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Abstract. Given a Boolean function f on n-variables, we find a reduced
set of homogeneous linear equations by solving which one can decide
whether there exist annihilators at degree d or not. Using our method
the size of the associated matrix becomes νf × (

∑d
i=0

(
n
i

)
− µf ), where,

νf = |{x|wt(x) > d, f(x) = 1}| and µf = |{x|wt(x) ≤ d, f(x) = 1}|
and the time required to construct the matrix is same as the size of the
matrix. This is a preprocessing step before the exact solution strategy
(to decide on the existence of the annihilators) that requires to solve
the set of homogeneous linear equations (basically to calculate the rank)
and this can be improved when the number of variables and the number
of equations are minimized. As the linear transformation on the input
variables of the Boolean function keeps the degree of the annihilators
invariant, our preprocessing step can be more efficiently applied if one
can find an affine transformation over f(x) to get h(x) = f(Bx + b)
such that µh = |{x|h(x) = 1, wt(x) ≤ d}| is maximized (and in turn νh

is minimized too). We present an efficient heuristic towards this. Our
study also shows for what kind of Boolean functions the asymptotic
reduction in the size of the matrix is possible and when the reduction is
not asymptotic but constant.
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1 Introduction

Results on algebraic attacks have received a lot of attention recently in studying
the security of crypto systems [2, 4, 6, 9, 11–15, 22, 1, 21, 16]. Boolean functions
are important primitives to be used in the crypto systems and in view of the
algebraic attacks, the annihilators of a Boolean function play considerably serious
role [5, 7, 10, 17–19, 23, 24].

Denote the set of all n-variable Boolean functions by Bn. One may refer
to [17] for the detailed definitions related to Boolean functions, e.g., truth table,
algebraic normal form (ANF), algebraic degree (deg), weight (wt), nonlinear-
ity (nl) and Walsh spectrum of a Boolean function. Any Boolean function can



be uniquely represented as a multivariate polynomial over GF (2), called the
algebraic normal form (ANF), as

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai, ai,j , . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree,
deg(f), is the number of variables in the highest order term with non zero co-
efficient. Given f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of
f if f ∗ g = 0. A function f should not be used if f or 1 + f has a low degree
annihilator. It is also known [14, 23] that for any function f or 1 + f must have
an annihilator at the degree dn

2 e. Thus the target of a good design is to use
a function f such that neither f nor 1 + f has an annihilator at a degree less
than dn

2 e. Thus there is a need to construct such functions and the first one in
this direction appeared in [18]. Later symmetric functions with this property has
been presented in [19] followed by [7]. However, all these constructions are not
good in terms of other cryptographic properties.

Thus there is a need to study the Boolean functions, which are rich in terms
of other cryptographic properties, in terms of their annihilators. One has to
find out the annihilators of a given Boolean function for this. Initially a basic
algorithm in finding the annihilators has been proposed in [23, Algorithm 2].
A minor modification of [23, Algorithm 2] has been presented very recently
in [8] to find out relationships for algebraic and fast algebraic attacks. In [7],
there is an efficient algorithm to find the annihilators of symmetric Boolean
functions, but symmetric Boolean functions are not cryptographically promising.
Algorithms using Gröbner bases are also interesting in this area [3], but still
they are not considerably efficient. Recently more efficient algorithms have been
designed in this direction [1, 21]. The algorithm presented in [1] can be used
efficiently to find out relationships for algebraic and fast algebraic attacks. In [1],
matrix triangularization has been exploited nicely to solve the annihilator finding
problem (of degree d for an n-variable function) in O(

(
n
d

)2) time complexity.
In [21] a probabilistic algorithm having time complexity O(nd) has been proposed
where the function is divided to its sub functions recursively and the annihilators
of the sub functions are checked to study the annihilators of the original function.

The main idea in our effort is to reduce the size of the matrix (used to
solve the system of homogeneous linear equations) as far as possible, which has
not yet been studied in a disciplined manner to the best of our knowledge.
We could successfully improve the handling of equations associated with small
weight inputs of the Boolean function. This uses certain structure of the matrix
that we discover here. We start with a matrix Mn,d(g) (see Theorem 1) which
is self inverse and its discovered structure allows to compute the new equations
efficiently by considering the matrix UAr (see Theorem 3 in Section 3). Moreover,
each equation associated with a low weight input point directly provides the value
of an unknown coefficient of the annihilator, which is the key point that allows
to lower the number of unknowns. Further reduction in the size of the matrix



is dependent on getting a proper linear transformation on the input variables of
the Boolean function, which is discussed in Section 4.

One may wonder whether the very recently available strategies in [1, 21] can
be applied after the initial reduction proposed in this paper to get further im-
provements in finding the lowest degree annihilators. The standard Gaussian
reduction technique ([21, Algorithm 1]) is used in the main algorithm [21, Algo-
rithm 2], and in that case our idea of reduction of the matrix size will surely pro-
vide improvement. However, the ideas presented in [1, Algorithm 1, 2] and [21,
Algorithm 3] already exploit the structure of the linear system in an efficient
way. In particular, the algorithms in [1] by themselves deal with the equations of
small weight efficiently. Thus it is not clear whether the reduction of matrix size
proposed by us can be applied to exploit further efficiency from these algorithms.

2 Preliminaries

Consider all the n-variable Boolean functions of degree at most d, i.e., R(n, d),
the Reed-Muller code of order d and length 2n. Any Boolean function can be seen
as a multivariate polynomial over GF (2). Note that R(n, d) is a vector subspace
of the vector space Bn, the set of all n-variable Boolean functions. Now if we
consider the elements of R(n, d) as the multivariate polynomials over GF (2),
then the standard basis is the set of all nonzero monomials of degree ≤ d. That
is, the standard basis is

Sn,d = {xi1 . . . xil
: 1 ≤ l ≤ d and 1 ≤ i1 < i2 < · · · < il ≤ n} ∪ {1},

where the input variables of the Boolean functions are x1, . . . , xn.
The ordering among the monomials is considered in lexicographic ordering

(<l) as usual, i.e., xi1xi2 . . . xik
<l xj1xj2 . . . xjl

if either k < l or k = l and there
is 1 ≤ p ≤ k such that ik = jk, ik−1 = jk−1, . . . , ip+1 = jp+1 and ip < jp. So,
the set Sn,d is a totally ordered set with respect to this lexicographical ordering
(<l). Using this ordering we refer the monomials according their order, i.e., the
k-th monomial as mk, 1 ≤ k ≤

∑d
i=0

(
n
i

)
following the convention ml <l mk if

l < k.

