninsula whose horizontal dimension is much smaller than the tidal wave length but larger
than the tidal excursion length. General expressions of shear-induced dispersivities and convection velocity are
derived in terms of the ambient flow field. Nonuniformity in the horizontal flow is found to have profound
effects on the spatial variation of the dispersion tensor as well as the horizontal convection velocity. Two numerical
examples are given for a semicircular peninsula: one for a particle cloud released near the peninsula over a
nonerodible seabed, and one for the resuspension over an erodible belt around the peninsula.

1. Introduction

Transport of suspended sediments in coastal waters
is of importance to coastline evolution and has been the
subject of investigation for a long time. Recent interest
has been motivated by environmental concerns of coast-
al waste disposal and the ecological processes of larvae
birth and growth.

Dispersion of a neutrally buoyant cloud in a hori-
zontally uniform oscillatory current has been studied by
a number of authors (e.g., Bowden 1965; Holly and
Harleman 1965; Okubo 1967; Fukuoka 1974). For the
dispersion of heavy particles, Yasuda (1989) also gave
a theory for an oscillating horizontally uniform current
within a Stokes boundary layer. The effective disper-
sivity at the final stationary stage was found to depend
on the fall velocity of the particles. Carter and Okubo
(1965) investigated a straight channel flow with linear
variation of velocity in the two transverse directions and
obtained solutions for the concentration distribution of
a neutrally buoyant cloud. Although many important
physical features have been revealed, these studies are
applicable only when the sediment cloud size and the
distance of advection are much smaller than the hori-
zontal scale of the mean flow. If one is interested in the
long-time fate of a particular cloud with horizontal di-
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mensions comparable to the length scale of an estuary,
a nearby island or a peninsula, the uniform-tide theories
cannot be satisfactory.

For the mixing and flushing of tidal embayments in
the Dutch Wadden Sea, Zimmerman (1976, 1977) found
that the large diffusivity (100–1000 m2 s21) is attrib-
utable to horizontal mixing in a spatially varying flow.
Since then a number of papers have addressed the effect
of horizontal variation of bathymetry or topography on
advection and dispersion.

There have been two approaches to model mixing in
nonuniform tides. One is to compute the depth-averaged
flow first. Then the trajectories (or Stokes drift) of a
large number of marked fluid particles are computed
numerically as an Euler–Lagrange problem (Zimmer-
man 1986). If the computed time history is sufficiently
long, the particle paths of this Stokes drift become cha-
otic. Effective diffusivity is then calculated from the
variance of the particle separation. Using this approach
Awaji et al. (1980) and Awaji (1982) studied the tidal
mixing in an idealized strait. Signell and Geyer (1990)
studied a similar problem for a peninsula that is small
compared to the tidal excursion length so that separation
eddies are a dominant feature. The second approach,
taken by Young et al. (1982) is Eulerian. They examined
an idealized flow field with simple dependence on depth
and horizontal coordinates, and sinusoidal dependence
in time. The three-dimensional convective diffusion
problem was solved to enable the calculation of the
effective horizontal diffusivity.

In this paper we extend the Eulerian approach to dis-
persion in tidal flows affected strongly by nonunifor-
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mities due to coastal topography. Our main assumptions
are as follows. The topographical length scale is as-
sumed to be greater than the tidal excursion length so
that flow separation is not important. Let h denote the
sea depth, ro the horizontal size of the coastal topog-
raphy, A the typical tide amplituide, v the tidal fre-
quency, and U ; A gh/h the typical horizontal flowÏ
velocity.1 Just above the seabed, an oscillatory Ekman
boundary layer of the thickness d 5 O( ne/v) is ex-Ï
pected to develop, where ne denotes the eddy viscosity
of momentum. The various scales involved in this prob-
lem are assumed to satisfy the following constraints:

U d
e [ K 1, K 1,

vr ho

h
K 1, kr K 1. (1.1)oro

They mean, respectively, that the tidal excursion is small
compared to the island size, the Ekman layer is totally
submerged near the sea bottom beneath the inviscid
zone, the sea is very shallow compared to the topo-
graphical length scale, which is in turn very small rel-
ative to the tidal wave length 2p/k. In addition, we shall
model the resuspension of fine particles from the seabed
by the usual empirical formula that the erosion rate is
a function of the shear stress at the seabed (Krone 1962;
Partheniades 1965) and assume that the heavy particles
are kept in suspension by flow turbulence in the tidal
boundary layer. Formation of agregates of cohesive sed-
iments is not considered.

The conditions of Eq. (1.1) are easily met. Taking for
estimate the tidal amplitude A 5 1.75 m, average depth
h 5 30 m, then U 5 A gh/h 5 1 m s21. Let the tidalÏ
period be 12 h so that v 5 2p/12 (1/h) 5 1.45 3 1024

(1/s), and the radius be ro 5 50 km, then e 5 U /(vro)
5 0.138 and is small.

Concerning the eddy viscosity, there have been many
depth-dependent models in the literature of gravity
waves (Sleath 1990) and of tidal currents (Soulsby
1990). It is known that despite the varieties of models
(constant, linear, parabolic, exponential), the resulting
first-order velocity profiles do not differ qualitatively
(see, e.g., Soulsby 1990, p. 531). For achieving ana-
lytical results, we shall choose the simplest model of
constant eddy viscosity with no-slip boundary at the
seabed (Sverdrup 1927; Mofjeld 1980; Kundu et al.
1981; and Fang and Ichiye 1983). To help guide the
estimate of order of magnitudes we use the usual as-
sumption (Soulsby 1983)

ne 5 ku*z, (1.2)

where k 5 0.4 is the von Kármán constant and u* 5

1 These and other mathematical symbols are summarized in ap-
pendix A.

t b/r is the friction velocity, which depends on theÏ
local shear stress at the bed. As estimates we may take
u* 5 1 cm s21 for a smooth mud bed and u* 5 2.5 cm
s21 for a rippled sandy bed (Soulsby 1983, p. 196), then
for a tidal boundary layer of depth 10 m, ne 5 0.02–
0.05 m2 s21, which is consistent with the estimates by
Bowden and Fairbairn (1953). Clearly (1.2) implies that
the eddy viscosity is a function of local flow, but its
full use would require a considerable numerical task,
which is not attempted here.

