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ABSTRACT

Separation from the continental slope of stratified jets like the Gulf Stream involves the sliding of successive
isopycnal layers from a nearly horizontal bottom to the adjacent offshore isopycnal in the deep ocean. One
mechanism for producing such an effect is due to a downstream convergence of slope isobaths, as shown herein
for a 1 -layer density model. Upstream of the convergence, a geostrophically balanced jet is assumed with an1
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inshore region of cyclonic vorticity resting on the continental slope and an offshore anticyclonic region resting
on the isopycnal interface above heavier water. For O(1) Rossby number and cross-stream topographic variation,
the steady transverse current displacements forced by slowly varying downstream topography are computed.
For ‘‘supercritical’’ upstream flow (i.e., fast compared to free topographic waves) off slope displacements are
produced by converging isobaths; extrapolation of the small amplitude result suggests that the mechanism is
quantitatively important for the explanation of the full separation of the Gulf Stream from the bottom of the
continental slope. The kinematics involved in this process should apply to a continuously stratified jet, as well
as to other forcing mechanisms known to be of importance in continental boundary current separation.

1. Introduction

The Gulf Stream emerging from the Straits of Florida
consists of an inshore region with large cyclonic vor-
ticity overlying a steep continental slope, the latter being
intersected by isopycnals extending shoreward from the
anticyclonic region of the offshore jet. As the stream
flows northward (Olsen et al. 1983), there is a continual
deflection of successive isopycnal layers off the slope
and onto the isopycnals in the deeper ocean. Eventually
all of the fluid over the slope separates completely from
the bottom in a remarkably localized region north of
Cape Hatteras, thereby forming a ‘‘free’’ jet in deep
water.

Although the separation problem (Haidvogel et al.
1992; Özgökmen et al. 1997) has received considerable
attention in the past, the focus has usually been on plan-
etary-scale effects in models whose lateral boundary
consisted of a vertical wall. One of these effects (with
which the separation of the Gulf Stream must be con-
sistent), is the downstream increase in wind-driven
transport to higher latitudes, which leads to surfacing
of isopycnals near the western wall (Parsons 1969; Mor-
gan 1956; Charney 1955). Other known ‘‘global’’ con-
straints are associated with the termination of the sub-
tropical gyre at the latitude of vanishing wind stress curl
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(Munk 1950), the ‘‘collision’’ of the subtropical gyre
with the deep western boundary current (Agra and Nof
1993), and the abrupt change in direction of the coastline
(Stern and Whitehead 1990). An indication of the im-
portant role of the bottom slope (in contrast to the ver-
tical wall) appears in the barotropic models of Baines
and Hughes (1996) and Becker and Salmon (1997). In
both of these papers the depth-independent boundary
current separates from the slope while remaining in con-
tact with the bottom, whereas our focus will be on the
separation of a baroclinic jet from the rigid bottom. Our
viewpoint is also more local ( f plane), more inertial
(larger jet Rossby number), and starts with a specified
upstream jet structure with a more realistic inshore (cy-
clonic) shear. It should be mentioned that there is no
accepted explanation for the generation of this shear, as
contrasted with the anticyclonic offshore shear.

In connection with Fig. 1, Olsen et al. (1983) mention
that ‘‘the gradient of bottom topography increases by a
factor of 2 around 298N. At this point the stream leaves
the shelf and enters deeper water.’’ More striking is the
extreme convergence of the isobaths at 35.58N; it is at
this point, apart from the influence of small amplitude
meanders, that the synoptic baroclinic jet separates com-
pletely from the continental slope.

