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ABSTRACT

Regions of negative vorticity are observed to trap and amplify near-inertial internal waves, which are sources
of turbulent mixing 10–100 times higher than typically found in the stratified ocean interior. Because these
regions are of finite lateral extent, trapped waves will not form a continuum but be quantized in modes. A model
for the radial structure of near-inertial azimuthal modes in an axisymmetric vortex is described in order to
explain intense near-inertial motions observed in the cores of a Gulf Stream warm-core ring and a vortex cap
above Fieberling Seamount. Observed signals exhibit little variability of the rectilinear phase f 5 arctan(y /u)
in the core and evanesce rapidly outside the swirl velocity maximum, where u is the zonal velocity and y the
meridional velocity. The authors focus on azimuthal mode n 5 21 (propagating clockwise around the vortex)
and the gravest radial mode (no zero crossing) that appears to dominate observations. Model solutions resemble
Bessel functions inside the velocity maximum and modified Bessel function decay outside, consistent with
observations and solutions previously found by Kunze et al. using a less complete model. The improved model
supports their conclusions concerning radial wavelengths, vertical group velocities, and energy fluxes for trapped
waves.

1. Introduction

Relative vorticity z associated with rectilinear geo-
strophic currents modulates the lower bound of the inter-
nal-wave frequency band to an effective Coriolis frequen-
cy, about f 1 z/2 (Healy and LeBlond 1969; Mooers 1975;
Kunze 1985; Young and Ben Jelloul 1997), where f is the
planetary Coriolis frequency. Magaard (1968) was first to
note that meridionally sheared zonal flow U(y) can shift
the turning latitude for a given frequency. In regions of
anticyclonic vorticity (z , 0), the internal waveband is
broadened, allowing near-inertial waves with intrinsic fre-
quencies below the planetary Coriolis frequency f. Be-
cause negative vorticity regions are of finite lateral extent,
trapped waves will not form a continuum but will be quan-
tized in discrete horizontal modes.

In this note, we describe gravest radial mode solutions
for near-inertial waves trapped in a steady axisymmetric
anticyclonic vortex. Because of the axisymmetric geom-
etry, azimuthal and radial wavenumbers will be quantized
while vertical wavenumber can be continuous. In an ax-
isymmetric vortex, we find trapped modes in the frequency
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band f 1 z , vi , f 1 z/2 in contrast to the f 1 z/2
, vi , f trapping band found in rectilinear flow (Kunze
1985).

This model is an attempt to explain the properties of
intense near-inertial motions observed in the negative vor-
ticity cores of a vortex cap found atop Fieberling Seamount
(Kunze and Toole 1997) and a Gulf Stream warm-core
ring (Kunze et al. 1995). The seamount measurements
were intended to describe the response of an isolated peak
to ambient motions. They revealed a 200-m-thick vortex
of core vorticity 20.5 f above the summit within which
there was turbulence 100 times more intense than typically
found in the main pycnocline, and slightly subinertial mo-
tions. This range of time and space scales was driven by
the barotropic diurnal tides (see also Eriksen 1991; Brink
1995). The warm ring measurements were designed to
evaluate turbulence and mean-flow energy sinks for near-
inertial motions at a near-inertial critical layer. Intensified
near-inertial motions found at the base of the ring’s core
were probably generated by the passage of atmospheric
storms (D’Asaro 1985).

Inside the cores of these vortices, observed near-inertial
motions exhibited little variability in rectilinear horizontal
phase f 5 arctan(y/u), where u and y are the zonal and
meridional near-inertial velocities. Outside the core, they
evanesced rapidly. An absence of rectilinear phase pro-
gression is also found in numerical simulations of impul-
sively wind-forced warm-core rings (J. F. Price 1997, per-
sonal communication). Lack of rectilinear phase progres-
sion is not consistent with propagating plane waves. It can,
however, be interpreted as azimuthal propagation in cy-
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TABLE 1. Background, ring, and near-inertial wave properties ob-
served in the WRINCL Gulf Stream warm-core ring (Kunze et al.
1995).

N
f
r0

H
RL

core z0

lz

kz

(4.5–5.1) 3 1023 s21

9.4 3 1025 rad s21

43 3 103 m
700 m
0.6–0.8
2(0.38–0.94) 3 1025 s21

96–200 m
(3.1–6.5) 3 1022 m21

FIG. 1. Model vortex radial structure (9)–(11). Panels show azi-
muthal velocity Vu (a), vorticity z 5 Vu/r 1 ]Vu/]r (b), and flow
curvature ]2Vu/]r2 (c). Model vorticity z (b) is uniform in the core
(r , r0) and vanishes outside the velocity maximum (r . r0).

TABLE 2. Background, vortex, and near-inertial wave properties
observed in the vortex cap above Fieberling Seamount (Kunze and
Toole 1997).