Under our simplifying assumptions, we take advan-
tage of two features of the phenomenon: (i) the existence
of two vastly different timescales (time for vertical dif-
fusion across the sea bed boundary layer and time for
horizontal diffusion across the topographical length) and
(ii) the problem is periodic on the shorter (micro) time-
scale, which is just the tidal period. These features en-
able us to employ the perturbation method of multiple
scales (method of homogenization) for deriving the ef-
fective equation governing the horizontal convection
and dispersion of the particle concentration. Both the
dispersivities and convection velocities will be derived
for general flow patterns with significant spatial varia-
tions produced by the interaction of tides with lateral
boundaries. The analysis is an extension to our earlier
works on gravity waves over a nonerodible seabed (Mei
and Chian 1994) and an erodible seabed (Mei et al.
1997) without Coriolis effects.

2. Flow in the tidal boundary layer

Under the second assumption in Eq. (1.1), the bound-
ary layer equations can be written:

2]u ]u ] u
1 u ·=u 1 w 1 2V 3 u 2 ne 2]t ]z ]z

]UI5 1 U ·=U 1 2V 3 U , (2.1)I I I]t

where u 5 (u, y) denotes the horizontal velocity vector,
w the vertical velocity component, ne the eddy viscosity,
and V 5 Vk is the local angular velocity of the earth
rotation, with V 5 2p sinf /day and f being the local
latitude; UI denotes the horizontal velocty of the inviscid
flow field just outside the boundary layer,

1
2ivt 2ivt ivtU 5 Re[U (x, y)e ] 5 (U e 1 U*e ), (2.2)I 0 0 02

where asterisks signify complex conjugates.
The first assumption in Eq. (1.1) permits one to ex-

pand the velocity in the boundary layer as

u 5 u (1) 1 u (2) 1 · · · ,

where the superscripts indicate the order of magnitude
in powers of e. At the leading order, the horizontal mo-
mentum equation reads
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(1) 2 (1)]u ] u ]UI(1)1 2V 3 u 2 n 5 1 2V 3 U . (2.3)e I2]t ]z ]t

The first-order horizontal velocity in the bottom bound-
ary layer was given first by Hunt and Johns (1963) as
follows:

u (1) 5 Re[(U0F1 2 V0F2)e2ivt], (2.4)

y (1) 5 Re[(U0F2 1 V0F1)e2ivt] (2.5)

in which

1
2sj 2qjF 5 1 2 (e 1 e ), (2.6)1 2

i
2sj 2qjF 5 (e 2 e ), (2.7)2 2

where

q 5 (1 2 i)a, (2.8)

s 5 (1 7 i)b, if f | 1 (2.9)

a 5 Ï1 1 f , b 5 Ï|1 2 f | , f 5 2V/v, (2.10)

and

z 2nej 5 , d 5 . (2.11)!d v

As has been shown by Buchwald (1971) that under
the last two assumptions in Eq. (1.1), the inviscid tidal
flow (UI, VI) can be described essentially by a two-
dimensional, quasi-steady velocity potential, while the
vertical velocity component is negligible. In particular,

]U ]V UI I 21 5 O(kr ) ,o 1 2]x ]y ro

]U ]V UI I 22 5 O(kr ) . (2.12)o 1 2]y ]x ro

It follows readily from continuity that the vertical ve-
locity in the boundary layer is of the order

d U
2(kr ) (2.13)or ro o

and is negligible (Lamoure and Mei 1977). As a further
consequence the spatial factors U0 and V0 are in phase
and may be taken as real quantities with respect to i.
Based on these Lamoure and Mei have solved the ap-
proximate momentum equation at second order, O(e),

(2) 2 (2)]u ] u
(2) (1) (1)1 2V 3 u 2 n 5 U ·=U 2 u ·=ue I I2]t ]z

1 22 (1)5 =(U 2 u ). (2.14)I2

The period average of u2 gives the Eulerian streaming
induced by Reynolds stresses in the tidal boundary layer.
Using real notation, the second-order-induced streaming
is given by

1 ] ]
(2) 2 2^u & 5 ReH (j) |U | 2 ImH (j) |U | (2.15)E 0 E 05 62v ]x ]y

1 ] ]
(2) 2 2^y & 5 ImH (j) |U | 1 ReH (j) |U | , (2.16)E 0 E 05 62v ]x ]y

where

|U0| 5 (|U0|2 1 |V0|2)1/2; (2.17)

angle brackets denote time averages over a tidal period,
and HE(j ) marks the vertical variation of Eulerian
streaming in the boundary layer

1 1 1 1 1 1 1
2cj 2qj 2q*j 22aj2H 5 2 1 2 e 1 e 1 e 2 eE 2 2 2 2 2 2 2 2 2 2 2 25 1 2 62 q 2 c q* 2 c 4a 2 c q 2 c q* 2 c 4a 2 c

1
1 {a → b, q → s}, (2.18)

2

where

c 5 (1 1 i) f .Ï (2.19)

In Eq. (2.18) the expression in the second pair of braces
is obtained from the first pair by the indicated change
of parameters. This result has been derived and dis-
cussed by Lamoure and Mei.

3. Governing equation for particle transport

Consider a dilute cloud of fine particles either released
from a dredge boat or resuspended locally from an er-
odible bed. In general, the sediment size is distributed
over a certain range. Since for a dilute cloud interaction
among particles is negligible, one can divide the size
distribution into a discrete set of particle sizes, each of
which is characterized by a fall velocity wo. After an-
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alyzing the concentration of each size, the evolution of
the entire cloud can be obtained by linear superposition.
In the sequel only one size is considered.

