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ABSTRACT

The energy radiation from oceanic boundary currents is assumed to be one of the main mechanisms responsible
for the production of the highly energetic eddy field in the interior of the ocean. The efficiency of the process
is demonstrated in an example of a simple model of a nonzonal flow. The nonzonal orientation of the current
proves to be a key dynamical factor setting the radiation in the model.

The effects of the nonlinear interactions on the radiating properties of the solution are studied in detail
numerically. The efficient numerical algorithm with open boundary conditions is used. The solutions of the
linear problem reported previously by Kamenkovich and Pedlosky are used as initial conditions.

The results show that even rapidly growing linear solutions, which are trapped during the initial stage of
development, can radiate energy in the nonlinear regime if the basic current is nonzonal. The radiation starts
as soon as the initially fast exponential growth significantly slows. The initial apparent trapping of those solutions
is caused by their fast temporal growth. The new mechanism for radiation is related to the nonzonality of a
current.

1. Introduction

It is well known that the eddy kinetic energy in the
oceanic interior significantly exceeds the energy of the
weak background flow in the region of the North At-
lantic (Wyrtki et al. 1976). The explanation of the origin
of such intensive eddy variability remains an unsolved
problem.

One of the possible mechanisms for the eddy gen-
eration could be the instability of the background flow
itself, which possesses enough available energy to sup-
port the intensive eddy field (Gill et al. 1974). However,
whether or not this energy can be entirely released into
the eddy motions is a more complicated question. Some
numerical studies of the stability of a horizontally uni-
form baroclinic flow suggest that the eddy energy cor-
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responding to the scales longer than the Rossby defor-
mation radius can exceed the background energy (Lar-
ichev and Held 1995; Held and Larichev 1995). In con-
trast, existing theoretical evidence suggests (Pedlosky
1975) that the mean ocean velocity is a bound for the
eddy velocity produced by the baroclinic instability of
the oceanic interior.

Energetic boundary currents, such as the Gulf Stream
in the North Atlantic, represent an alternative source of
the eddy energy. Since in the vicinity of the Gulf Stream
up to two-thirds of the eddy energy can be attributed
to the meandering Gulf Stream (Halkin and Rossby
1985; Rossby 1987; Hogg 1994), it suggests an effective
mechanism for radiation of energy. A swift boundary
current can radiate part of its energy into the interior
by supporting wavelike motions. Two different ap-
proaches to modeling such a process have been tried in
the past.

In the first group of studies, the effects of the me-
andering Gulf Stream are modeled by a zonal, time-
dependent rigid boundary (starting with Flierl and Ka-
menkovich 1975; and Pedlosky 1977). If the meander
activity varies in the x direction and has growth and
decay periods in time, the energy is effectively trans-
ferred to the interior motions and the induced mean
circulation in the far field has realistic meridional dis-
tribution of eddy kinetic energy (Hogg 1988; Malanotte-



1662 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. The phase speeds cr (thin lines) and growth rates vi (heavy
lines) as functions of k for mode 1 and mode 2 for b 5 1 and (a) a
5 08, (b) a 5 58, and (c) a 5 308. The marks on the curves show
the choices of parameters for different numerical runs.

Rizzoli et al. 1995). The reader is also referred to Ka-
menkovich and Pedlosky (1996) for a complete discus-
sion of the results of these studies.

A different approach is needed if we attempt to un-
derstand if the radiation is dynamically consistent with
the dynamics of the stream itself. In a second group of
studies the unstable modes supported by the time-in-
dependent basic current are tested for their ability to
carry energy to the regions remote from the current axis.
Those radiating modes must be very weakly trapped to
the current.

Talley (1983) found that zonal eastward parallel flows
have difficulty radiating waves. Only zonal jets with
some westward components (purely westward, eastward
with westward undercurrent, or westward sidelobes)
were found to be capable of radiating energy. Only lin-
ear solutions are considered in the study.

The fundamental difference between radiating prop-
erties of zonal and meridional currents is reported in
Fantinini and Tung (1987). It is shown that a simple
meridional current can support unstable modes that are
radiating.