Definition 1. Given n > 0, 0 ≤ d ≤ n, we define a mapping

vn,d : {0, 1}n 7→ {0, 1}
∑d

i=0 (n
i),

such that vn,d(x) = (m1(x),m2(x), . . . ,m∑d
i=0 (n

i)(x)). Here mi(x) is the ith
monomial as in the lexicographical ordering (<l) evaluated at the point x =
(x1, x2, . . . , xn).

To evaluate the value of the t-th coordinate of vn,d(x1, x2, . . . , xn) for 1 ≤
t ≤

∑d
i=0

(
n
i

)
, i.e., [vn,d(x1, . . . , xn)]t, one requires to calculate the value of the

monomial mt (either 0 or 1) at (x1, x2, . . . , xn). Now we define a matrix Mn,d

with respect to a n-variable function f . To define this we need another similar



ordering (<l) over the elements of vector space {0, 1}n. We say for u, v ∈ {0, 1}n,
u <l v if either wt(u) < wt(v) or wt(u) = wt(v) and there is some 1 ≤ p ≤ n
such that un = vn, un−1 = vn−1, . . . , up+1 = vp+1 and up = 0, vp = 1.

Definition 2. Given n > 0, 0 ≤ d ≤ n and an n-variable Boolean function f ,
we define a wt(f)×

∑d
i=0

(
n
i

)
matrix

Mn,d(f) =


vn,d(X1)
vn,d(X2)

...
vn,d(Xwt(f))


where any Xi is an n-bit vector and supp(f) = {X1, X2, . . . , Xwt(f)} and X1 <l

X2 <l · · · <l Xwt(f); supp(f) is the set of inputs for which f outputs 1.

Note that the matrix Mn,d(f) is the transpose of the restricted generator
matrix for Reed-Muller code of length 2n and order d, R(d, n), to the support
of f (see also [9, Page 7]). Any row of the matrix Mn,d(f) corresponding to an
input vector (x1, . . . , xn) is

0 deg 1 deg . . . d deg︷︸︸︷
1

︷ ︸︸ ︷
x1, . . . , xi, . . . , xn . . .

︷ ︸︸ ︷
x1 . . . xd, . . . , xi1 . . . xid

, . . . , xn−d+1 . . . xn .

Each column of the matrix is represented by a specific monomial and each entry
of the column tells whether that monomial is satisfied by the input vector which
identifies the row, i.e., the rows of this matrix correspond to the evaluations of
the monomials having degree at most d on support of f . As already discussed,
here we have one-to-one correspondence from the input vectors x = (x1, . . . , xn)
to the row vectors vn,d(x) of length

∑d
i=0

(
n
i

)
. So, each row is fixed by an input

vector.

2.1 Annihilator of f and rank of the matrix Mn,d(f)

Let f be an n-variable Boolean function. We are interested to find out the lowest
degree annihilators of f . Let g ∈ Bn be an annihilator of f , i.e., f(x1, . . . , xn) ∗
g(x1, . . . , xn) = 0. In terms of truth table, this means that the function f AND g
will be a constant zero function, i.e., for each vector (x1, . . . , xn) ∈ {0, 1}n, the
output of f AND g will be zero. That means,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (1)

Suppose degree of the function g is ≤ d, then the ANF of g is of the form
g(x1, . . . , xn) = a0 +

∑n
i=0 aixi + · · ·+

∑
1≤i1<i2···<id≤n ai1,...,id

xi1 · · ·xid
where

the subscripted a’s are from {0, 1} and not all of them are zero. Following Equa-
tion 1, we get the following wt(f) many homogeneous linear equations

a0 +
n∑

i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

= 0, (2)



considering the input vectors (x1, . . . , xn) ∈ supp(f). This is a system of ho-
mogeneous linear equations on a’s with

∑d
i=0

(
n
i

)
many a’s as variables. The

matrix form of this system of equations is Mn,d(f) Atr = O, where A =
(a0, a1, a2, . . . , an−d+1,...,n), the row vector of coefficients of the monomials which
are ordered according to the lexicographical order <l. Each nonzero solution of
the system of equations formed by Equation 2 gives an annihilator g of degree
≤ d. This is basically the Algorithm 1 presented in [23]. Since the number of solu-
tions of this system of equations are connected to the rank of the matrix Mn,d(f),
it is worth to study the rank and the set of linear independent rows/columns of
matrix Mn,d(f). If the rank of matrix Mn,d(f) is equal to

∑d
i=0

(
n
i

)
(i.e., number

of columns) then the only solution is the zero solution. So, for this case f has
no annihilator of degree ≤ d. This implies that the number of rows ≥ number
of columns, i.e., wt(f) ≥

∑d
i=0

(
n
i

)
which is the Theorem 1 in [17]. If the rank

of matrix is equal to
∑d

i=0

(
n
i

)
− k for k > 0 then the number of linearly inde-

pendent solutions of the system of equations is k which gives k many linearly
independent annihilators of degree ≤ d and 2k − 1 many number of annihilators
of degree ≤ d. However, to implement algebraic attack one needs only linearly
independent annihilators. Hence, finding the degree of lowest degree annihilator
of either f or 1 + f , one can use the following algorithm.

Algorithm 1
for(i = 1 to dn

2 e − 1) {
find the rank r1 of the matrix Mn,i(f);
find the rank r2 of the matrix Mn,i(1 + f);
if min{r1, r2} <

∑i
j=0

(
n
j

)
then output i;

}
output dn

2 e;

Since either f or 1 + f has an annihilator of degree ≤ dn
2 e, we are interested

only to check till i = dn
2 e. This algorithm is equivalent to Algorithm 1 in [23].