We first give reasons that the inertia of sufficiently
small particles can be ignored. The ratio of the relax-
ation time t for a particle to adjust to the ambient mean
flow to that of the tidal wave period can be estimated by

4dr gvp
vt 5 (3.1)

3C DuD

(Bagnold 1951) with d, rp, CD, and Du being respec-
tively the diameter and density of the particle, the drag
coefficient, and the representative initial velocity dif-
ference between a particle and the ambient fluid. With
CD 5 O(1) and Du 5 O(1) m s21, this ratio is about
O(1025) for d 5 O(0.1) mm 5 100 mm (fine sand) and
is very small so that the particles are essentally inertia
free. In a turbulent field, fine particles can also be con-
sidered inertia free relative to turbulent fluctuations if
they are small compared to the Kolmogorov length, lk

5 (n3l/u93)1/4, which is the smallest length scale of vis-
cous eddies; that is,

d
, O(1), (3.2)

lk

where n is the molecular viscosity of water, l is the eddy
size, and u9 the velocity scale of turbulent fluctuations.
It is reasonable to use the boundary layer thickness d
as the scale of l and friction velocity u* 5 t b/r as the
scale of u9, where t b stands for the bed shear stress.
Estimating the tidal boundary layer thickness to be l 5
10 m and u* 5 O(0.01) m s21, we have lk 5 O(1.8)
mm, which is much greater than the diameter of fine
sand. We shall, therefore, ignore the velocity difference
between the particle and its surrounding fluid.

Let D and Dh be the vertical and horizontal eddy mass
diffusivities respectively. The convection–diffusion
equation for the concentration C of a dilute particle
cloud can be approximated by

2 2]C ]u C ](w 2 w )C ] C ] Ci o1 1 5 D 1 D ,h 2]t ]x ]z ]x ]x ]zi i i

(3.3)

where i 5 1, 2 corresponding to the two horizontal
coordinates.

From the experiments by Krone (1962) and Pathen-
iades (1965) for steady flow over an erodible bed, the
net rate of erosion or deposition of cohesive sediments
is related to the excess of bed shear stress above a thresh-
old stress. In its simplest form it reads

]C 2D |t | , tb d2w C 2 D 5 if , (3.4)0 5 6 5 6]z E |t | . tb c

where t c . t d and

D 5 adwdC (3.5)

represents the rate of deposition, wd is the deposition

velocity, ad is an empirical coefficient no greater than
unity, and

E 5 E(|t b| 2 t c) (3.6)

represents the rate of erosion while E is another em-
pirical coefficient. Normally t d ranges from 0.03;0.15
N m22 for various types of sediments, while t c lies
between 0.15 N m22 and 1 N m22; see Tables 11.3, 11.7,
and 11.8 in van Rijn (1994). The surface layer of the
seabed is usually covered with partially consolidated or
unconsolidated particles for which t c is considerably
less than the bed shear stress in the tidal wave boundary
layer, namely, |t b| k t c. Thus, we shall neglect t c as
well as t d (,t c) and approximate Eq. (3.4) by

]C
2 w C 1 D 5 E ø E|t |, z 5 0. (3.7)0 b1 2]z

Furthermore, in a steady turbulent flow, particles, once
suspended, can remain in suspension without deposition
if w0/ku* , O(1) (Batchelor 1965), where u* and k are
the bottom shear velocity and the von Kármán constant,
respectively. As an estimate let us take u* 5 O(0.01)
m s21, then the above condition is satisfied for wo .
O(0.004) m s21, which corresponds to a sand size d 5
O(0.1) mm or finer. In any case, inclusion of the small
effects of t d and t c is merely cumbersome but not dif-
ficult.

Because sand particles are heavier than water, they
are kept in suspension by the flow turbulence, hence are
essentially confined inside the tidal boundary layer. We
therefore assume that C vanishes at the upper edge of
the boundary layer

C 5 0, z → `. (3.8)

4. Scaling and normalization

There are three vertical length scales pertinent to the
boundary layer:

ds 5 D/w0, du 5 2ne/v, dc 5 2D/v. (4.1)Ï Ï
Here ds denotes the thickness of a steady concentration
layer resulting from the settling of particles and the
upward turbulent diffusion, and du and dc are the bound-
ary layer thicknesses corresponding to momentum and
mass diffusion, respectively. For generality we shall as-
sume that all three scales are comparable to one another
and therefore characterized by a single scale d; that is,

O(d) 5 O(ds) 5 O(du) 5 O(dc). (4.2)

and thus the Schmidt number is of order unity.

Sc 5 ne/D 5 (du/dc)2 5 O(1). (4.3)

Indeed, if Reynolds analogy is assumed, Sc 5 ne/D is
precisely unity.

Two small length ratios are crucial in this study. Com-
pared to the horizontal dimension of the peninsula,
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FIG. 1. Dimensionless complex coefficient H1 ( f, Pe) for the mean
convection velocity as a function of Coriolis number f 5 2V sinf/
v for Pe 5 1.

FIG. 2. Dimensionless dispersivity coefficients as functions of Pe for f 5 0.666. Dash: Sc 5 0.1, solid: Sc 5 1 and, dash–dot: Sc 5 10.

AÏghU
e 5 5 , (4.4)

v r r0 o

is a measure of the tidal excursion length, and

d Dhe 5 , (4.5)1 !r D0

where e1 is a dimensionless measure of the boundary
layer thickness. We shall assume that O(e1) # O(e), the
consequence of which is that horizontal turbulent dif-
fusion will remain effective in the long-term transport
of sediment concentration. Estimating Dh/D 5 104, d
5 10 m, and r0 5 50 000 m, we get e1 5 0.02, which
is much smaller than e; hence our assumption is a gen-
erous one.

Let us introduce the normalized variables as follows:

t*
x 5 r x*, z 5 dz*, t 5 ,i o i v

d
C 5 C C*, u 5 Uu*, w 5 Uw*. (4.6)0 i i r0

In dimensionless form, the governing equation reads,
with the asterisks omitted for brevity,
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2 2]C ](u C) ] ] C ] Ci 21 e 1 [(2Pe 1 ew)C] 5 1 e ,12]t ]x ]z ]z ]x ]xi i i

(4.7)

where Pe 5 w0d/D is the particle Péclet number and z*
5 j by definition.