N
f
r0

H
RL

core z0

lz

kz

vE

core vi

r1 5 N/vikz

(4–5) 3 1023 rad s21

8.0 3 1025 rad s21

(5–7) 3 103 m
200 m
2.0–6.5
2(3.6–4.2) 3 1025 s21

170–220 m
(2.9–3.7) 3 1022 rad m21

K1 5 0.933f 5 7.5 3 1025 s21

5.5 3 1025 s21

3.3 3 103 m

lindrical coordinates since azimuthally invariant Cartesian
u and y imply radial velocity ur 5 u cosu 1 y sinu and
azimuthal velocity yu 5 y cosu 2 u sinu, where u is the
azimuthal angle.

A model for the gravest radial mode structure of a vor-
tex-trapped near-inertial internal wave was previously pre-
sented in the appendix of Kunze et al. (1995). However,
there are a number of errors in their approach. These in-
clude (i) neglect of regular singularities in the coefficients
and (ii) neglect of interactions with mean-flow confluence
Vu/r 2 ]Vu/]r outside the velocity maximum. Kunze et
al. (1995) also incorrectly matched radial velocity ur and
its derivative ]ur/]r across the velocity maximum rather
than the more appropriate ur and pressure p. In this note,
we correct these errors. For the oceanic range of parameter
values (Tables 1 and 2), the solutions resemble the Kunze
et al. (1995) predictions, that is, Bessel functions inside
the core and decaying modified Bessel functions outside.

The equation of motion for radially trapped near-inertial
modes in an axisymmetric anticyclonic vortex is formu-
lated in section 2. A model vortex described in section 3
is used to specify the equations further in section 4. Then,
in section 5, we seek the gravest radial mode solution for
this vortex. In section 6, its structure is compared with
observations and the approximate model in the appendix
of Kunze et al. (1995) and the trapped-wave dispersion
relation is described.

2. Equations of motion

Following Kunze et al. (1995), consider near-inertial
(hydrostatic, v K N) internal oscillations in a tall steady

axisymmetric vortex with azimuthal velocity Vu(r, z). The
inertial oscillations are assumed to have a wave solution
of the form c 5 co(r)·exp[i(nu 1 kzz 2 vEt)], where n
is the azimuthal mode number, kz 5 2p/lz the vertical
wavenumber, vE the invariant Eulerian frequency, and vi

the intrinsic (Lagrangian) frequency following the mean
flow; so motion is wavelike in azimuth, depth, and time.
The r-dependent intrinsic frequency can be obtained from
the substantial derivative 2ivi 5 D/Dt 5 ]/]t 1 (Vu/
r)]/]u 5 2i(vE 2 nVu/r). The equations of motion lin-
earized about the background flow reduce to

2V ]pu2iv u 2 f 1 y 5 2i r u[ ]r ]r

V ]V inpu u2iv y 1 f 1 1 u 5 2i u r[ ]r ]r r
2ib N w

0 5 2ik p 1 b ⇒ p 5 2 5 2z k v kz i z
| |}}}}}}}}}

2iN w
22iv b 1 N w 5 0 ⇒ b 5 2i vi

| |}}}}}}
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FIG. 2. Comparison of solution envelopes for properties found in
a warm-core ring (Table 1) reveals little difference between Kunze
et al.’s approximate solution (upper panel) and the more rigorous one
described here (lower panel). The gray envelope in the upper panel
is the range of solutions given the observed range of buoyancy fre-
quency N, core radius r0, core vorticity z, and vertical wavelength
lz (Table 1). Radial wavelength is estimated from the free internal
wave dispersion relation lr 5 lzN/ 2 , which will overes-2 2v fÏ i eff

timate lr at higher frequencies (Figs. 4 and 5). The inner solution to
(12) for r , r0 (lower panel) closely resembles a Bessel function
(upper panel) though slightly flatter. The outer solution to (14) for r
. r0 (lower panel) closely resembles a modified Bessel function
(upper panel). The solutions match smoothly across r 5 r0. This
supports the interpretation of Kunze et al. (1995) both qualitatively
and quantitatively.

FIG. 3. Comparison of the radial structure for a gravest azimithal-
mode-one vortex-trapped wave with observations (v) in a vortex cap
over Fieberling Seamount. The gray envelope in the upper panel is
the range of solutions given the observed range of buoyancy fre-
quency N, core radius r0, core vorticity z, and vertical wavelength
lz (Table 2) using the less accurate model presented in the appendix
of Kunze et al. (1995). The black envelope further constrains the
wave to have K1 diurnal Eulerian frequency. The lower panel shows
solutions for the observed range of N, r0, z, and lz using the more
rigorous model described in this paper. The two models’ solutions
resemble each other but radial velocity ur across r0 is not smooth in
the more rigorous model. The solution (thick solid curve) best match-
ing the observations (v) corresponds to smaller buoyancy frequency
N 5 5.0 3 1023 s21, smaller core radius r0 5 5 km, and stronger
core vorticity z 5 20.52 f. This solution has the closest (within 0.1%)
Eulerian frequency to the K1 diurnal frequency.