The simplest and immediate way to solve the system of these equations or
find out the rank of Mn,d(f),Mn,d(1 + f) is the Gaussian elimination process.
To check the existence or to enumerate the annihilators of degree ≤ dn

2 e for
a balanced function, the complexity is approximately (2n−2)3. Considering this
time complexity, it is not encouraging to check annihilators of a function of 20
variables or more using the presently available computing power. However, given
n and d, the matrix Mn,d(f) has pretty good structure, which we explore in this
paper towards a better algorithm (that is solving the set of homogeneous linear
equations in an efficient way by decreasing the size of the matrix involved).

3 Faster strategy to construct the set of homogeneous
linear equations

In this section we present an efficient strategy to reduce the set of homogeneous
linear equations. First we present a technical result.



Theorem 1. Let g be an n-variable Boolean function defined as g(x) = 1 iff
wt(x) ≤ d for 0 ≤ d ≤ n. Then Mn,d(g)−1 = Mn,d(g), i.e., Mn,d(g) is a self
inverse matrix.

Proof. Suppose F = Mn,d(g)Mn,d(g). Then the i-th row and j-th column entry
of F (denoted by Fi,j) is the scalar product of i-th row and j-th column of
Mn,d(g). Suppose the i-th row is vn,d(x) for x ∈ {0, 1}n having xq1 , . . . , xql

as
1 and others are 0. Further consider that the j-th column is the evaluation of
the monomial xr1 . . . xrk

at the input vectors belonging to the support of g. If
{r1, . . . , rk} 6⊆ {q1, . . . , ql} then Fij = 0. Otherwise, Fi,j =

(
l−k
0

)
+

(
l−k
1

)
+ · · ·+(

l−k
l−k

)
mod 2 = 2l−k mod 2. So, Fi,j = 1 iff {xr1 , . . . , xrk

} = {xq1 , . . . , xql
}. That

implies, Fi,j = 1 iff i = j i.e., F is identity matrix. Hence, Mn,d(g) is its own
inverse. ut

See the following example for the structure of Mn,d(g) when n = 4 and d = 2.

Example 1. Let us present an example of Mn,d(g) for n = 4 and d = 2. We
have {1, x1, x2, x3, x4, x1x2, x1x3, x2x3, x1x4, x2x4, x3x4}, the list of 4-variable
monomials of degree ≤ 2 in ascending order (<l).

Similarly, {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0),
(1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} present the 4 dimensional
vectors of weight ≤ 2 in ascending order (<l). So the matrix

M4,2(g) =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1



One may check that M4,2(g) is self inverse.

Lemma 1. Let A be a nonsingular m×m binary matrix where the row vectors
are denoted as v1, v2, . . . , vm. Let U be a k × m binary matrix, k ≤ m, where
the rows are denoted as u1, u2, . . . , uk. Let W = UA−1, a k ×m binary matrix.
Consider that a matrix A′ is formed from A by replacing the rows vi1 , vi2 , . . . , vik

of A by the vectors u1, u2, . . . , uk. Further consider that a k × k matrix W ′ is
formed by taking the i1-th, i2-th, . . . , ik-th columns of W (out of m columns).
Then A′ is nonsingular iff W ′ is nonsingular.

Proof. Without loss of generality, we can take i1 = 1, i2 = 2, . . . , ik = k. So, the
row vectors of A′ are u1, . . . , uk, vk+1, . . . , vm.

We first prove that if the row vectors of A′ are not linearly independent then
the row vectors of W ′ are also not linearly independent. As the row vectors
of A′ are not linearly independent, we have α1, α2, . . . , αm ∈ {0, 1} (not all
zero) such that

∑k
i=1 αiui +

∑m
i=k+1 αivi = 0. If αi = 0 for all i, 1 ≤ i ≤

k then
∑m

i=k+1 αivi = 0 which implies αi = 0 for all i, k + 1 ≤ i ≤ m as
vk+1, vk+2, . . . , vm are linearly independent. So, all αi’s for 1 ≤ i ≤ k can not be
zero.



Further, we have UA−1 = W , i.e., U = WA, i.e.,
u1

u2

...
uk

 =


w1

w2

...
wk




v1

v2

...
vm

 , i.e., ui = wi


v1

v2

...
vm

 .

Hence,
∑k

i=1 αiui =
∑k

i=1 αiwi


v1

v2

...
vm

 = r


v1

v2

...
vm


where r = (r1, r2, . . . , rm) =

∑k
i=1 αiwi.

If the restricted matrix W ′ were nonsingular, the vector r′ = (r1, r2, . . . , rk)
is non zero as (α1, α2, . . . , αk) is not all zero. Hence,

∑k
i=1 αiui +

∑m
i=k+1 αivi =

0, i.e.,
∑k

i=1 rivi +
∑m

i=k+1(ri + αi)vi = 0. This contradicts that v1, v2, . . . , vm

are linearly independent as r′ = (r1, r2, . . . , rk) is nonzero. Hence W ′ must be
singular. This proves one direction.

On the other direction if the restricted matrix W ′ is singular then there are
β1, β2, . . . , βk not all zero such that

∑k
i=0 βiwi = (0, . . . , 0, sk+1, . . . , sm). Hence,

∑k
i=0 βiui =

∑k
i=1 βiwi


v1

v2

...
vm

 = sk+1vk+1 + · · · + smvm, i.e.,
∑k

i=0 βiui +

∑m
i=k+1 sivi = 0 which says matrix A′ is singular. ut

Following Lemma 1, one can check the nonsingularity of the larger matrix A′

by checking the nonsingularity of the reduced matrix W ′. Thus checking the
nonsingularity of the larger matrix A′ will be more efficient if the computation
of matrix product W = UA−1 can be done efficiently. The self inverse nature
of the matrix Mn,d(g) presented in Theorem 1 helps to achieve this efficiency.
In the rest of this section we will study this in detail. In the following result we
present the Lemma 1 in more general form.