As shown by Mei et al. (1997), the characteristic
concentration C0 can be estimated by balancing the rate
of erosion and the net horizontal flux by Eulerian
streaming within the boundary layer, namely,

]C
U d ; Et , (4.8)E b]x

where UE denotes the scale of the Eulerian steady
streaming. From (2.15) and (2.16) we can estimate

2U
U 5 O . (4.9)E 1 2vr0

where U 5 A gh/h for long waves in shallow seas;Ï
hence

2dA gC0Et ; . (4.10)0 2vhr0

The shear stress on the sea bottom can be estimated
from the boundary layer theory as

Ï2 rDU Ï2g rDA
t 5 5 ; (4.11)0 d dÏh

therefore
2 2Ï2 rEDvr Ïh Ï2 rDEvr0 0

C ; ; . (4.12)0 22 d UAd Ïg

Using this, the normalized boundary condition at the
seabed reads

2 2]C U d
2PeC 2 5 |t |, (4.13)b2]z vDr0

where
2 2 2 2U d A d v

2; 5 O(e ). (4.14)
2vDr r D0 o

This scale estimate is consistent with field observations
by Huhe and Yang (1996), Yu et al. (1993), and cited
by Mei et al. (1997).

In the present problem there are two timescales: One
is v21 5 T/2p 5 O(d2/D), which characterizes the ver-
tical diffusion across the boundary layer. The other is
the timescale for horizontal transport by convection
across the peninsula, r0/^u (2)&; the timescale for hori-
zontal diffusion /Dh is much longer and immaterial.2r0

Using either Eq. (2.15) or Eq. (2.16) we get ^u (2)& 5
O(U2/vr0). Therefore, the timescale for horizontal
transport is v/U2. The ratio between two timescales2r0

for vertical and horiontal transport is O(e2). Accordingly
we may introduce a slow time variable T 5 e2t.

5. Effective equation for horizontal particle
transport

With these order estimates it is possible to return to
physical coordinates by keeping the order symbols in
order to mark the relative magnitudes. Thus, we have

]C ](u C) ]i1 e 1 [(2w 1 ew)C]o]t ]x ]zi

2 2] C ] C
25 D 1 e D , (5.1)h2]z ]x ]xi i

]C
22 w C 1 D 5 e E |t |, z 5 0, (5.2)0 b1 2]z

C → 0, z k d . (5.3)

As in Mei and Chian (1994) and Mei et al. (1997),
we employ multiple-scale expansions

(0) (1)C 5 C (x , z, T ) 1 eC (x , z, t, T )i i

2 (2) 31 e C (x , z, t, T ) 1 O(e ). (5.4)i

At the leading order O(1), the equation is quasi-steady
and homogeneous.

(0)] ]C
(0)w C 1 D 5 0, (5.5)01 2]z ]z

subject to the homogeneous boundary conditions

(0)]C
(0)w C 1 D 5 0 (5.6)0 ]z

(0)C 5 0 z 5 `. (5.7)

Thus, the solution,

C (0) 5 Ĉ(xi, T)e2Pej, (5.8)

represents the time-averaged concentration, whose de-
pendence on xi, T through the factor Ĉ(xi, T) is yet
unknown.

At O(e), we have the equation for the concentration
fluctuation C (1) from the mean.

(1) (1) (0)]C ] ]C ]C
(1) (1)2 w C 1 D 5 2u , (5.9)0 i1 2]t ]z ]z ]xi

subject to the same boundary conditions, Eqs. (5.6) and
(5.7). In Eq. (5.9) we have dropped the term w1]C (0)/]z
because w1 is negligible near a small peninsula, as point-
ed out before in section 2. Let

C (1) 5 ReC11e2ivt. (5.10)

Using the solutions for u1i as given in Eqs. (2.4) and
(2.5), the formal solution for C (0), and the boundary
conditions for C (1) we obtain
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FIG. 3. Dimensionless dispersivity coefficients as functions of f for Pe 5 1. Dash: Sc 5 0.1, solid: Sc 5 1, and dash–dot: Sc 5 10.

FIG. 4. Weighted depth average of convection velocity UE in tidal
boundary layer for f 5 0.666 and Pe 5 1.

1
A Pej 2Pej1C 5 [(R U 2 R V )e 1 R U e11 1 0 2 0 3 0v

]C
2A Pej 2A Peja b1 R (U 2 iV )e 1 R (U 1 iV )e ]a 0 0 b 0 0 ]x

1 ]C
1 [U → V , V → 2U ] , (5.11)0 0 0 0v ]y

with

A 2 1Sc bR 5 21 2 [Pe (A 1 1) (A 1 A )(A 1 A )1 1 b 2 b

A 2 1a1 , (5.12)](A 1 A )(A 1 A )1 a 2 a

iSc(A 2 A ) 1a bR 5 22 2 [Pe (A 2 A ) (A 1 A )(A 1 A )1 2 1 a 1 b

A 1 121 ,](A 1 A )(A 1 A )(A 1 1)2 a 2 b 1

(5.13)
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FIG. 5. Dispersivity tensor components around a circular peninsula for f 5 0.666, Pe 5 1, and Sc 5 1.

2Sc
R 5 2i 5 , (5.14)3 2Pe (1 1 A )(1 1 A )1 2

Sc
R 5 2 , (5.15)a,b 2Pe (A 1 A )(A 1 A )1 a,b 2 a,b

A 5 (1 2 i)a /Pe 1 1, (5.16)a

A 5 (1 2 i)b/Pe 1 1,b

1 1
A 5 2 (1 6 G ) 6 iG , (5.17)1,2 1 22 2

1/24Ï(1 1 N ) 6 1
G 5 , (5.18)1,2 [ ]2

2Ï2Sc w d n0 eN 5 , Pe 5 , Sc 5 . (5.19)
Pe D D

Note that Pe is the particle Péclet number, which in-
creases with the particle fall velocity, hence its diameter;
Sc is the Schmitt number measuring the ratio of mo-
mentum and mass diffusivities.