1 ](ru ) inyr u1 1 ik w 5 0, (1)zr ]r r

where (ur, yu, w) are the radial, azimuthal, and vertical
velocities; b 5 2N2j the wave buoyancy anomaly; j the
vertical displacement (positive upward); p the wave per-
turbation reduced pressure; and B the vortex plus back-
ground buoyancy. We assume vortex Burger number (as-
pect ratio) RL 5 (NH/fL)2 5 {Nz/[ f(]Vu/]z)]}2 k 1 so
that interaction terms involving mean vertical shear ]Vu/
]z, mean radial buoyancy gradient ]B/]r 5 ( f 1 4Vu/
r)]Vu/]z, and the radial gradient in buoyancy frequency
]N2/]r 5 ]2B/]z]r can be neglected. In both the Gulf
Stream warm-core ring and the Fieberling Seamount vor-
tex cap, length scale Burger numbers RL are O(1) (Tables
1 and 2). However, ]N2/]r is negligible in the Fieberling
vortex and would result in at most 14% errors in the warm

ring because their vorticities are O(2 f) (see end of section
6).

Eliminating reduced pressure p and buoyancy b 5
2N2j, assuming that the buoyancy frequency N depends
only weakly on radius and noting that

]v n V ]Vi u u5 2[ ]]r r r ]r

2 2]p N ]w nN V ]Vu u5 2 1 2 w, (2)
2 [ ]]r v k ]r v k r r ]ri z i z

allows (1) to be reduced to three equations:

2 22V N ]w nN V ]Vu u u2iv u 2 f 1 y 5 2 2 wi r u 2[ ] [ ]r v k ]r v k r r ]ri z i z



OCTOBER 1998 2107N O T E S A N D C O R R E S P O N D E N C E

2V ]V nN ·wu u2iv y 1 f 1 1 u 5 ii u r[ ]r ]r v k ri z

1 ](ru ) inyr u1 1 ik w 5 0. (3)zr ]r r

From the azimuthal momentum equation, one can isolate
the azimuthal velocity

2f 1 V /r 1 ]V /]r nNu uy 5 2i u 2 w (4)u r 2[ ]v v k ri i z

so that it can be eliminated from the radial momentum
equation:

22iv k r[v 2 ( f 1 z 1 x)( f 1 z)]ui z i r

]w
2 25 N v r 2 nN [ f 1 z 1 2x]·w, (5)i ]r

where the vorticity z 5 Vu/r 1 ]Vu/]r and the confluence
x 5 Vu/r 2 ]Vu/]r, and from continuity to isolate the
vertical velocity

2v k r ](ru )i z rw 5 2i
2 2 2 2 2[ ]n N 2 v k r ]ri z

n( f 1 z)v ki z2 i (ru ). (6)r2 2 2 2 2[ ]n N 2 v k ri z

Substituting (6) into (4), we can express the azimuthal
velocity y u in terms of the radial velocity ur

2 2 2inN ](ru ) i( f 1 z)v k rr i zy 5 1 u ,u r2 2 2 2 2 2 2 2 2 2n N 2 v k r r n N 2 v k ri z i z

and from (6) and (1), the remaining consistency relations
for buoyancy b and pressure p are

2 2N v k r ](ru ) n( f 1 z)N k ri z r zb 5 2 1 ur2 2 2 2 2 2 2 2 2 2n N 2 v k r ]r n N 2 v k ri z i z

2 2iN v r ](ru ) in( f 1 z)N ri rp 5 1 u .r2 2 2 2 2 2 2 2 2 2n N 2 v k r ]r n N 2 v k ri z i z

Vertical velocity w (6) has radial derivative

2 2 2 2 2]w iv k r ] (ru ) iv k 2(v 1 nx)v k r ](ru )i z r i z i i z r5 2 2 (v 1 n( f 1 z 1 2x)) 1i2 2 2 2 2 2 2 2 2 2 2 2 2 2 2[ ]]r (n N 2 v k r ) ]r (n N 2 v k r ) (n N 2 v k r ) ]ri z i z i z

2 2 2ink 2( f 1 z)(v 1 nx)v k rz i i z2 22 v (r] V /]r 2 x) 1 n( f 1 z)x 1 u . (7)i u r2 2 2 2 2 2 2 2 2 2[ ](n N 2 v k r ) (n N 2 v k r )i z i z

Substituting for vertical velocity w and its radial derivative ]w/]r in the radial momentum equation,

2 2 2 2 2 2 2 2] u 1 2v (v 1 nx)k r ) ]u [v 2 ( f 1 z)( f 1 z 1 x)]k n 2 1 n(r] V /]r 2 x)r i i z r i z u0 5 1 3 1 1 2 1
2 2 2 2 2 2 2 2 2[ ] []r r (n N 2 v k r ) ]r N r v ri z i