We will investigate the topographic effect using a
1 -layer model (Fig. 2) in which the upper layer of uni-1
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form density r rests partially on the bottom slope and
partially on the interface above a stagnant layer of den-
sity r 1 Dr; at all cross-stream positions ŷ the upstream
flow is in geostrophic equilibrium. A steady flow is
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FIG. 1. The path of the mean Gulf Stream (dotted) plotted over the
topography of the eastern coast of the United States. After Olsen et
al. (1983).

assumed farther downstream where the isobaths con-
verge (or diverge) gradually compared to the cross-
stream variation. Accordingly, the forced topographic
response will be computed by a steady-state long-wave
theory, which will eventually be linearized for the case
of a small amplitude downstream variation in slope, but
neither the cross-stream slope nor the Rossby number
will be assumed small in the main calculation (section
4). Also noteworthy (Fig. 2) is the absence of an un-
realistic slippery vertical wall; instead we have a free
streamline with vanishing velocity, located in finite
depth water on the bottom slope. This boundary con-
dition and this model are complementary to those in a
recent study (Stern 1997) of a free jet flowing over a
sill with nonconvergent isobaths. Clearly, a combination
of both kinds of topography, that is, variation in cross-
stream curvature as well as isobath convergence, needs
to be considered in general.

The most novel physical consideration (sections 2a–
c) in this paper is the connection condition at the point
where a material column [a streamline originating at ŷ
(Fig. 2)] leaves the rigid bottom and moves onto the

density interface; at any downstream section (ŷ) in-ĥ
dicates the transverse displacement of any streamline
from a designated isobath at ŷ 5 0 (or 5 0). Theĥ
calculation is eventually limited to small cross-isobath
displacements ( 2 ŷ), such as are produced by a smallĥ
(«) increase in transverse continental slope at a down-
stream section (x̂) relative to the upstream section.

The aforementioned connection condition provides
one boundary condition for the well-known linearized
potential vorticity equation (section 2d), which applies
to the barotropic fluid on the slope; the second boundary
condition requires vanishing velocity on the inshore free
streamline. The solution of the resulting inhomogeneous
ordinary differential equation (section 2) gives the frac-
tion dŷ of the upstream current on the slope, which
appears downstream on the density interface for a given
topographic slope change «.

For the quasigeostrophic range of topographic, Ross-
by, and Burger numbers, Eq. (3.3) or Fig. (4) gives an
analytic result for dŷ, and section 4 gives the numerical
result for O(1) Rossby number and topographic varia-
tion. The extrapolation of this dŷ/« result, given in the
conclusion, provides an order of magnitude estimate of
the topographic effect for the Gulf Stream.

2. Derivation of linear equations

Part of the steady upstream jet in Fig. 2 rests on a
rigid bottom where the assumed depth and geostroph-
ically balanced velocity are given respectively by

H(ŷ) 5 H0(1 2 ŷr/L0), U(ŷ) 5 2U0 ŷ/L0,

where rH0/L0 is the nondimensional slope (assumed
constant for y $ 2L0). Farther offshore (ŷ , 2L0) the
geostrophic current lies above a more dense (r 1 Dr)
layer, which is assumed to be at rest in the rotating
coordinate system with Coriolis parameter f. Going
downstream (x̂) the bottom depth profile changes to:

,h(ĥ) 5 H (1 2 ĥr (1 1 «))/L0 0

where measures the transverse displacement of a ma-ĥ
terial column originating at ŷ, and « varies parametri-
cally with x. At any such section the 5 0 origin isĥ
taken on the same isobath (H0) as occurs upstream at
ŷ 5 0. Note that the free streamline (Fig. 2) crosses
isobaths and is displaced from 5 0 at the downstreamĥ
end. The parameters in Fig. 2 are assumed to be such
that the Lagrangian column originating upstream at ŷ
5 2L0 is deflected off the bottom slope and onto the
density interface; the dotted curve indicates the inter-
section of the density interface with the continental
slope at any downstream position. Different material
columns cross this curve at different downstream po-
sitions, causing the transport of the fluid remaining on
the slope to decrease. The downstream component of
current at all sections is essentially in geostrophic equi-
librium (because ]/]x̂ is small). The downstream veloc-
ities in the boundary current are assumed to vanish at
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FIG. 2. Perspective sketch of a current separating from a bottom whose slope increases in the
downstream direction (x̂). The upstream laminar velocity U(ŷ) is barotropic in ŷ . 2L0, and at
ŷ , 2L0 the current lies on the density interface of a stagnant layer of resting heavy (r 1 Dr)
water. (ŷ) is the transverse coordinate of a material column originating at ŷ. As a result of theĥ
slow (« K 1) downstream variation of bottom depth [ 5 H0(1 2 (1 1 «))/L0)], columnsh(ĥ) ĥr
of fluid are forced offshore at the separation curve (dotted). The 5 0 origin at the downstreamĥ
end is located on the same isobath as the ŷ 5 0 origin, and denote the respectiveu(ĥ), h(ĥ)
values of downstream current and depth in the long-wave theory. The layer thickness at ŷ 5 2`
and 5 2` are equal.ĥ