At O(e2) C (2) is governed by

(2) (2)]C ] ]C
(2) (1) (1) (2) (0)1 2w C 2 D 1 w C 1 w C01 2]t ]z ]z

(1) (0) (0) 2 (0)]C ]C ]C ] C
(1) (2)5 2u 2 2 u 1 D .i i h]x ]T ]x ]x ]xi i i i

(5.20)

Taking time average and integrating across the boundary
layer and noting that the concentration vanishes at the
top of the layer and that the vertical velocity must be
zero at the bottom, we get the effective transport equa-
tion for C:
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FIG. 6. Dispersivity tensor components around a circular peninsula for f 5 0, Pe 5 1, and Sc 5 1.

ˆ]C ]
(2) ˆF 1 [^u &F C]i]T ]xi

2 ˆ] ] C
(1) (1)5 2 ^u C & 1 D F 1 E^|t |&, (5.21)i h b]x ]x ]xi i i

where overbars denote vertical integration across the
boundary layer and F 5 e2Pej. Using the results Eqs.
(2.4), (2.5), (5.11), and (2.15), we finally have the fol-
lowing effective transport equation:

ˆ ˆ]C ] ] ]C EPe^|t |&bˆ1 (U C) 5 (E 1 D d ) 1 ,Ei i,j h ij[ ]]T ]x ]x ]x d1 i j

(5.22)

The effective convection velocity UE has the com-
ponents

 ]
 U 1E ]x1 2 2 5 (|U | 1 |V | )Re(H )0 0 15 6 ]U 2vE2  
]y 

 ]
2 1 ]y 2 2 1 (|U | 1 |V | )Im(H ), (5.23)0 0 1]2v  
]x 

where

H 5 G(a) 1 G(b) (5.24)1

with
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FIG. 7. Evolution of particle concentration. Cloud center is initially released at northeast ( 5 1.3, uc 5 458) for f 5 0.666, Pe 5 1, andr9c
Sc 5 1.

I (a) I (a) I (a) I (a)1 2 3 4G(a) 5 Pe 1 1 1 ,[ ]c 1 Pe q 1 Pe q* 1 Pe 2a 1 Pe

(5.25)

and

1 1 1
I (a) 5 2 1 , (5.26)1 2 2 24(a 1 f )i 4(a 2 f )i 8a 2 4 f i

1
I (a) 5 2 , (5.27)2 24(a 1 f )i

1
I (a) 5 , (5.28)3 24(a 2 f )i

1
I (a) 5 2 . (5.29)4 28a 2 4 f i

Recall that a( f ) and b( f ) are defined in Eq. (2.10),

while q( f ) and c( f ) are defined in Eqs. (2.8) and (2.19)
respectively. The polar plot of complex coefficient H1

is presented in Fig. 1 for a wide range of f. Referring
to (5.23), the effecive convection velocity field is the
weighted depth average of the Eulerian streaming ve-
locity, proportional to the Reynolds stress imposed by
convective inertia in the inviscid flow above the bound-
ary layer. The complex factor H1 combines the effects
of shear and the concentration variation F inside the
boundary layer. The ratio ImH1/ReH1 5 tan21uH gives
the angle uH between the driving external Reynolds
stress and the convection current, as a result of earth
rotation. Thus, for f 2 0, ImH1 5 0 so that the angle
is zero. But as f increases to 1, the convection velocity
is inclined at 678 clockwise from the external Reynolds
stress. For f increasing past unity, the angle uH decreases
again.

The dispersion tensor is in general nonsymmetric and
has the components
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FIG. 8. Off-diagonal dispersivity tensor component Eur around a
circular peninsula for f 5 0.666, Pe 5 1, and Sc 5 1.

1
2 2E 5 Re[H |U | 1 H |V | 1 H U*V 1 H V*U ],xx 41 0 42 0 43 0 0 44 0 0v

(5.30)

1
2 2E 5 Re[H |V | 1 H |U | 2 H U*V 1 H V*U ],yy 41 0 42 0 44 0 0 43 0 0v

(5.31)

1
2 2E 5 Re[2H |U | 1 H |V | 1 H U*Vxy 43 0 44 0 41 0 0v

2 H U V*], (5.32)42 0 0

1
2 2E 5 Re[H |V | 2 H |U | 1 H U V* 2 H U*V ].yx 43 0 44 0 41 0 0 42 0 0v

(5.33)

Note that all these components depend quadratically on
the ambient velocity components. Moreover, the coef-
ficients

1
H 5 2 [R S (A ) 1 R S (21) 1 R S (2A )41 1 1 1 3 1 a 1 a2

1 R S (2A )], (5.34)b 1 b

1
H 5 2 [R S (A ) 1 iR S (2A ) 2 iR S (2A )],42 2 2 1 a 2 a b 2 b2

(5.35)

1
H 5 [R S (A ) 1 iR S (2A ) 2 iR S (2A )],43 2 1 1 a 1 a b 1 b2

(5.36)

1
H 5 [R S (A ) 1 R S (21) 1 R S (2A )44 1 2 1 3 2 a 2 a2

1 R S (2A )], (5.37)b 2 b

2a Pe 2 (s* 1 q*) 1iS (a ) 5 Pe 2 , (5.38)1 i 2(a Pe 2 q*)(a Pe 2 s*) ai i i

i(s* 2 q*)
S (a ) 5 Pe , (5.39)2 i 2(a Pe 2 q*)(a Pe 2 s*)i i

in which {a1, a2, a3, a4} 5 {A1, 21, 2Aa, 2Ab},
represent the integrated effects of the vertical variation
of the fluctuating velocity and concentration inside the
Ekman boundary layer, hence the coefficients H4i, i 5
1, 2, 3, 4, are functions of f, Sc, and Pe. Since U0, V0

are in phase and can be taken as real numbers, only the
real parts of H4i are needed, and are plotted in Fig. 2
as functions of the particle Péclet number Pe for and
three different values of Sc. To represent midlatitudes
we select f 5 0.666, which corresponds to the Italian
peninsula of Prom. del Gargano2 at latitude 418509 on
the southwest coast of the Adriatic Sea.

2 For reference, the shape of Prom. del Gargano is not too far from
a semicircle with a radius of 35 km. The 50-m depth contour is about
20 km offshore. The coastline extends from northwest to southeast.