22(v 1 n( f 1 z))(v 1 nx)ki i z1 u . (8)r2 2 2 2 2 ](n N 2 v k r )i z

3. Model vortex

Consider a steady axisymmetric vortex with a core
of uniform negative vorticity z 0 inside radius r 0 and
no annulus of positive vorticity outside the radius of
maximum velocity r 0 as was approximately found for
a Gulf Stream warm-core ring (Kunze et al. 1995) and
for a vortex cap above Fieberling Seamount (Kunze
and Toole 1997). The strength of this vortex could
change in the vertical on scales larger than the near-
inertial scale to satisfy the WKB approximation but

here is taken to be barotropic to focus on the hori-
zontal problem. The azimuthal velocity Vu for such a
vortex is described by

z r0 for r , r (inside core)0 2
V 5 (9)u 2z r0 0 for r . r (outside velocity max)02r

(Fig. 1a) so that the relative vorticity is
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FIG. 4. Dispersion relations for vortex-trapped wave intrinsic frequency vi and vertical group
velocity 5 ]vi/]kz in the warm-core ring (Table 1). Left panels display dependence on verticalCgz

wavelength lz. Right panels compare trapped-wave intrinsic frequency and vertical group velocity
(vertical axes) with free ‘‘internal wave’’ solutions (horizontal axes) vi 5 1 N 2 / (upper2 2 2f k kÏ eff i z

right panel) and . 22(vi 2 f eff)/kz (lowering right panel). The two values of f eff bracket theCgz

observed uncertainty in core vorticity (Table 1). The free internal-wave dispersion relation over-
estimates trapped-wave frequencies and vertical group velocities at larger vertical wavelengths
(higher aspect ratios). That is, trapped waves exist at aspect ratios that correspond to untrapped
internal wave frequencies. For the observed range of vertical wavelengths (stippling), the free
internal wave relation gives reasonable predictions.

V ]V z for r , ru u 0 0z 5 1 5 (10)5r ]r 0 for r . r0

(Fig. 1b), the confluence is

0 for r , r0V ]V u ux 5 2 5  2r ]r z r0 0 for r . r ,03r

and the flow curvature with radius is

0 for r , r02] V u 5 (11)2 2]r z r0 0 for r . r03r
(Fig. 1c).

4. Application

Application of vortex structure (9)–(11) to (8) and
choosing azimuthal mode n 5 21 to correspond to
clockwise propagation around the vortex, consistent
with the jetlike structure of trapped near-inertial oscil-
lations in the warm-core ring (Kunze et al. 1995) and
the Fieberling Seamount vortex cap (Kunze and Toole
1997), implies the following.
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FIG. 5. Dispersion relation for vortex-trapped wave intrinsic frequency vi and vertical group
velocity 5 ]vi/]kz in Fieberling Seamount’s vortex cap (Table 2). Left panels display depen-Cgz

dence on vertical wavelength lz. Right panels compare trapped-wave intrinsic frequency and
vertical group velocity (vertical axes) with free ‘‘internal wave’’ relations (horizontal axes) vi 5

1 N 2 / (upper right panel), and . 22(vi 2 f eff)/kz (lower right panel). The two2 2 2f k k CgÏ eff i z z

values of f eff bracket the observed uncertainty in core vorticity (Table 2). Free internal-wave
vertical group velocities overestimate trapped group velocities by a factor of 2 in the observed
range of vertical wavelengths (stippling).

a. Inside the vortex core (r , r0)

When the vorticity is uniform, (8) reduces to

2 2 2 2 2] u 1 3N 2 v k r ]ur i z r0 5 1
2 2 2 2 2[ ]]r r N 2 v k r ]ri z

2 2 2v k (v 2 f ) v 1 f 2Ni z i eff i eff1 1 u ,r2 2 2 2 2[ ]N v v N 2 v k ri i i z

(12)

where the intrinsic frequency v i 5 vE 2 nV u /r 5 vE

1 z 0 /2 is invariant in the core if the core vorticity is

constant, and f eff 5 f 1 z 0 . Note that in an axisym-
metric vortex, the lower bound of the internal wave
band is broadened by z, while Kunze (1985) found
broadening by only z/2 in rectilinear shear. This dif-
ference is a result of the different geometries (see
appendix B of Kunze 1985). Equation (12) is hyper-
bolic both inside and outside r1 5 N/(v i k z ). It resem-
bles a Bessel equation but with singularities at r1 5
N/(v i k z ) in the coefficients of both ]ur /]r and ur .

b. Outside the velocity max (r . r0)
Where vortex azimuthal velocity decays as 1/r outside

the vortex core (r . r0), (8) becomes
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2 2 2 2 2] u 1 2v (v 2 z r /r )k r ]ur i i 0 0 z r0 5 1 3 1
2 2 2 2 2[ ]]r r N 2 v k r ]ri z