Theorem 2. Let A be a nonsingular m×m binary matrix with m-dimensional
row vectors v1, v2, . . . , vm and U be a k ×m binary matrix with m-dimensional
row vectors u1, u2, . . . , uk. Consider W = UA−1, a k × m matrix. The matrix
A′, formed from A by removing the rows vi1 , vi2 , . . . , vil

(l ≤ m) from A and
adding the rows u1, u2, . . . , uk (k ≥ l), is of rank m iff the rank of restricted k× l
matrix W ′ including only the i1-th, i2-th, . . . , il-th columns of W is l.

Proof. Here, the rank of matrix W ′ is l. So, there are l many rows of W ′, say
w′

p1
, . . . , w′

pl
which are linearly independent. So, following the Lemma 1 we have

the matrix A′′ formed by replacing the rows vi1 , . . . , vil
of A by up1 , . . . , upl

is
nonsingular, i.e., rank is m. Hence the matrix A′ where some more rows are
added to A′′ has rank m. The other direction can also be shown similar to the
proof of the other direction in Lemma 1. ut



Now using Theorem 1 and Theorem 2, we describe a faster algorithm to
check the existence of annihilators of certain degree d of a Boolean function
f . Suppose g be the Boolean function described in Theorem 1, i.e., supp(g) =
{x|0 ≤ wt(x) ≤ d}. In Theorem 1, we have already shown that Mn,d(g) is
nonsingular matrix (in fact it is self inverse). Let {x|wt(x) ≤ d and f(x) =
0} = {x1, x2, . . . , xl} and {x|wt(x) > d and f(x) = 1} = {y1, y2, . . . , yk}. Then
we consider Mn,d(f) as A, vn,d(x1), . . . , vn,d(xl) as vi1 , . . . , vil

and vn,d(y1), . . . ,
vn,d(yk) as u1, . . . , uk. Then following Theorem 2 we can ensure whether Mn,d(f)
is nonsingular. If it is nonsingular, then there is no annihilator of degree ≤ d,
else there are annihilator(s). We may write this in a more concrete form as the
following corollary to Theorem 2.

Corollary 1. Let f be an n-variable Boolean function. Let Ar be the restricted
matrix of A = Mn,d(g), by taking the columns corresponding to the monomials
xi1xi2 . . . xil

such that l ≤ d and f(x) = 0 when xi1 = 1, xi2 = 1, . . . , xil
= 1 and

rest of the input variables are 0. Further U =


vn,d(y1)
vn,d(y2)

...
vn,d(yk)

, where {y1, . . . , yk} =

{x|wt(x) > d and f(x) = 1}. If rank of UAr is l then there is no annihilator of
degree ≤ d, else there are annihilator(s) of degree ≤ d.

Proof. As per Theorem 2, here W = UA−1 = UA, since A is self inverse,
following Theorem 1 and hence W ′ is basically UAr. Thus the proof follows. ut

Now we can use the following technique for fast computation of the matrix
multiplication UAr. For this we first present a technical result and its proof is
similar in the line of the proof of Theorem 1.

Proposition 1. Consider g as in Theorem 1. Let y ∈ {0, 1}n such that i1, i2,
. . . , ip-th places are 1 and other places are 0. Consider the j-th monomial mj =
xj1xj2 . . . xjq according the ordering <l. Then the j-th entry of vn,d(y)Mn,d(g)
is 0 if {j1, . . . , jq} 6⊆ {i1, . . . , ip} else the value is

∑d−q
i=0

(
p−q

i

)
mod 2.

Following Proposition 1, we can get each row of U as some vn,d(y) and each
column of Ar as mj and construct the matrix UAr. One can precompute the
sums

∑d−q
i=0

(
p−q

i

)
mod 2 for d+1 ≤ p ≤ n and 0 ≤ q ≤ d, and store them and the

total complexity for calculating them is O(d2(n − d)). These sums will be used
to fill up the matrix UAr which is an l× k matrix according to Corollary 1. Let
us denote µf = |{x|wt(x) ≤ d, f(x) = 1}| and νf = |{x|wt(x) > d, f(x) = 1}|.
Then wt(f) = µf +νf and the matrix UAr is of dimension νf ×(

∑d
i=0

(
n
i

)
−µf ).

Clearly O(d2(n − d)) can be neglected with respect to νf × (
∑d

i=0

(
n
i

)
− µf ).

Thus we have the following result.

Theorem 3. Consider U and Ar as in Corollary 1. The time (and also space)
complexity to construct the matrix UAr is of the order of νf × (

∑d
i=0

(
n
i

)
−

µf ). Further checking the rank of UAr (as given in Corollary 1) one can decide
whether f has an annihilator at degree d or not.



In fact, to check the rank of the matrix UAr using Gaussian elimination pro-
cess, we need not store the νf many rows at the same time. One can add one row
(following the calculation to compute a row of the matrix given in Proposition 1)
at a time incrementally to the previously stored linearly independent rows by
checking whether the present row is linearly independent with respect to the
already stored rows. If the current row is linearly independent with the existing
ones, then we do row operations and add the new row to the previously stored
matrix. Otherwise we reject the new row. Hence, our matrix size never crosses
the size (

∑d
i=0

(
n
i

)
− µf )× (

∑d
i=0

(
n
i

)
− µf ).

If νf (the number of rows) is less than (
∑d

i=0

(
n
i

)
− µf ) (the number of

variables), then there will be nontrivial solutions and we can directly say that
the annihilators exist. Thus we always need to concentrate on the case νf ≥
(
∑d

i=0

(
n
i

)
−µf ), where the matrix size (

∑d
i=0

(
n
i

)
−µf )×(

∑d
i=0

(
n
i

)
−µf ) provides

a further reduction than the matrix size νf × (
∑d

i=0

(
n
i

)
− µf ) and one can save

more space. This will be very helpful when one tries to check the annihilators of
small degree d.

Refer to Subsection 3.1 below for detailed description that this algorithm
provides asymptotic improvement than [23] in terms of constructing this reduced
set of homogeneous linear equations. In terms of the overall algorithm to find the
annihilators, our algorithm works around eight times further than [23] in general.
Using our strategy to find the reduced matrix first and then using the standard
Gaussian elimination technique, we could find the annihilators of any random
balanced Boolean functions on 16 variables in around 2 hours in a Pentium 4
personal computer with 1 GB RAM. Note that, the very recently known efficient
algorithms [1, 21] can work till 20 variables.