The magnitudes of all of these coefficients achieve
their greatest values near Pe ø 1. Dependence of these
coefficients on f is plotted in Fig. 3 for Pe 5 1 and
three values of Sc. Discontinuity in slope at f 5 1, that
is, v 5 2V is a common feature caused by the change
of sign in Eq. (2.9).

The effective convection–dispersion equation can be
written in conservation form

ˆ]C ]Fi1 5 0, (5.40)
]T ]xi

where

ˆ]CˆF 5 U C 2 (E 1 Dd ) (5.41)i Ei ij ij ]xj

is the particle flux vector.
Under the present assumption of constant depth, the

shore must be a vertical cliff normal to which there is
no horizontal flux; that is,

ˆ]CˆF n 5 U C 2 (E 1 Dd ) n 5 0. (5.42)i i Ei ij ij i[ ]]xij

For presentation of numerical results, it is convenient
to renormalize the variables as follows:

2r vo ˆt 5 T9 , x 5 r x9, C 5 C9Ci o i 02U
2 2U U

U 5 U9 , (D, E ) 5 (D9, E9), (5.43)Ei Ei ij ijvr vo

where the concentration scale depends on the problem
to be specified later. The effective convection–diffusion
equation then becomes
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FIG. 9. Evolution of particle concentration. Cloud center is initially released at northwest ( 5 1.3, uc 5 1358) for f 5 0.666, Pe 5 1,r9c
and Sc 5 1.

ˆ]C9 ](U9 C9) ] ]CEi1 5 (E9 1 D9) 1 E9. (5.44)ij h1 2]T9 ]x9 ]x9 ]x9i i i

In the following sections we shall limit our discussion
to a semicircular peninsula. The first-order spatial de-
pendence of the inviscid velocity field is then simple
and is identical to that for uniform flow passing a cir-
cular cylinder

cos2u
U 5 UU9 5 U 1 2 ,0 0 21 2r9

sin2u
V 5 UV9 5 2U , (5.45)0 0 21 2r9

where r9 5 r/ro. The mean velocity of Eulerian stream-
ing is shown for f 5 0.666 in Fig. 4, showing a distinct
asymmetry due to earth rotation and a convergence to
a coastal region near u 5 1358. In contrast, the mean

streaming field in a nonrotating sea would be symmet-
rical with respect to the offshore (y) axis of the pen-
insula, with convergence toward the offshore tip of the
peninsula (Lamoure and Mei 1977).

In Fig. 5 we display the Cartesian components of the
dispersion tensor Eij for the semicircular peninsula, for
f 5 0.666, Pe 5 Sc 5 1. Again, the asymmetry is
notable. For f 5 0 these components are symmetrical
with respect to the y axis, as shown in Fig. 6. For rough
estimate let us take again U 5 1 m s21 and v 5 1.45
3 1024 s21. From Fig. 2 the typical value of Eij near
the peninsula is 0.05, therefore the dispersivity is of the
order Eij ; 0.05U2/v 5 345 m2 s21, which is consistent
with the data cited by Zimmerman (1976a, b) and far
greater than the eddy diffusivity.

In the following section we examine the spreading of
a particle cloud for two examples. In the first a particle
cloud is initially released into the bottom boundary layer
near the peninsula; the surrounding sea bed is nonero-
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FIG. 10. Evolution of particle concentration. Cloud center is inititally released at northeast ( 5 1.3, uc 5 458) for f 5 0, Pe 5 1, andr9c
Sc 5 1.

FIG. 11. Dimensionless erosion rate around a circular peninsula
due to tidal oscillations.

dible. This is to simulate the fate of particles dumped
into sea. In the second we examine the transport of
sediments eroded from a strip of the sea bed surrounding
the peninsula. The dimensionless horizontal diffusivity
is taken to be 5 0.001. For U 5 1 m s21, the physicalD9h

diffusivity is Dh 5 6.9 m2 s21, which is about 350D
and far smaller than the typical dispersivity to be dis-
cussed. The implied ratio e1 is much smaller than e for
an island of 10–100-km radius. Details of the numerical
scheme are described in appendix B.

6. Release of a particle cloud

Let the initial concentration be Gaussian and the max-
imum initial concentration be chosen as C0 for the scale
of normalization. If the initial cloud has the dimen-
sionless standard deviation S and is centered at , ,x9 y9c c

then

2 2(x9 2 x9) 1 (y9 2 y9)c cC9(x9, y9, 0) 5 exp 2 , (6.1)
25 6S

where 5 cosuc, 5 sinuc. In all calculationsx9 r9 y9 r9c c c c

we take 5 1.3 and S 5 0.1. The Coriolis factor isr9c
taken to be f 5 0.666. Three locations of initial releases
have been considered: uc 5 458, 908, and uc 5 1358. In
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FIG. 12. Evolution of concentration of resuspended particles. For f 5 0.666, Pe 5 1, and Sc 5 1. Dash curve indicates outer edge of
erodible bed.

each case the snapshots at T9 5 1, T9 5 2, T9 5 3, and
T9 5 4 are plotted. Note that for Prom. del Gargano ro

5 35 km, U 5 1 m s21 v 5 1.45 3 1024 s21. T9 5 1
corresponds to 2.1 days. For comparison the tidal time-
scale is 1/v 5 0.08 day. Only the results for uc 5 458
and 1358 are shown here. In Fig. 7 we show the con-
centration contours when the initital cloud center is at

5 1.3, uc 5 458. At T9 5 1 the initially concentricr9c
circular contours become tilted ellipses due mainly to
the off-diagonal dispersivities (Exy and Eyx). Some par-
ticles are transported toward the coastline around the
point (r9 5 1, u 5 458) as a result of both Eulerian
convection and diffusion from the cloud center. Since
the normal flux vanishes at the vertical shore, particles
tend to pile against the shore, and the local radial gra-
dient of the concentration reverses; that is, ]C/]r
changes from positive to negative. Consequently, two
local concentration peaks appear, one, designated as P1,
say, corresponds to the center of the initial cloud that
is affected purely by convection, since the local con-
centration gradient is zero. The other peak corresponds
to the accumulation along the coast, designated as P2,

say, and moves along the circular coastline. Note that
at T9 5 1, P1 has not moved much from its original
location owing to the small local convection velocity
(cf. Fig. 7a). However, P2 is displaced quite far from
where the particle cloud first reaches the coast. More
interesting is that P2 passes the point where the Eulerian
streaming converges around (r9 5 1, u 5 1358), instead
of stopping there. To understand this phenomenon we
express in polar form the component of particle flux
along the circular coastline,