ŷ 5 2` and 5 2`, and the layer thickness is theĥ
same in these two regions.

a. Outer boundary condition for offshore
displacement

For gradual changes in bottom slope, a Lagrangian
material column (ŷ $ 2L0) with downstream velocity

, and thickness , satisfies mass conservation inu(ĥ) h(ĥ)
the sense of the long-wave approximation:

,uh dĥ 5 UH dŷ 5 2U ŷH dŷ/L0 0

where H(ŷ) is the upstream depth of this column. Before
applying this to ŷ . 2L0 and before turning to the
potential vorticity equation, we consider the novel
boundary condition required at the edge of the baro-
tropic region. First, the previous equation is rewritten
as

2U H( ŷ) d ŷ0u 5 2
L h(ĥ) dĥ 20

2 2U H( ŷ) dĉ L d ĉ0 05 2 ĥ 1 L 1 , (2.1a)0 2[ ]L h(ĥ) dĥ 2 dĥ ĥ0

where the modified Lagrangian displacement function
is defined byĉ

ˆŷ 5 ĥ 1 L c/ĥ.0 (2.1b)

The geostrophic transport between two streamlines lo-
cated completely in the deep water is proportional to
the square of the difference of the respective layer thick-
ness and, since H(2`) 5 h(2`), it follows that the
streamline originating at the upstream edge ŷ 5 2L0 of
the slope and terminating offshore at 5 2L in theĥ
baroclinic region must satisfy h(2L) 5 H(2L0). More-
over the Bernoulli invariant on this streamline implies
u(2L) 5 U0. Evaluating (2.1a) and (2.1b) on ŷ 5 2L0

then gives

2 2L d ĉ02L 5 2L 1 L dĉ/dĥ 10 0 21 22 dĥ ĥ
ĥ52L0

2L 5 2L 2 L ĉ/L. (2.1c)0 0

Further analysis is now restricted to small «, in which
case L 2 L0 and are correspondingly small. Therefore,ĉ
when the previous equation is substituted into (2.1c)
and the small quadratic terms are neglected, we get a
linearized boundary condition:

5 0ˆ ˆc(2L ) 1 L c9(2L )0 0 0 (2.2)

for in the barotropic region ŷ . 2L0. Although theĉ
density is not explicitly involved in this relation, its
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FIG. 3. Plan view of streamlines and isobaths (dashed) near the outer edge of the barotropic
region: (a) assuming the streamline originating at ŷ 5 2L0 is deflected offshore and onto the
density interface, thereby (see text) conserving its thickness [(1 1 r)H0] and speed (U0). At the
outer edge h 5 2L 1 dŷs of the downstream barotropic region the streamline on isobath Hs

originates upstream at Hu. The problem is to predict the (small) fraction dŷ of the current that
separates as a function of «, and other parameters; (b) assuming the displacement of the ŷ 5 L0

streamline is toward a shallower isobath Hu , (1 1 r)H0, which is located at h 5 2L 1 |dys|. It
is shown that for « . 0 this only occurs for ‘‘subcritical’’ velocities relative to the speed of the
free topographic waves.

validity clearly depends upon the fact that the outer part
of the current originating on the slope lies on the density
interface. The explicit importance of Dr will appear
subsequently.