2 2 2(v 2 f ( f 1 z r /r ))i 0 021 kz 2[ N

2 22(v 2 f )(v 2 z r /r )i i 0 01 u , (13)r2 2 2 2 ]N 2 v k ri z

where the intrinsic frequency vi 5 vE 2 nVu/r 5 vE

1 z0 /(2r2) → vE as r → `. Expressed in terms of the2r0

invariant Eulerian frequency vE, (13) can be expressed as

2 2 4 2 4 2] u 1 2(v r 2 z r /4)k ]ur E 0 0 z r0 5 1 3 1
2 2 2 2 2 4 2 2 2 2 2 4[ ]]r r N r 2 v k r 2 v z k r r 2 z k r /4 ]rE z E 0 z 0 0 z 0

2 2 4 2 2 2 4 2 2 2 2(v 2 f )r 1 (v 2 f )z r r 1 z r /4 2((v 2 f )r 1 z r /2)(v r 2 z r /2)E E 0 0 0 0 E 0 0 E 0 021 k 1 u . (14)z r2 4 2 4 2 2 6 2 2 4 2 2 4 2[ ]N r N r 2 v k r 2 v z k r r 2 z k r r /4E z E 0 z 0 0 z 0

For r k r0 and r k N/(vEkz), (14) reduces to

2 2 2 2] u 1 ]u (v 2 f )kr r E z
0 5 1 1 u . (15)r2 2[ ]]r r ]r N

For trapped waves (vE , f ), the lowest radial mode
solution of (15) that vanishes at infinity is the radially
decaying modified Bessel function K0(kor) with outer
radial ‘‘wavenumber’’ ko 5 kz f 2 2 /N. For r k2vÏ E

, K0(kor) → exp(2kor)/ r so that (]ur/]r)/ur → 2ko.21k Ïo

5. Method of solution

For the two oceanic examples (Tables 1 and 2), r1

lies inside the core (r1 , r0). Frobenius series expan-
sions (appendix) about the regular singularities at r 5
0 and r 5 r1 5 N/(vikz) in (12) are matched in ur and
]ur/]r at an intermediate point, for example, r 5 r1/2,
to provide a solution inside the core r , r0.

Outside the core, (14) is mapped to a finite domain
using x 5 1/r

2 2 2 4 4 2] u 1 2(v 2 z r x /4)k ]ur E 0 0 z r0 5 2 1 1
2 2 2 2 2 2 2 2 2 4 4[ ]]x x N x 2 v k 2 v z k r x 2 z k r x /4 ]xE z E 0 z 0 0 z 0

2 2 2 2 2 2 4 4 2 2 2 2 2k (v 2 f ) 1 (v 2 f )z r x 1 z r x /4 2x (v 2 f 1 z r x /2)(v 2 z r x /2z E E 0 0 0 0 E 0 0 E 0 01 1 u , (16)r4 2 2 2 2 2 2 2 2 2 4 4[ ]x N N x 2 v k 2 v z k r x 2 z k r x /4E z E 0 z 0 0 z 0

which displays an irregular singularity at x 5 0. We
integrate from x 5 1026 m21, where the modified Bessel
function solution of (15) is used to relate ur and ]ur/]x,
via (]ur/]r)/ur 5 2ko, to x 5 1/r0.

Inner and outer solutions for radial velocity ur and pres-
sure p are matched at r 5 r0 for constant Eulerian fre-
quency vE, azimuthal mode number n 5 21, and vertical
wavenumber kz. The vorticity discontinuity Dz 5 z0 at r
5 r0 results in a discontinuity in the wave solution’s radial
derivative, D[]ur/]r] 5 2ur(r0)Dz/(vir0). A compensating
jump in azimuthal velocity Dyu ensures, through continuity
(1), that vertical velocity w is smooth.

For comparison, Kunze et al. (1995) (i) neglected
terms of the form z0 /r2 outside the core (r . r0), (ii)2r0

approximated N 2 2 r2 as r2 throughout so2 2 2 2v k 2v ki z i z

that inner and outer solutions were Bessel functions
J0(kir) and modified Bessel functions K0(kor), respec-
tively, where ki and ko are inner and outer radial wave-
numbers, and (iii) matched ur and ]ur/]r across r 5 r0.

6. Results

Using properties found in a warm-core ring (Table 1)
and Fieberling Seamount’s vortex cap (Table 2), the
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range of gravest-radial-mode solutions (lower panels of
Figs. 2 and 3) are compared with Kunze et al.’s (1995)
approximate Bessel solutions (upper panels). The so-
lutions from the two approaches closely resemble each
other.