]C E ]Cuu
F 5 U C 2 E 2 . (6.2)u u ur ]r r ]u

The last term plays a small role in displacement of P2

where ]C/]u vanishes. The second term on the right-
hand side stands for the longshore flux due to the radial
gradient, a result of the off-diagonal dispersivity Eur.
As shown in Fig. 8, Eur is positive along the entire rim
of the island. Since ]C/]r is negative, the longshore flux
is along the positive u direction. Now the physical pic-
ture is clear:
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FIG. 13. Evolution of concentration of resuspended particles for f 5 0, Pe 5 1, and Sc 5 1. Dash curve indicates outer edge of erodible
bed.

1) When a peak is formed at the coastline due to local
accumulation of particles, it is transported along the
direction of increasing u by both convection and dif-
fusion.

2) When the peak of accumulation P2 reaches the con-
verging point of the convection field, the term rep-
resenting off-diagonal dispersibity Eur]C/]r domi-
nates and tends to move the peak P2 past the point
of velocity convergence. The clockwise convection
velocity is too weak to counter the trend until the
peak is finally stopped by the straight coastline.

From Figs. 7b–d it can be seen that P1 moves from
its original location (0.9, 0.9) in the x, y plane to about
(0.8, 1.0). The concentration at P2 increases with time
due to additional accumulation of particles.

For other locations of initial release, the results are
qualitatively the same [see Figs. 9a–d for initial release
at ( 5 1.3, uc 5 1358)]. Thus, regardless of the dif-r9c
ferent locations of initial release, the peak of the con-
centration cloud eventually reaches and stays around the
stagnation point at r9 5 1, u 5 1808. Translating these

results for Prom. del Gangano, we may expect signifi-
cant accumulation of suspended particles near the north-
west corner, one or two weeks after dumping dredged
mud somewhere nearby.

Along the equator the effects of earth rotation vanish
since f 5 0; the velocity field is symmetrical with re-
spect to the y axis. Accordingly, the convection field
and the dispersivity tensor are symmetrical with respect
to the y axis. No matter where it is initially released,
the cloud finally moves to the coastline and converges
to the offshore tip of the peninsula. We only show in
Fig. 10 the results for the case where the center is re-
leased at 5 1.3, u 5 458. Thus, convection by Eulerianr9c
streaming, already predicted by Larmoure and Mei
(1977), dominates the phenomenon, unlike the case with
f ± 0.

7. Erosion and transport of bottom sediments

We consider a peninsula surrounded by a ringlike strip
of erodible seabed covering the region r0 , r , r1 , 08
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, u , 1808. The bottom shear stress is dominated by
the vertical derivative of the oscillatory horizontal ve-
locity at z 5 0, which can be evaluated from (Eqs. 2.4)
and (2.5).

(1)]u 
mt  bx ]z5  (1)1 2 ]yt by  m

]z  z50

m U (s 1 q) 2 iV (q 2 s)0 0 2ivt5 Re e , (7.1)5 6[ ]2d iU (q 2 s) 1 V (s 1 q)0 0

where q and s are defined in Eqs. (2.8) and (2.9). Lim-
iting our discussion to f 5 2V/v , 1 only, it can be
shown that

2 2|t | 5 Ït 1 tb bx by

m
2 2 2 1/2 1/25 ÏU 1 V [1 2 (1 2 f ) sin2vt] . (7.2)0 0d

The time average over a wave period is

mI
2 2^|t |& 5 ÏU 1 V (7.3)b 0 02pd

in which I denotes the elliptic integral
p

2 1/2 1/2I 5 2 dt9 [1 2 (1 2 f ) sin2t9] , (7.4)E
0

which can be evaluated numerically.
We now choose the concentration scale to be

2PeEmIv roC 5 (7.5)0 22pU d

so that the normalized erosion term on the right of
(5.44) is

2 2ÏU9 1 V9 , 1 , r9 , r9o o 1E9 5 (7.6)50, r9 . r9.1

Using Eq. (5.45), we find for the semicircular peninsula

 1 2 cos2u 1 1 2 , 1 , r9 , r914 2! r rE9 5 (7.7)
0, r9 . r9, 1

which is plotted for 5 1.5 in Fig. 11. Note that thisr91
spatial variation is symmetrical with respect to the y
axis and is unaffected by earth rotation because of the
small size of the peninsula.

Computed results representing the evolution of the
sediment concentration are shown for both f 5 0 and
f 5 0.666. The corresponding elliptic integrals are I 5
5.65685 and 6.12751 respectively.

As in the case of a nonerodible bed, once the particles
are eroded from the bottom and resuspended, they drift
toward the shore, resulting in a very sharp radial gra-

dient. The concentration contours are asymmetrical with
respect to y axis for f ± 0 but symmetrical for f 5 0,
as expected. At large times, the peak of the resuspended
sediment cloud moves past the region of velocity con-
vergence and eventually settles around the stagnation
point at u 5 1808, if f ± 0; see Fig. 12 for f 5 0.666.
Without rotation, however, the cloud settles around the
point of velocity convergence; see Fig. 13.

Since the source term E 9 due to erosion is indepen-
dent of time in our theory, the total mass in suspension
increases with time at a constant rate.

8. Concluding remarks

Due to vertical shear in the bottom boundary layer,
the effective diffusion in the horizontal direction is mag-
nified. This magnification is very large since the tidal
period is long, resulting in a dispersivity much greater
than the eddy diffusivity. It should be stressed that the
flow inside the boundary layer is determined by the flow
above, which is in turn affected by bathymetry and
coastline configuration. Therefore, the effective diffu-
sivity and convection velocity are directly affected by
the overall nonuniformity of the flow field and must, in
general, vary from place to place. This means, in par-
ticular, that the dispersivity coefficients cannot be re-
garded as empirical constants to be calibrated by field
measurements at a few stations.