The novel Lagrangian function in (2.2) will nowĉ
be related to the conventional Eulerian mass transport
function M defined by

]M ]M
21 21y 5 H ( ŷ) , u 5 2H , (2.3)1 1]x̂ ]ŷ

where (y 1, u1) are the cross-stream and downstream (x̂)
perturbation velocities, respectively. [N.B., no confu-
sion should arise here or in section 2d by the use of ŷ
as transverse Eulerian coordinate for M(x̂, ŷ)]. On a
steady Lagrangian streamline, transversely displaced by
an amount 2 ŷ, we also have y 1 5 /](x̂),ĥ U(ŷ)](ĥ 2 ŷ)
and the linearization of Eq. (2.1b) gives:

L ] ]ĉ0y 5 2U( ŷ) ĉ ø U ,1 0ĥ ]x̂ ]x̂

where ø ŷ, and U(ŷ) 5 2U0 ŷ/L0 have been used.ĥ
The first equation in (2.3) then integrates to:

M( ŷ)
ĉ( ŷ) 5 , (2.4)

U H( ŷ)0

and by substituting this in (2.2) we get

aM(2L ) 1 L M9(2L ) 5 0 (2.5)0 0 0

L H9(2L ) r0 0a [ 1 2 5 1 1 .
H(2L ) 1 1 r0

(2.6)

Equation (2.5) provides a boundary condition for the
M(ŷ) satisfying the linearized Eulerian potential vortic-
ity equation appearing in section 2d.

b. The offshore transport relation

The main calculation pertains to the fraction dŷ . 0
(Fig. 3a) of the upstream slope current, which separates
from the bottom and which appears on the density in-
terface in an interval dŷs. At the outermost limit ( 5ĥ
2L) of this interval, the layer thickness h* and the ve-
locity u* must equal the corresponding upstream values
on the (1 1 r)H0 isobath (for ‘‘transport’’ and ‘‘Ber-
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noulli’’ reasons previously mentioned). Correct to first
order, the conservation of mass in the intervals then
requires

dŷ 5 dŷs. (2.7)

This will be computed by relating it, as follows, to the
vorticity perturbation in the barotropic region, and the
latter quantity will be related to « in the Eulerian cal-
culations of section 2d.

If Hs denotes the isobath (Fig. 3a) of the streamline
at the inner edge of the baroclinic region 2L 1 dŷs,
then the integrals of the geostrophic balance equation
across the dŷs 5 dŷ intervals yield

f U dŷ 5 g*[(1 1 r)H 2 H ],0 0 s

g* 5 gDr/r. (2.8)

The aforementioned streamline originating at ŷ 5 2L0

1 dŷ, where H(ŷ) [ Hu, and conserving potential vor-
ticity, increases its relative vorticity at 5 2L 1 dŷsĥ
by the amount

H 2 Hs uz(2L) 5 ( f 1 z), (2.8a)
Hu

where the basic upstream vorticity is

z 5 U0/L0.

Equation (2.8a) is the vorticity perturbation along a
streamline, but because the cross-stream gradient of
undisturbed vorticity vanishes, Eq. (2.8a) also equals
(to leading order) the perturbation vorticity along a
line that is at equal transverse distances from the H 0

reference isobath at all downstream distances x̂.
When (2.8a) is used to eliminate Hs , Eq. (2.8) be-

comes

f U0(1 1 r)H 2 H 2 dŷ0 u g* z
5 ,

H f 1 zu

and then the geometrical relation (1 1 r)H0 2 Hu 5
H0rdŷ/L0 yields

21
dŷ z(2L ) r z0 25 2 F , (2.9)1 2L f 1 z 1 1 r f0

where

2 2 2 2f L f L0 02F 5 ø . (2.10)
g*H g*H (1 1 r)u 0

and F is the inverse ratio of the radius of deformation
divided by L0. The perturbation vorticity z(2L0) computed
in sections 3 and 4 will be substituted in (2.9) to obtain
the fraction of the fluid deflected offshore for any «.