The warm ring solutions (Fig. 2) differ by at most
a few percent. For warm ring properties (core radius
r 0 5 43 km, core vorticity z between 20.03 f and
20.1 f, and vertical wavelength l z 5 96–200 m, Table
1), the inner solution for r , r 0 closely resembles a
lowest radial mode Bessel function J 0 (ki r) (upper
panel of Fig. 2) with inner radial wavenumber ki 5
kz 2 /N. The trapped outer solution for r . r0

2 2v fÏ i eff

(lower panel) closely resembles a modified Bessel func-
tion K0(kor) (upper panel) with outer radial wavenumber
ko 5 kz /N. The solutions match smoothly2 2Ï f 2 vE

across r 5 r0. The inner radial wavelengths lr 5 li 5
2p/ki, vertical group velocities Cgz, and vertical energy-
fluxes CgzE found here agree quantitatively with those
inferred by Kunze et al. (1995).

In the smaller, more intense vortex cap above Fieber-
ling Seamount (core radius r0 5 5–7 km, core vorticity
z between 20.45 f and 20.52 f, and wave vertical wave-
lengths lz 5 170–220 m; Table 2), the resemblence is
less striking (Fig. 3). The two solutions differ by the
most (25%) at the core edge, r 5 r0. As in the larger,
weaker ring, the inner solution for r , r0 (lower panel)
resembles a Bessel function (upper panel) and the outer
solution for r . r0 (lower panel) a modified Bessel func-
tion (upper panel). Solutions are continuous but not
smooth across r 5 r0 because of the stronger vorticity
discontinuity across the outer edge of the core. The so-
lution best matching the observations (to within 15%)
uses buoyancy frequency N 5 5.0 3 1023 s21, smaller
core radius r0 5 5 km, stronger core vorticity z 5
20.52 f, and wave vertical wavelength lz 5 170 m. Pos-
sibly by coincidence, this solution has the Eulerian fre-
quency closest (within 0.1%) to the K1 diurnal frequency
of the dominant tidal forcing. Its radial structure more
closely resembles the observed structure than the Kunze
et al. (1995) model in having a change in ]ur/]r at r 5
r0 5 5 km.

Figures 4 and 5 reveal that trapped-wave intrinsic
frequencies are confined between the axisymmetric ef-
fective Coriolis frequency f eff 5 f 1 z and f 1 z/2.
The vertical group velocity approaches zero at both ex-
tremes. At the low-frequency, low-aspect-ratio (small
vertical wavelength) limit, the dispersion relation vi and
vertical group velocity have the same dependenceCgz

on vertical wavelength lz as free internal waves, v i 5
1 N 2 / (upper right panels) and 5 2(2 2 2 2f k k C vÏ eff i z g iz

2 )/(vikz) . 22(vi 2 f eff)/kz (lower right panels),2f eff

respectively. More surprisingly, at the high-frequency
limit (v & f 1 z/2), aspect ratios are much larger for
a given frequency than would be inferred from the free
internal wave dispersion relation. That is, trapped waves
(v i & f 1 z/2) exist for aspect ratios lz/lH correspond-
ing to untrapped higher internal-wave frequencies (vi

. f ). This arises because of the nonvanishing coeffi-
cient to ]ur/]r and the second term in the coefficient to
ur in (12). For a given frequency, these allow higher
aspect ratios than the free internal-wave dispersion re-
lation.

In the ocean, the vertical wavelength lz, or aspect
ratio lz/lr, will be limited by the vertical extent of the
vortex. For the observed range of vertical wavelengths
(stippling), the free internal-wave relation gives reason-
able results in the warm-core ring (Fig. 4) but overes-
timates the frequency and group velocity by a factor of
2 in the smaller, more intense vortex cap atop Fieberling
Seamount (Fig. 5).

We tested the consistency of neglecting the ]N 2/]r
term by using our solution to estimate the size of ne-
glected terms in the equation for ur. In the Gulf Stream
ring, the neglected term amounted to a maximum of
14% of the total near r 5 ro. In the seamount vortex
cap, ]N 2/]r vanished. Therefore, neglect of the ]N/]r
term is justified in both cases.

7. Conclusions

Trapped near-inertial waves appear to be a common
feature in anticyclonic vortices in the ocean, forced
by astronomical tides over topographic features in the
abyssal ocean and atmospheric storms in surface-in-
tensified vortices. They are sources of turbulent mix-
ing 10–100 times higher than typically found in the
stratified ocean interior (Kunze et al. 1995; Kunze and
Toole 1997).

A model for the gravest radial mode of near-inertial
internal waves trapped in a steady axisymmetric vortex
has been described and compared with observations in
a Gulf Stream warm-core ring and a vortex cap atop
Fieberling Seamount. Baroclinicity and critical layers
have been ignored but could be treated in this model
provided the vortex structure Vu(r, z) is separable in
radius r and depth z, the vortex Burger number (NH/fL)2

is not too small, and the vortex’s vertical scales exceed
those of the wave so that the WKB approximation can
be applied in the vertical. A more complete model would
permit any length scale Burger number, strong radial
variation of vortex buoyancy B(r), more general radial
structure Vu(r) than assumed here, and nonseparable
Vu(r, z). The case where coefficient singularities in (8)
lie outside the core r1 5 N/(vikz) . r0 (corresponding
to large vertical wavelengths) might also be important
in some circumstances.