For the special example of a semicircular peninsula
we have found that the fate of a suspension cloud,
whether it is released over a nonerodible bed or resus-
pended directly from an erodible bed, is determined
jointly by the tide-induced circulation and dispersion.
In general, for f ± 0, the off-diagonal components of
the dispersion tensor can overwhelm convection and
drive the particle cloud to points away from where the
convection velocity converges.

Several extensions of the present theory are desirable.
First, for coastal applications, the combined effects of
depth variation and wind input are vital. Wind can of
course induce both currents and short gravity waves. As
the depth decreases toward the shore, the influence of
waves increases while that of the current must diminish
due to bottom friction. Erosion must be largely the work
of wind waves, while the transport of suspended par-
ticles is taken up by currents driven both directly by
wind and indirectly by wave-induced currents through
wave-induced Reynolds stresses (which are, of course,
also the results of wind). Second, a more sophisticated
turbulence model, calibrated by extensive field mea-
surements, would bring predictions and observations
closer. In particular, if the depth-dependent model (1.2)
is used, the eddy viscosity itself would vary with the
local flow and would affect the present predictions quan-
titatively. Third, very fine suspensions do not remain
close to the bottom and can reach the upper layers of
the sea. Knowledge of convection and dispersion
throughout the entire depth of water is therefore needed.
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Fourth, due to sediment consolidation the erosion rate
cannot remain unchanged in time (van Rijn 1993). The
relation between erosion and consolidation is an un-
chartered territory of sediment dynamics and awaits de-
tailed study. Finally for very fine sediments cohesive
interactions such as floculation involve physicochemical
processes beyond hydrodynamics; proper theories are
true challenges for the future.
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APPENDIX A

List of Symbols

D eddy mass diffusivity
D rate of deposition
d boundary layer thickness
Eij effective dispersion tensor
E rate of erosion
e ratio of tidal excursion to island radius
e1 ratio of boundary layer thickess to island

radius
f 2V/v
F1, F2, F vertical structures in the boundary layer
k wavenumber
ni ith component of unit normal vector
ne eddy viscosity for momentum
Pe particle Péclet number
r radius in polar coodinates
Sc Schmitt number
u angle in polar coordinates
u fluid velocity in the boundary layer
U fluid velocity above boundary layer
u (1), u (2), . . . Perturbation fluid velocity at the first,

second, . . . , order
UE Eulerian streaming velocity induced by

Reynolds stresses
x, y horizontal coordinates
z vertical coordinate from the sea bed
^X& time average of X over a wave period
X weighted depth average of X across the

boundary layer.

APPENDIX B

The Numerical Scheme

We first split the dispersion tensor Eij into symmetric
Dij and antisymmetric Aij parts and rewrite the governing
equation in the following form:

]C ]C ]C
1 u9 1 y9 1 gC

]t ]x ]y
2 2 2] C ] C ] C

5 D 1 D 1 2D , (B.1)xx yy xy2 2]x ]y ]x]y

where

]A ]D]Dxy xyxxu9 5 U 1 2 2 , (B.2)E1 ]y ]x ]y

]A ]D ]Dxy xy yy
y9 5 U 2 2 2 , (B.3)E2 ]x ]x ]y

]U ]V
g 5 1 . (B.4)

]x ]y

These are then transformed in polar coordinates,

]C ]C ]C
1 u9 1 u9 1 gCr u]t ]r r]u

2 2 2] C ] C ] C
5 D 1 D 1 2D , (B.5)rr uu ur2 2 2]r r ]u r]u]r

with

Dxx 2u9 5 u9 cosu 1 y9 sinu 2 sin ur r

D Dyy xy22 cos u 1 sin2u, (B.6)
r r

u9 5 2u9 sinu 1 y9 cosuu

1
2 (D sin2u 1 D sin2u 1 2D cos2u), (B.7)xx yy xyr

2 2D 5 D cos u 1 D sin u 1 D sin2u, (B.8)rr xx yy xy

2 2D 5 D sin u 1 D cos u 2 D sin2u, (B.9)uu xx yy xy

1
D 5 sin2u(D 2 D ) 1 D cos2u. (B.10)ur yy xx xy2

As the radial variation near the peninsula is expected
to be very rapid, we introduce the stretching: r 5
exp(2pz ) and h 5 u/p so that Eq. (B.5) becomes

]C ]C ]C
1 u 1 u 1 gCz h]T ]z ]h

2 2 2] C ] C ] C
5 D 1 D 1 2D , (B.11)zz hh zh2 2]z ]h ]z]h

where

2u 5 u9s 1 2ps D , u 5 2u9s , (B.12)z r 0 0 rr h u 0

u 5 2u9s , (B.13)h u 0

2 2 2D 5 s D , D 5 4s D , D 5 2s D , (B.14)zz 0 rr hh 0 uu zh 0 ru

and
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TABLE 1B. Dependence of numerical accuracy on density of grids.

Mesh
density 200 3 200 400 3 200

uc 5 458 T 5 2
T 5 4

4.0%
11.8%

0.92%
3.0%

uc 5 1358 T 5 2
T 5 4

5.3%
8.3%

1.3%
2.1%

1
s 5 . (B.15)0 2pr

The alternating direction implicit scheme is uncondi-
tionally stable and allows us to use reasonably large
time steps with second-order accuracy. A second-order
approximation for the normal derivative is employed
for the no-flux boundary condition on the coast.

As a confirmation of numerical accuracy, we check
that total mass is conserved in the nonerosion case:

M 5 M 5 C(x, y) dx dy0 EE
5 C(r, u)r dr duEE

2pj5 C(j, h)e |J| dj dh, (B.16)EE
where the Jacobian determinant is given by

](r, u)
2|J| 5 5 2p r. (B.17)

](z, h)

With time marching, the computed total mass, however,
increases slightly due mainly to the temporal accumu-
lation of numerical errors and the inaccuracy in nu-
merical integration for the total mass. The improvement
of numerical accuracy by denser grids is shown here
where the relative mass increase is shown at a certain
time after an initial release at a particular location.
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