3.1 Comparision with Meier et al [23] algorithm

Here we compare the time and space complexity of our strategy with [23, Al-
gorithm 2]. In paper [23], Algorithm 2 is probablistic. In this draft we study
the time and space complexity of the algorithm along with it’s determinstic ver-
sion. Using these algorithms we check whether there exist annihilators of degree
≤ d of an n-variable function f . As we have already described, ANF of any
n-variable function g of degree d is of the form g(x1, . . . , xn) = a0 +

∑n
i=0 aixi +

· · ·+
∑

1≤i1<i2···<id≤n ai1,...,id
xi1 · · ·xid

. First we present the exact probabilistic
algorithm [23, Algorithm 2].

Algorithm 2

1. Initialize weight w = 0.
2. For all x’s of weight w with f(x) = 1, substitute each x in g(x) = 0 to derive

a linear equation on the coefficients of g, with a single coefficient of weight
w. Use this equation to express this coefficient iteratively by coefficients of
lower weight.

3. If w < d, increment w by 1 and go to step 2.



4. Choose random arguments x of arbitrary weight such that f(x) = 1 and sub-
stitute in g(x) = 0, until there are same number of equations as unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of
degree d, but if there is a solution then it is not clear whether there is an
annihilator of degree d or not.

Next we present the deterministic version of the original probabilistic algo-
rithm [23, Algorithm 2].

Algorithm 3

1. Initialize weight w = 0.
2. For all x’s of weight w with f(x) = 1, substitute each x in g(x) = 0 to derive

a linear equation in the coefficients of g, with a single coefficient of weight
w. Use this equation to express this coefficient iteratively by coefficients of
lower weight.

3. If w < d, increment w by 1 and go to step 2.
4. Substitute x such that wt(x) > d and f(x) = 1 in g(x) = 0 to get linear

equation in the coefficient of g.
5. Solve the linear system. Output no annihilator of degree d iff there is no non

zero solution.

Since first three steps of both algorithms are same, we initially study the time
and space complexity of both the algorithms for first three steps for a randomly
choosen balanced function f . In step 2, we apply x, such that weight of x ≤ d
and f(x) = 1, in g(x) and hence we get a linear equation in the coefficient of g
such that a single coefficient of that weight is expressed as linear combination of
its lower weight coefficients. Here we consider a particular w for each iteration.
As f is random and balanced, one can expect that there are 1

2

(
n
w

)
many input

vectors of weight w in set supp(f). For each x = (x1, . . . , xn) ∈ supp(f) where
xi1 , . . . , xiw are 1 and others are 0 of weight w, we will get linear equation of the
form

ai1,...,iw = a0 +
w∑

j=1

aij + · · ·+
∑

{k1,...,kw−1}⊂{i1,...iw}

ak1,...,kw−1 . (3)

To store one equation we need
∑w

i=0

(
n
i

)
many memory bits (some places will

be 0, some will be 1). There are
∑w−1

i=0

(
w
i

)
many coefficients in the right hand

side of the Equation 3. As f is random, one can expect that half of them can
be eliminated using the equations obtained by lower weight input support vec-
tors. So,

∑w
i=0

(
n
i

)
+ 1

2

∑w−1
i=0 (

(
w
i

) ∑i−1
j=0

(
n
j

)
) order of computation is required to

establish an equation. Here w varies from 0 to d and there are approximately
1
2

∑d
w=0

(
n
w

)
many support vectors of weight ≤ d. Hence at the starting of step

4 the space complexity is S1 = 1
2

∑d
w=0(

(
n
w

) ∑w
i=0

(
n
i

)
) and time complexity is

T1 = 1
2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

) ∑i−1
j=0

(
n
j

)
)).

Now we study the time and space complexity for steps 4 and 5 in both
probabilistic and deterministic version. To represent each equation for the system
of equation one needs

∑d
w=0

(
n
w

)
memory bits.



First we consider the probabilistic one. For probabilistic case one has to
choose appoximately 1

2

∑d
w=0

(
n
w

)
many support input vectors of weight > d.

Hence each linear equation obtained from these vectors has atleast
∑d

i=0

(
d+1

i

)
many coefficients of g and half of them can be eliminated using the equa-
tions obtained in previous steps. So, to get each equation one needs atleast∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1

i

) ∑i−1
j=0

(
n
j

)
) computations. Hence the space complex-

ity during 4th step is SP2 ≥ 1
2 (

∑d
w=0

(
n
w

)
)2 and time complexity is TP2 ≥

1
2

∑d
w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1

i

) ∑i−1
j=0

(
n
j

)
)). Finally, to generate system

of homogenuous linear equations one requires
SP = S1+SP2 ≥ 1

2

∑d
w=0(

(
n
w

) ∑w
i=0

(
n
i

)
)+ 1

2 (
∑d

w=0

(
n
w

)
)2 memory bits and

TP = T1 + TP2 ≥ 1
2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

) ∑i−1
j=0

(
n
j

)
))

+ 1
2

∑d
w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1

i

) ∑i−1
j=0

(
n
j

)
)) computations. Then in

step 5, we have to solve 1
2

∑d
w=0

(
n
w

)
many linear equations with same number of

variables. To solve this system one needs TP3 = ( 1
2

∑d
w=0

(
n
w

)
)3 computations

using the Guassian elimination technique.
Now we study space and time complexity for deterministic one. Since f is

balanced, there are approximately 2n−1 − 1
2

∑d
w=0

(
n
w

)
= 1

2

∑n
w=d+1

(
n
w

)
many

support vectors having weight > d and these many are considered to find out
equations. Hence each linear equation obtained from these vectors of weight
w > d contains

∑d
i=0

(
w
i

)
many coefficients of g and half of them can be elimi-

nated using the equations obtained in steps 1, 2 and 3. To get this equation one
needs

∑d
i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
) computations. Hence the total space

complexity during 4th step is SD2 = 1
4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
d

)
) and time com-

plexity is TD2 = 1
2

∑n
w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
). Finally, to

generate homogenuous linear equations one needs
SD = S1+SD2 = 1

2

∑d
w=0(

(
n
w

) ∑w
i=0

(
n
i

)
)+ 1

4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
d

)
) mem-

ory bits and
TD = T1 + TD2 = 1

2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

) ∑i−1
j=0

(
n
j

)
))

+ 1
2

∑n
w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
) computations. Further, in

step 5, we have to solve 1
2

∑n
w=d+1

(
n
w

)
many linear equations with 1

2

∑d
w=0

(
n
w

)
number of variables. To solve this system one needs TD3 = ( 1

2

∑n
w=d+1

(
n
w

)
)3

computations.
The system of equations generated by our strategy as well as Meier et al [23]

algorithms are same. So, it takes same complexities to solve them. Only difference
is during generation of the system of equations. In the following table we show
the complexities for both algorithms for generating the system of equations.