It is important to note that the slope 2dH/dŷ5H0r/L0

of the bottom (Fig. 2) must exceed the slope (S) of the
intersecting interface at ŷ 5 2L0, as given geostroph-
ically by

S 5 fU0/g*, (2.11a)

and this requires
2z F

r . (1 1 r). (2.11b)
f

Since dŷ . 0 has been assumed here, Eq. (2.9) requires
that the sign of « be such that z(2L0) . 0.

c. Onshore deflection (Fig. 3b)

Although this case is not considered further here, it
is of interest to derive the connection condition when
the parameters are such that the streamline at ŷ 5 2L0

is deflected toward the shallower Hu isobath located at
5 2L 1 , while the outermost barotropic stream-ĥ |dŷ |s

line (at 5 2L) originates offshore at ŷ 5 2L0 2ĥ
, where Us . U0 and Hs . Hu. As before, mass|dŷ|

conservation requires 5 UH dŷ. If the linear partuh dĥ
of the upstream shear flow U(ŷ) extends somewhat be-
yond ŷ 5 2L0, then U(ŷ) 5 Usŷ(2L0 2 |dŷ|)21, where
Us 5 U0(L0 1 |dŷ|) . With the definition ŷ [ 121L ĥ0

it follows thatˆL c/ĥ,0

2U H( ŷ) d (ĥ 1 L ĉ/ĥ)s 0u 5 .
(2L 2 |dŷ|) h(ĥ) dh 20

At h 5 2L, u 5 Us, H 5 h, and linearization yields

2L0 2 5 2L 1 1 O(c2).ˆ|dŷ| L dc/dĥ0

Since 2L0 2 |dŷ| ø 2L 2 follows from the definitionĉ
of it is now apparent that (2.2) also applies to thisĉ,
case, and likewise for (2.6).

It only remains to show that (2.9)–(2.10) also ap-
plies, provided dŷ is replaced by |dŷ|. The geostrophic
velocity integral across the upstream baroclinic |dŷ|
interval is

fU0|dŷ| 5 g*[Hs 2 (1 1 r)H0],

and, when the downstream geometrical relation

H |dŷ|0H 2 H 5 |dŷ | r(1 1 «) ù H rs u s 0L L0

is used, the result is

f U |dŷ|H r0 0|dŷ| ø H 2 (1 1 r)H 1 .u 0g* L0

From the conservation of potential vorticity at h 5 2L
1 |dŷs| we obtain the relative vorticity

( f 1 z)[H 2 (1 1 r)H ]u 0z 5 , 0,
(1 1 r)H0

and then the proceeding equation becomes

212|dŷ| 2z(2L ) r F z05 2 ,1 2L f 1 z 1 1 r f0

which is the same as (2.9) except that the perturbation
vorticity must be negative for this case.
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FIG. 4. Plot of 8/b 2 2 2J1 (b)/J 2 (b) as a function of b 5
2(r/z

*
)1/2 , giving the fractional offshore displacement dŷ/« in the

quasigeostrophic limit [Eq. (3.3)]. Stationary wave resonance oc-
curs for b 5 5.1, and Fig. 5 gives the condition when z

*
and r

are O(1).

d. Barotropic perturbation equation for slow
downstream variation

In the following consideration of the Eulerian pertur-
bation equations at any downstream section (x̂), the symbol
for the previously used Lagrangian coordinate ( ) will beĥ
replaced by ŷ, this being the transverse distance from the
local isobath H(0) 5 H0. With this understanding we may
write H0[1 2 rŷ(1 1 «)] for the depth at the downstream
section, while retaining H(ŷ) 5 H0[1 2 rŷ] for the up-
stream depth profile. Thus the potential vorticity at the
downstream end is expanded as

f 1 z 1 z f 1 z 1 z ŷrH «05 1 1 1 · · · ,[ ]ŷrH « H( ŷ) HL0 0H( ŷ) 2
L0

and the linearized Eulerian steady-state conservation
equation is

]z ] f 1 z f 1 z rŷH ]«0U( ŷ) 1 y H 1 U 5 0.1]x̂ ]ŷ H( ŷ) H L ]x̂0

By using (2.3) and the long-wave approximation (]y1/]x̂
K ]u1/]ŷ) the perturbation vorticity becomes

] 1 ]M
z 5 , (2.12)