Propagating wave structure was assumed in time,
azimuth, and depth. The resulting dispersion relation
is quantized in azimuthal and radial modes. We have
assumed that vertical wavenumber and frequency are
continuous, which requires that the vortex extend to
infinity in the vertical or be bounded by an inertial
critical layer as is common in the low- and midlatitude
ocean. Only azimuthal mode n 5 21 and radial mode
zero were explored based on observed structure. Other



2112 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

modes might be of interest if evidence for them is
found in the ocean. These would be generated by forc-
ing on scales smaller than the vortex. In an analogous
case of seamount-trapped wave generation about ax-
isymmetric topography, Brink (1990) found genera-
tion of higher modes very inefficient compared to the
gravest mode.

The vortex was assumed to have uniform vorticity
in its core (r , r 0 ) and zero vorticity outside its ve-
locity maximum (r . r 0 ). The vorticity discontinuity
Dz results in discontinuities D(]ur /]r) and Dy u at r 5
r 0 . A continuous vorticity profile z(r) would produce
smooth wave solutions. The radial structure for the
gravest trapped radial mode resembles a Bessel func-
tion inside the vortex core (assumed to be of uniform
vorticity) and modified Bessel function decay outside
the velocity max (where the vorticity is assumed to
vanish). Trapped frequencies are bound by f eff 5 f
1 z , v i , f 1 z/2 with vertical group velocity

vanishing at both extremes in vertical wavelengthCgz

(aspect ratio). In the ocean, the frequency is likely to
be imposed externally by the forcing and the hori-
zontal scale set by that of the vortex. The vertical
wavelength will then be fixed by the dispersion re-
lation. For frequencies near the lower bound, v i ; f
1 z (smaller vertical wavelengths), the model’s dis-
persion relation resembles that of free internal waves
(Kunze et al. 1995). For frequencies near the upper
bound, v i ; f 1 z/2, the free internal-wave disper-
sion relation underestimates vertical wavelength and
overestimates vertical group velocity. The trapped
wave’s aspect ratio l z /lH is thus higher than it would
be for free internal waves of the same v i and so has
a broader range than would be expected for the range
of trapped frequencies.
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APPENDIX A

Frobenius Series Solutions

We solve (12) for r , ro in the case where the sin-
gularity r1 5 N/(vikz) , ro using Frobenius series
(Bender and Orszag 1978).

a. In the core: expanding about r 5 0

Letting y 5 ur and x 5 r/r1 where r1 5 N/(v ikz), the
equation in the vortex core (12) can be expressed as

1 2
0 5 y0 1 1 1 y9

2[ ]x 1 2 x

2 2v 2 f 2(v 2 f )i eff i eff1 1 y. (A1)
2 2[ ]v v (1 2 x )i i

To find a Frobenius series solution about x 5 0, we
expand in terms of x

`

(n1a)y 5 a xO n
n50

so that

`

(n1a21)y9 5 a (n 1 a)x ,O n
n50

`

(n1a22)y0 5 a (n 1 a)(n 1 a 2 1)x .O n
n50

Noting that 1/(1 2 x2) 5 x2m and substituting into`Sm50

(A1) yields

` n /2

2 (n1a22)0 5 (n 1 a) a 1 2 (n 2 2m 1 a)a xO On n22m[ ]n50 m50

` n /22 2v 2 f 2(v 2 f )i eff i eff (n1a)1 a 1 a x . (A2)O On n22m2[ ]v vn50 m50i i
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Setting a0 5 1, the indicial equation is given by the
equation for the coefficients of x (a12)

a2a0 1 2aa0 5 0,

so that the indicial exponents are either a 5 22 or
0.

1) For a 5 22, power-series equation (A2) reduces
to

` n /2 ` n /22 2v 2 f 2(v 2 f )i eff i eff2 (n24) (n22)0 5 (n 2 2) a 1 2 (n 2 2m 2 2)a x 1 a 1 a x .O O O On n22m n n22m2[ ] [ ]v vn50 m50 n50 m50i i

The coefficients an are found by solving each successive
equation in powers of x. We find for x23: a1 2 2a1 5
0 ⇒ a1 5 0 and for x22

2 2v 2 f 2(v 2 f )i eff i eff1 2 4 a 5 0.02[ ]v vi i

This indicates that a0 5 0 or the intrinsic frequency is
strictly limited. Thus, the solution for a 5 22 is not
physical.