4 Further reduction in matrix size applying linear
transformation over the input variables of the function

To check for the annihilators, we need to compute the rank of the matrix UAr.
Following Theorem 3, it is clear that the size of the matrix UAr will decrease



Space Time

Meier’s 1
2

∑d
w=0(

(
n
w

) ∑w
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(
n
i

)
) 1

2
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(
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)
(
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(
n
i

)
+ 1
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(
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algorithm + 1
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(
n
w

)
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(
n
w

)
(
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(
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w

)
+ 1

2
∑d
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(
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)
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Our algorithm 1
4 (

∑d
w=0

(
n
w

)
)2 1

4 (
∑d

w=0

(
n
w

)
)2

Table 1. Time and Space complexity comparision of Probabilistic algorithms to gen-
erate equations.
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Table 2. Time and Space complexity comparision of Deterministic algorithms to gen-
erate equations.

if µf increases and νf decreases. Let B be an n × n nonsingular binary matrix
and b be an n-bit vector. The function f(x) has an annihilator at degree d iff
f(Bx + b) has an annihilator at degree d. Thus one will try to get the affine
transformation on the input variables of f(x) to get h(x) = f(Bx+ b) such that
|{x|h(x) = 1, wt(x) ≤ d}| is maximized. This is because in this case µh will be
maximized and νh will be minimized and hence the dimension of the matrix
UAr, i.e., νf × (

∑d
i=0

(
n
i

)
−µf ) will be minimized. This will indeed decrease the

complexity at the construction step (discussed in the previous section). More
importantly, it will decrease the complexity to solve the system of homogeneous
linear equations.

See the following example that explains the efficiency for a 5-variable func-
tion.

Example 2. We present an example for this purpose. Consider the 5-variable
Boolean function f constructed using the method presented in [18] such that
neither f nor 1+f has an annihilator at a degree < 3. The standard truth table
representation of the function is 01010110010101100101011001101001, i.e., the
outputs are corresponding to the inputs which are of increasing value. One can
check that |{x ∈ {0, 1}5 | f(x) = 1 & wt(x) < 3}| = 6. Now if we consider the

function h(x) = f(Bx+b) such that B =


1 1 1 0 1
1 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0

, and b = {1, 1, 0, 0, 1}, then

|{x ∈ {0, 1}5 | h(x) = 1 & wt(x) < 3}| = 16 and one can immediately conclude
(from the results in [19]) that neither h nor 1+h has an annihilator of degree < 3.
This is an example where after finding the affine transformation there is even no
need for the solution step at all. For the function f , here h(x) = f(Bx + b) such
that |{x|h(x) = 1, wt(x) ≤ d}| is maximized.



We also present an example for a sub optimal case. In this case we con-

sider B =


1 0 1 0 0
1 1 0 0 0
1 1 1 0 1
0 0 0 1 1
0 1 1 1 0

, and b an all zero vector, then |{x ∈ {0, 1}5 | h(x) =

1 & wt(x) < 3}| = 14. Thus the dimension of the matrix UAr becomes 2 × 2
as νf = 2 and

∑d
i=0

(
n
i

)
− µf = 2. Thus one needs to check the rank of a 2× 2

matrix only.

Now the question is how to find such an affine transformation (for the optimal
or even for sub optimal cases) efficiently.

For exhaustive search to get the optimal affine transform one needs to check
f(Bx + b) for all n×n nonsingular binary matrices B and n bit vectors b. Since
there are

∏n−1
i=0 (2n − 2i) many nonsingular binary matrices and 2n many n bit

vectors, one needs to check 2n
∏n−1

i=0 (2n−2i) many cases for an exhaustive search.
As weight of the input vectors are invariant under permutation of the arguments,
checking for only one nonsingular matrix from the set of all nonsingular matrices
whose rows are equivalent under certain permutation will suffice. Hence the
exact number of search options is 1

n!2
n

∏n−1
i=0 (2n − 2i). One can check for n× n

nonsingular binary matrices B where rowi < rowj for i < j (rowi is the decimal
value of binary pattern of ith row). It is clear that the search is infeasible for
n ≥ 8.

Now we present a heuristic towards this. Our aim is to find out an affine
transformation h(x) of f(x), i.e., h(x) = f(Bx + b), which maximizes the value
of µh. This means the weight of the most of the input vectors having weight
≤ d should be in supp(h). So we attempt to get an affine transformation for a
Boolean function f such that the transformation increases the probability that
an input vector, having output 1, will be translated to a low weight input vector.

Consider h(V x + v) = f(x), where V is an n × n binary matrix and v =
(v1, v2, . . . , vn) ∈ {0, 1}n. Suppose r1, r2, . . . , rn ∈ {0, 1}n are the row vectors
of the transformation V . By V x + v = y we mean V xtr + v = ytr, where
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ {0, 1}n. Given an x, we find a y by
this transformation and then h(y) is assigned to the value of f(x). If f(x) = 1,
we like that the corresponding y = V x + v should be of low weight. The chance
of (y1, y2, . . . , yn) getting low weight increases if the probability of yi = 0, 1 ≤
i ≤ n is increased. That means the probability of ri · (x1, x2, . . . , xn) + vi = 0
for 1 ≤ i ≤ n needs to be increased. Hence we will like to choose a linearly
independent set ri ∈ {0, 1}n, 1 ≤ i ≤ n and v ∈ {0, 1}n such that the probability
ri · (x1, x2, . . . , xn) + bi = 0, 1 ≤ i ≤ n is high when (x1, x2, . . . , xn) ∈ supp(f).
Since we use the relations h(V x + v) = f(x), and h(x) = f(Bx + b), that means
B = V −1 and b = V −1v.