]ŷ H ]ŷ

and thus the previous equation can then be integrated
in x̂ to give

d 1 dM M( f 1 z) d 1
1

dŷ 1 2 ŷr/L dŷ U( ŷ) dŷ 1 2 ŷr/L0 0

( f 1 z) rŷH «(x)05 2 .
1 2 ŷr/L L0 0

When this is nondimensionalized using

ŷ 5 2yL , M(ŷ) 5 « c(y), z 5 z / f ,0 *

dy 5 1dŷ/L , U 5 f z L y,0 0*
2« 5 « fr(1 1 z )L H , (2.13)0 0*

it becomes

d 1 dc r(1 1 z ) c y*1 5 , (2.14)
2dy 1 1 yr dy z y(1 1 ry) 1 1 yr*

and the boundary condition (2.5) becomes

c9(1) 2 ac(1) 5 0. (2.15a)

(Note that this streamfunction is not the same as the
used in section 2a.) On the free streamline, with un-ĉ

known but small y ordinate both velocity components
vanish, and therefore to leading order, we require y(0)
5 0, M(0) 5 0, and therefore

c(0) 5 0. (2.15b)

This boundary condition will provide the only solution
of (2.14), which is regular near y 5 0. The quantity of
interest for Eq. (2.9) is

z(2L ) d 1 dc0 5 «r(1 1 z )* [ ]f dy 1 1 ry dy y51

«r(1 1 z ) r (1 1 z )* *5 1 2 c(1) ,[ ]1 1 r 1 1 r z*

and therefore (2.9) can be written as

212dŷ 1 z F
21 *5 (1 1 r) 21 2« 1 1 r r

r
213 1 2 (1 1 z )(1 1 r) c(1) . (2.16)1 2 *[ ]z*

Instead of considering the inhomogeneous equation
(2.14), a simplification can be achieved in terms of a
solution c0(y) of the homogeneous equation

d 1 dc r(1 1 z ) c0 0*1 5 0, (2.17)
2dy 1 1 ry dy z y(1 1 ry)*

which satisfies

c0(0) 5 0.

Now multiply Eq. (2.17) by c(y), multiply Eq. (2.14)
by c0, subtract the results, and then integrate to get
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FIG. 5. Plot of Eq. (4.4) as a function of slope (r) and c [Eq. (4.1)] for various Burger numbers (2.10). The dashed
vertical lines give the values of a downstream uniform r for which a stationary free wave occurs. On the smaller side
of each critical r the flow is subcritical, and for « . 0 the positive dy corresponds to separation (Figs. 2, 3a). For c
5 2.0 the value of the ordinate at r 5 0.1 is 0.548, and this value of 1 1 G(r, c) may be used over a much wider
range of (r, c).

1c (1)c9(1) 2 c(1)c9(1) yc (y)0 0 05 dy .E1 1 r 1 1 yr0

When the boundary condition (2.15a) for c9(1) is ap-
plied this becomes:

11 1 r yc (y)0c(1) 5 dy ,Eac (1) 2 c9(1) 1 1 yr0 0 0

and thus the final expression of (2.16), or

dŷ r
5

« r
2(1 1 r) 2 z F1 * 21 1 r

1r(1 1 z )/z yc (y)0* *3 1 1 dy , (2.18)E[ ]c9(1) 2 ac (1) 1 1 ry0 0 0

only requires the solution of (2.17).

3. The quasigeostrophic limit r 5 0(z*) → 0

Before proceeding to the relevant Gulf Stream case,
where both the Rossby number z* and r are O(1), it is
instructive to consider the quasigeostrophic limit for
which analytical results are obtainable. In the latter case
r and z* are both small to the same order, and Eqs.
(2.14), (2.15), (2.17) reduce to

2 2d c b
1 c 5 y,

2dy 4y

c9(1) 2 c(1) 5 0

c(0) 5 0
2b r

[ 5 O(1). (3.1)
4 z*

Direct substitution reveals that a particular solution of
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(3.1) is (y2 2 8y/b2)(4/b2), and the only regular ho-
mogeneous solution (Abromowitz and Stegun 1970) is
Ay1/2J1(by1/2), where J1 is the first-order Bessel function
and A is an amplitude factor. Thus,