2) The power series for a 5 0 in (A1) is the Taylor
series:

` n /2

2 (n22)0 5 n b 1 2 (n 2 2m)b xO On n22m[ ]n50 m50

` n /22 2v 2 f 2(v 2 f )i eff i eff n1 b 1 b x .O On n22m2[ ]v vn50 m50i i

As before, the coefficients bn can be solved for by gath-
ering together like powers in x. For x21, we obtain b1

5 0, for x0,

2 21 v 2 f 2(v 2 f )i eff i effb 5 2 12 2[ ]8 v vi i

and for n . 2, only even coefficients are nonzero

n /22 21 v 2 fi effb 5 2 b 1 2 (n 2 2m)bOn n22 n22m2[n(n 1 2) v m51i

(n22)/22(v 2 f )i eff1 b .O n22m22]v m50i

Thus, around x 5 0 and up to the singularity at r1, the
solution is u 5 S bn(r/r1)n with vanishing odd coeffi-
cients and even coefficients as given above.

b. In the core: Expanding about the singularity at
r 5 r1 5 N/(vikz)

To find Frobenius series solutions about r 5 r1, (12)
is rewritten letting y 5 ur and x 5 (r 2 r1)/r1, where
r1 5 N/(vikz)

2] y 1 3 1 ]y
0 5 1 2 1 2

2 [ ]]x x 1 1 x 2 1 x ]x

2 2v 1 f 2(v 2 f ) (v 2 f )i eff i eff i eff1 2 1 y.
2[ ]v v x v (2 1 x)i i i

(A3)

We expand

`

(n1a)y 5 c x .O n
n50

Noting that
`1

m m5 (21) x ,O
1 1 x m50

` m m1 1 1 1 (21) x
5 5 ,O m2 1 x 2 x 2 2m50

1 1
2

and substituting these expressions back into (A3) yields

` ` n(v 2 f )c 1i eff n(n1a22) m (n1a21)0 5 (n 1 a)(n 1 a 2 2)c x 1 2 1 3 2 (21) (n 2 m 1 a)c xO O On n2mm11[ [ ] ]v 2n50 n50 m50i

` n2 2 m(v 2 f )c (v 2 f ) (21) ci eff n i eff n2m (n1a)1 1 x . (A4)O O2 m[ ]v 2v 2n50 m50i i



2114 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

Setting c 0 5 1, the indicial equation is given by the
coefficient of the lowest power in x, x (a22) , yielding

a(a 2 2) 5 0. Therefore, the inidicial exponents are
either a 5 0 or 2.

1) For a 5 0, power series (A4) becomes

` ` n(v 2 f )c 1i eff n(n22) m (n21)0 5 n(n 2 2)c x 1 2 1 3 2 (21) (n 2 m)c xO O On n2mm11[ [ ] ]v 2n50 n50 m50i

` n2 2 m(v 2 f )c (v 2 f ) (21) ci eff n i eff n2m n1 1 xO O2 m[ ]v 2v 2n50 m50i i

with coefficients solved for by gathering like powers of
x. For x21, we obtain

v 2 fi effc 5 2 ,1 vi

while for x0,

v 2 fi effc 5 2 .1 vi

The coefficient c2 is undefined so can be initialized in-
dependently [e.g., Case II(b)(ii) of Bender and Orszag
(1978, p. 72)]. Without loss of generality, we set c2 5
0. Changing it has no effect on the solutions, indicating
that our numerical code is correct. Higher-order coef-
ficients are given by

2 21 (v 2 f )c (v 2 f )ci eff n21 i eff n22c 5 2n 25n(n 2 2) v vi i

n21 n22 m1 v 2 f (21) ci eff n2m22m2 3 2 (21) (n 2 m 1 1)c 2 .O On2m21m11 m 6[ ]2 2v 2m50 m50i

2) The power series (A4) for a 5 2 is

` ` n(v 2 f )d 1i eff nn m (n11)0 5 n(n 1 2)d x 1 2 1 3 2 (21) (n 2 m 1 2)d xO O On n2mm11[ [ ] ]v 2n50 n50 m50i

` n2 2 m(v 2 f )d (v 2 f ) (21) di eff n i eff n2m n121 1 x .O O2 m[ ]v 2v 2n50 m50i i

Coefficients dn are obtained by gathering together like
powers of x. For x1,

5 (v 2 f )i effd 5 2 1 ,1 3 3vi

for x2,

21 2 f 6 feff effd 5 1 1 19 ,2 2[ ]12 v vi i

and for xn, n $ 2,
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n212 21 (v 2 f )d (v 2 f )d 1i eff n21 i eff n22 md 5 2 2 3 2 (21) (n 2 m 1 1)dOn n2m212 m115 [ ]n(n 1 2) v v 2m50i i

n22 mv 2 f (21) di eff n2m222 .O m 62v 2m50i

Thus, the solution ur near r1 is given by

(n12) nu 5 A c [(r 2 r )/r ] 1 B d [(r 2 r )/r ] .O Or n 1 1 n 1 1

The series solutions for ur and ]ur /]r around r 5 0
and r 5 r1 5 N/(v i k z ) are matched at a point between
r 5 0 and r 5 r1 , for example, r 5 r1 /2. This sets
the magnitude of the series expansion around r 5 r1

in terms of the amplitude at r 5 0.
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