The heuristic is presented below. By bin[i] we denote the n-bit binary repre-
sentation of the integer i.

Heuristic 1



1. loop = 0; max = |{x|f(x) = 1, wt(x) ≤ d}|;
2. For (i = 1; i < 2n; i + +) {

(a) t = |{x = (x1, x2, . . . , xn) ∈ supp(f)|bin[i] · x = 0}|
(b) if t ≥ wt(f)

2 , val[i] = t and ai = 0 else val[i] = wt(f)− t and ai = 1.
}

3. Arrange the triplets (bin[i], ai, val[i]) in descending order of val[i].
4. Choose suitable n many triplets (rj , vj , kj) for 1 ≤ j ≤ n such that rjs are

linearly independent and kj’s are high.
5. Construct the nonsingular matrix V taking rj , 1 ≤ j ≤ n as j-th row and

v = (v1, v2, . . . , vn).
6. Increment loop by 1; while (loop < maxval)

(a) B = V −1, b = V −1v.
(b) if max < |{x|f(Bx + b) = 1, wt(x) ≤ d}| replace f(x) by f(Bx + b) and

update max by |{x|f(Bx + b) = 1, wt(x) ≤ d}|.
(c) Go to step 2.

The time complexity of this heuristic is (maxval × n22n). See the follow-
ing example, where we trace Heuristic 1 for the 5-variable function f given in
Example 2.

Example 3. We have f = 01010110010101100101011001101001 and check that
|{x ∈ {0, 1}5 | f(x) = 1 & wt(x) ≤ 2}| = 6. In step 2, we get (val[i], ai) for
1 ≤ i ≤ 31 as 1 : (11, 1), 2 : (8, 1), 3 : (11, 1), 4 : (8, 1), 5 : (11, 1), 6 : (8, 1),
7 : (9, 0), 8 : (8, 1), 9 : (9, 1), 10 : (8, 1), 11 : (9, 1), 12 : (8, 1), 13 : (9, 1),
14 : (8, 1), 15 : (11, 0), 16 : (8, 1), 17 : (9, 1), 18 : (8, 1), 19 : (9, 1), 20 : (8, 1),
21 : (9, 1), 22 : (8, 1), 23 : (11, 0), 24 : (8, 1), 25 : (9, 0), 26 : (8, 1), 27 : (9, 0),
28 : (8, 1), 29 : (9, 0), 30 : (8, 1), 31 : (11, 1). Then after ordering according the
value of val[i], we choose the row of matrix V as the 5-bit binary expansion
of 1, 3, 5, 15 and 7 with frequency values of 0’s as 11, 11, 11, 11, 9 respectively
and v = (a1, a3, a5, a15, a7) = (1, 1, 1, 1, 0). Here the matrix V is a nonsingular
matrix. The new function is g = f(Bx + b), where B = V −1, b = V −1v and one
can check that |{x ∈ {0, 1}5 | g(x) = 1 & wt(x) ≤ 2}| = 16.

Experiments with this heuristic on different Boolean functions provide very
positive results. First of all we have considered the functions which are random
affine transformations g(x) of the function [19], fs(x) = 1 for wt(x) ≤ bn−1

2 c and
fs(x) = 0 for wt(x) ≥ bn+1

2 c, which has no annihilator having degree ≤ bn−1
2 c.

This experimentation has been done for n = 5 to 16. For all the cases running
Heuristic 1 on g(x) we could go back to fs(x). Then we have randomly changed
2ζn bits on the upper half of fs(x) (0.5 ≤ ζ ≤ 0.8 at steps of 0.1) to get f ′s(x) and
then put random transformations on f ′s(x) to get g(x). Running Heuristic 1, we
could also go back to f ′s(x) easily. For experiments we have taken maxval = 20.

The important issue is exactly when this matrix size is asymptotically re-
duced than the trivial matrix size wt(f) ×

∑d
i=0

(
n
i

)
if one writes down the

equations by looking at the truth table of the function only. This happens only
when µf is very close to

∑d
i=0

(
n
i

)
. Let

∑d
i=0

(
n
i

)
− µf ≤ 2ζn, where ζ is a con-

stant such that 0 < ζ < 1. In that case the matrix size will be less than or equal



to (wt(f) + 2ζn −
∑d

i=0

(
n
i

)
)× 2ζn. When d = bn

2 c and n odd,
∑d

i=0

(
n
i

)
= 2n−1.

Thus for a balanced function, the size of the matrix becomes as low as 2ζn×2ζn.
We summarize the result as follows.

Theorem 4. Predetermine a constant ζ, such that 0 < ζ < 1. Consider any
Boolean function f(x) ∈ Bn for which there exist a nonsingular binary matrix B

and an n-bit vector b such that
∑d

i=0

(
n
i

)
−|{x|f(Bx+b) = 1, wt(x) ≤ d}| ≤ 2ζn.

If B and b are known, then the size of the matrix UAr will be less than or equal
to (wt(f) + 2ζn −

∑d
i=0

(
n
i

)
) × 2ζn which is asymptotically reduced in size than

wt(f)×
∑d

i=0

(
n
i

)
.

That B, b can be known is quite likely from the experimental results available
running Heuristic 1.

Next we have run our heuristics on randomly chosen balanced functions. The
number of inputs up to weight d for a Boolean function is

∑d
i=0

(
n
i

)
. Thus for a

randomly chosen balanced function, it is expected that there will be 1
2

∑d
i=0

(
n
i

)
many inputs up to weight d for which the outputs are 1. Below we present
the improvement (on an average of 100 experiments in each case) we got after
running Heuristic 1 with maxval = 20 for n = 12 to 16.

n 12 13 14 15 16
d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7∑d

i=0

(
n
i

)
299 794 1586 1093 2380 4096 1471 3473 6476 4944 9949 16384 6885 14893 26333

d 1
2

∑d
i=0

(
n
i

)
e 149 397 793 541 1190 2048 735 1736 3238 2472 4974 8192 3442 7446 13166

Heuristic Value 228 535 964 717 1438 2322 957 2051 3648 2917 5525 8811 3995 8194 14114

Table 3. Efficiency of Heuristic 1 on random balanced functions.