24y 32y
1/2 1/2c 5 Ay J (by ) 1 2 ,1 2 4b b

and the y 5 1 boundary condition is satisfied if

1 b 4
0 5 A J (b) 1 J9(b) 2 J /b) 1 ,1 1 1 2[ ]2 2 b

or

8
A 5 .

3b J (b)2

Thus the complete solution for the quasigeostrophic
streamfunction is

1/2 1/2 28y J (by ) 4y 32y1c 5 1 2 . (3.2)
3 2 4b J (b) b b2

The r → 0, z* → 0 limit of (2.16) is

dŷ
2 2 21 25 (1 2 4F /b ) (1 2 b c(1)/4),

«

and, when (3.2) is used, we get the explicit result

dŷ 8 2J (b)12 2 215 (1 2 4F /b ) 2 , (3.3)
21 2« b bJ (b)2

wherein Eq. (2.11b) requires 4F 2/b2 , 1. Equation
(3.3), plotted in Fig. 4, shows that the deflection into
deep water (dŷ . 0) occurs when b 5 2(r/z*)1/2 is less
than b 5 5.1 [i.e., J2(b) 5 0], at which value resonance
occurs. We note in passing that there are free (« 5 0)
stationary waves at these values of J2(b) 5 0, and for
such conditions at a point on the continental slope an
upstream–downstream hydraulic transition (Hughes
1986) could occur. For b , 5.1 the flow is said to be
supercritical (‘‘fast’’) with respect to the topographic
wave speed, and we conclude that such a flow will pro-
duce displacements into deeper water if the isobaths
converge downstream.

A final qualitative point may be noted before turn-
ing to larger z*, and r. Using Eq. (3.2), we see that
the vorticity perturbation, as given by the first term
in (3.1) or by y 2 (b 2 /4y)c(y), has a value near y 5
0 equal to

2b 4y 32 4
2y 2 2 1 1 O(y )

2 4 2[ ]4 b b b J (b)2

8 1 8 1
5 2 5 2 , 0,

2 2b J (b) b 22 b
2 · · ·1 28

which is negative for b smaller than the first zero of
J2(b) 5 0 since the expansion of J2(b) 5 b2/8 2 · · ·
is less than b2/8. Thus we conclude that for supercritical
flow the vorticity at y 5 0 is negative so that here the
streamlines are deflected into shallower water and its
shear decreases (while the velocity remains zero). Near
y 5 1, on the other hand, the vorticity is proportional
to 1 2 b2/4c(1), and the discussion following (3.3)
shows that this is positive. Although the streamlines near
y 5 1 are deflected toward the H0 isobath, the isobaths
near y 5 1 are displaced by a larger amount, and this
explains why the y 5 1 streamline crosses its upstream
isobath and emerges into deeper water (where its vor-
ticity increases).

4. Numerical calculations for finite r, z*
With the transformation

z 5 ry, c0(y) 5 f (z), (1 1 z*)/z* 5 c, (4.1)

Eq. (2.17) becomes

2d f df c
(1 1 z) 2 1 f 5 0, (4.2)

2dz dz z

and (2.18) becomes

21
dŷ r

5 1 1 G(r, c), (4.3)
2[ ]« r 2 (1 1 r)z F*

where
rc dz zf(z)

G(r, z) [ . (4.4)Er[rf9(r) 2 af(r)] 1 1 z0

The evaluation of this requires a calculation of f (z) up
to z 5 r.

For r , 1, Eq. (4.4) can be computed by means of
a power series solution of (4.2) in the interval of con-
vergence |z| , 1, and the result is

`

Jf 5 a zO J
1

a 5 1, a 5 2(c 2 1)/21 2

2J 2 1 1 c
a 5 2a .J12 J11 [ ](J 1 2)(J 1 1)

In order to obtain solution for r . 1, this power series
was first used to compute f (z) at z 5 0.5, and then the
values of f (0.5), f9(0.5) were used in a second-order
Runge-Kutta integration to continue the solution to z .
1 and r . 1. The resulting values of 1 1 G, or Eq.
(4.3), are plotted in Fig. 5.