It should be noted that after running our heuristic on random balanced
functions, the improvement is not extremely significant. There are improvements
as we find that the the values are significantly more than 1

2

∑d
i=0

(
n
i

)
(making

our algorithm efficient), but the value is not very close to
∑d

i=0

(
n
i

)
. This is not

a problem with the efficiency of the heuristic, but with the inherent property of
a random Boolean function that there may not be an affine transformation at
all on f(x) such that |{x|f(Bx + b) = 1, wt(x) ≤ d}| is very high. In fact we can
show that for highly nonlinear functions f(x), the increment from |{x|f(x) =
1, wt(x) ≤ d}| to |{x|f(Bx + b) = 1, wt(x) ≤ d}| may not be significant for any
B, b. The reason for this is as follows.

Proposition 2. Let f ∈ Bn be a balanced function (n odd) having nonlinearity
nl(f) = 2n−1 − 2

n−1
2 . Then for any nonsingular n × n matrix B and any n-bit

vector b, 2n−1 − |{x|f(Bx + b) = 1, wt(x) ≤ n−1
2 }| ≥ 1

2

(n−1
n−1

2

)
− 2

n−1
2 −1.

Proof. Let f ∈ Bn be a balanced function (n odd) having nonlinearity nl(f) =
2n−1 − 2

n−1
2 . Let g ∈ Bn be the function such that g(x) = 1 for wt(x) ≤ n−1

2 .
By [19, Theorem 3], nl(g) = 2n−1 −

(n−1
n−1

2

)
. Now we like to find out a function



h(x) = f(Bx + b) such that |{x|h(x) = 1, wt(x) ≤ n−1
2 }| is high. Consider the

value T = |supp(g) ∩ supp(h)|, i.e., T = |{x : h(x) = 1 & wt(x) ≤ n−1
2 }|.

Without loss of generality consider T ≥ 2n−2. Hence, d(h, g) = 2(2n−1 − T ) =
2n−2T . Now, nl(f) = nl(h) ≤ nl(g)+d(h, g) = (2n−1−

(n−1
n−1

2

)
)+2n−2T . Thus,

2n−1 − 2
n−1

2 ≤ (2n−1 −
(n−1

n−1
2

)
) + 2n − 2T , i.e., 2n−1 − T ≥ 1

2

(n−1
n−1

2

)
− 2

n−1
2 −1. ut

Thus if one predetermines a ζ, then for a large n we may not satisfy the con-
dition that

∑n−1
2

i=0

(
n
i

)
− |{x|f(Bx + b) = 1, wt(x) ≤ d}| ≤ 2ζn. In this direction

we present the following general result where the constraint of nonlinearity is
removed.

Theorem 5. Suppose f ∈ Bn be a randomly chosen balanced function. Then
the probability to get an affine transformation such that

|{x|f(Bx + b) = 1, wt(x) ≤ bn− 1
2

c}| >
bn−1

2 c∑
i=0

(
n

i

)
− k is

1. less than
(n+1)2n ∑k−1

i=0 (2n−1

i )
2

( 2n

2n−1) for n odd.

2. less than
(n+1)2n ∑k−1

i=0 (
∑ n

2 −1
j=0 (n

j)
i

)(
2n−

∑ n
2 −1

j=0 (n
j)

i+ 1
2 (n

n
2
) )

( 2n

2n−1) for n even.

Proof. First we prove it for n odd. The number of balanced functions h ∈ Bn

such that |{x|h(x) = 1, wt(x) ≤ n−1
2 }| > 2n−1 − k is

∑k−1
i=0

(
2n−1

i

)2
(consider

the upper and lower half in the truth table of the function). So, there will be at

most
∑k−1

i=0

(
2n−1

i

)2
many affinely invariant classes of such functions. Further the

total number of balanced function is
(

2n

2n−1

)
. Hence the total number of affinely

invariant classes of balanced function is ≥ ( 2n

2n−1)
2n(2n−1)(2n−21)...(2n−2n−1) >

( 2n

2n−1)
(n+1)2n .

Hence the probability of a randomly chosen balanced function will be function

type h is bounded by
(n+1)2n ∑k−1

i=0 (2n−1

i )
2

( 2n

2n−1) . Similarly, the case for n even can be

proved. ut

If one takes k ≤ 2
3
4 n, then it can be checked easily that the probability de-

creases fast towards zero as n increases. Thus for a random balanced function f ,
the probability of getting an affine transformation (which generates the function

h from f) such that |{x|f(Bx + b) = 1, wt(x) ≤ bn−1
2 c}| >

∑bn−1
2 c

i=0

(
n
i

)
− 2

3
4 n is

almost improbable.
Thus when one randomly chosen balanced function is considered, using the

strategy of considering the function after affine transformation, one can indeed
reduce the matrix size by constant factor, but the reduction may not be sig-
nificant in asymptotic terms when the annihilators at the degree of bn−1

2 c are
considered for large n.



5 Conclusion

In this paper we study how to reduce the matrix size which is involved in find-
ing the annihilators of a Boolean function. Our results show that considerable
reduction in the size of the matrix is achievable. We identify the classes where
it provides asymptotic improvement. We also note that for randomly chosen
balanced functions, the improvement is rather constant than asymptotic. The
reduction in matrix size helps in running the actual annihilator finding steps
by Gaussian elimination method. Though our method is less efficient in general
than the recently known efficient algorithms [1, 21] to find the annihilators, this
work helps in theoretically understanding the structure of the matrix involved.

Acknowledgment: We like to acknowledge one of the anonymous reviewers for
pointing out some problems in Heuristic 1 in the submitted version of this paper;
this is corrected in this final version.
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