For r → 0 and z → 0 the asymptotic value of (4.4),
as obtained from
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21r[rf9(r) 2 f(r) 2r(1 1 r) f(r)]

3 35 r [2a 2 a 2 1] 1 · · · 5 2r (c 1 1)/2 1 · · ·2 2

and
r 3dz zf(z) r

5 1 · · ·E 1 1 z 30

is

2c
1 1 G(r, c) 5 1 2 1 · · · . (4.5)

3(c 1 1)

For z* 5 1, c 5 2 the value of (4.5) is 1 1 G 5 5/9,
and this not only agrees with the numerical calculation
(Fig. 5) for r → 0, but is a fair approximation up to r
5 5.0 where 1 1 G 5 0.69. The most noteworthy nu-
merical variation in 1 1 G [or Eq. (4.4)] at smaller z*
(larger c) is the appearance of a resonance amplification
due to the decrease of the current relative to the topo-
graphic slope r; this allows stationary topographic Ross-
by waves in the basic state. It is also clear that for certain
values, for example, r 5 2, c 5 6, an onshore deflection
occurs even for convergent isobaths (« . 0). This is
unlikely to occur, however, if the inshore shear is less than
z 5 f /2 (c 5 3). If the isobaths are divergent (« ,
0) and z 5 0.2 f (c 5 6.0), then an onshore deflection
occurs for r , 1.5.

5. Conclusions

The separation of a baroclinic boundary jet from the
continental slope requires fluid in contact with the nearly
horizontal rigid bottom to be displaced onto an isopyc-
nal surface in the deep ocean. The geostrophic kine-
matics (Figs. 2 and 3) involved in this process have
been applied to a topographic forcing mechanism acting
on a ‘‘fast’’ (supercritical) boundary jet. It has been
shown that isobaths converging downstream (« . 0)
produce offshore deflection of the slope current at a rate
(dŷ/«) given analytically by Eq. (3.3) for a quasigeos-
trophic jet, and by Fig. 5 when r and z are O(1), as is
the case for the Gulf Stream. Onshore deflection for
convergent isobaths occurs when the jet is subcritical
(cf. Fig. 5, lower curves). Conditions for stationary
waves, indicative of hydraulic control, have also been
given for a jet with a free streamline on a uniformly
sloping continental boundary.

The foregoing results may be used to estimate the
magnitude of the effect on the Gulf Stream. If dr/dx̂,
dL/dx̂ denote the respective change in slope and width
of the overlying current per unit downstream distance
(x̂), then

21L dL /dx̂ dŷ
2 5

21r dr/dx̂ «

is given by Eq. (4.3). Since the typical nondimensional

Gulf Stream cyclonic vorticity lies between z* 5 0.5
and 1.0, the asymptotic limit

1 1 G(r, c) ø 5/9

is an acceptable approximation for Eq. (4.3), as indi-
cated at the end of section 4. From z* 5 U0/( fL0),
(2.10), and (2.11a), we have

L S02z F 5 ,* H (1 1 r)0

and therefore Eq. (4.3) then gives

21L dL /dx (5/9)r 1
2 ø

21r dr/dx (L /H ) [2dH/dŷ 2 S]0 0

(5/9)(2dH/dŷ)
5 .

[2dH/dŷ 2 S]

As previously mentioned S/(2dH/dŷ) is less than unity,
and for order of magnitude purposes we now assume
that the ratio is 0.5, in which case

212L dL /dx̂ 5/9
ù . 1.

21r dr/dx̂ 0.5

Thus the width L of the current on the slope decreases
by 50% if the cross-stream slope (r) increases by a factor
of 2 from the upstream to the downstream section.

This suggests that the geographical localization of
the synoptic Gulf Stream separation point frequently
observed at Cape Hatteras is due to the extreme con-
vergence of the slope isobaths at this point. This does
not preclude an important role for the other mecha-
nisms cited in the introduction, but these provide
‘‘large’’-scale and necessary climatalogical condi-
tions in which the inertial–synoptic separation event
occurs. Although the foregoing numerical conclusion
is based on an extrapolation of small amplitude theory
and is applied to simplified baroclinic current (Fig.
2), this model contains important and realistic phys-
ical features not found in previous theories; these fea-
tures include a full jet with both cyclonic and anti-
cyclonic shear and with a free streamline overlying a
sloping bottom from which separation occurs. The
explicit demonstration of the way in which particles
separate from a rigid bottom is perhaps the most im-
portant fluid dynamical result.
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