The next step toward more a complete understanding
of the process is made in Kamenkovich and Pedlosky
(1996), where the radiating properties of linear insta-
bility modes in an ocean current flowing at an angle to

the latitude circles are studied. The radiating properties
of nonzonal currents are found to be very different from
those of zonal flows. For an eastward zonal flow, all
solutions are strongly trapped to the jet region. If the
jet axis is then tilted by a small angle with respect to
the latitude circles, the long and very slowly growing
modes become radiating. The radiating ability is further
enhanced if the horizontal tilt of the jet axis is increased.

To determine whether a solution is radiating, we use
the physically meaningful criterion called the phase
speed condition. It states that the frequency and wave-
number of the solution of the linear problem must match
those of the free Rossby wave in the far field (see, e.g.,
Pedlosky 1977; McIntyre and Wessman 1978).

It is, however, often difficult to classify a mode as
either trapped or radiating while it is growing rapidly.
As indicated in Talley (1983) and in Kamenkovich and
Pedlosky (1996), the fast exponential growth of a so-
lution can cause its spatial trapping, therefore disguising
its true radiating nature. In that case, one might antic-
ipate that the radiation should start as soon as the fast
growth stops. One way to achieve that in the linear
theory is to consider the parametric limit of vanishing
growth rate along a dispersion curve. If the spatial trap-
ping disappears, we claim that the solutions adjacent to
this limit in the parameter space are of a radiating nature.

The linear theory, therefore, gives us very little in-
formation about the radiating properties of the solutions
that are away from the described limit and grow rapidly,
eventually dominating the dynamics in the model. An-
other way to limit the growth in the model is to consider
the nonlinear equilibration during which the fast ex-
ponential growth substantially slows. How do the ra-
diating properties in the model change then? To answer
this question we formulate here the fully nonlinear prob-
lem with the initial state identical to the results from
the linear problem in Kamenkovich and Pedlosky
(1996). The linear solutions are given very small initial
amplitude to ensure their validity during the initial stage
of development.

The numerical method used is described in section 2.
We also present the method of the analysis of the results
in this section. The nonlinear evolution of two linear
modes, mode 1 and mode 2, is studied. The reader is
referred to section 3 and Fig. 1 for the definition of
mode numbers. Mode 1 from the linear barotropic prob-
lem is considered in sections 4–6. We first analyze its
nonlinear evolution in the model with a zonal current,
section 4, and then increase the value of the tilt and
concentrate on the effects of the changed orientation.
The case of a large tilt (a 5 308) is studied in detail in
section 6. The dependence of the results on the value
of the planetary vorticity gradient is analyzed in section
6c. The nonlinear development of mode 2 is studied in
section 7.

2. Method of solution and analysis
The model remains the same as in Kamenkovich and

Pedlosky (1996), except that now the nonlinear terms
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are included into consideration. We assume that the mo-
tions are barotropic and quasigeostrophic, and therefore
are fully described by the streamfunction c, and neglect
friction and bottom topography. We study the evolution
of the solution that is initially a sum of the basic state
C(y) in the form of a nonzonal jet and the linear so-
lutions c(x, y, t) with very small amplitudes. The jet is
assumed to be uniform in the along-jet direction, and
the jet velocity u is zero outside the jet region of finite
width 2Ljet . The model is studied in the rotated coor-
dinate frame. That is, we orient the x axis of our co-
ordinate frame along the jet axis and y axis perpendic-
ular to the jet axis. The equation is then nondimen-
sionalized using the jet half-width Ljet and an advective
timescale Ljet/max(u):

]
2 2¹ c 1 J(c 1 C (y), ¹ c 1 Q) 5 F, (1)

]t

where the basic state is given by

Q 5 b x 1 b y 2 u ; C 5 2 u (y) dy, (2)1 2 y E
with b2 5 b cosa, b1 5 b sina with a being the angle
between our rotated x axis and a latitude circle and b
the planetary vorticity gradient.

To balance such a basic state we introduce the po-
tential vorticity source in the equation:

F 5 2b1C y. (3)

It is difficult to speculate about the effects that the
introduced forcing has on the dynamical properties a
priori. However, the results of the particular numerical
experiment reported in section 6c demonstrate that the
magnitude of forcing does not control the strength of
the energy radiation. The direct effects of the introduced
forcing are limited to supporting the basic state.

The nonlinear equation for the time-dependent per-
turbation streamfunction c(x, y, t) is

] ]
21 u (y) ¹ c 1 (b 2 u )c2 yy x1 2]t ]x

22 b c 1 J(c, ¹ c) 5 0. (4)1 y

We now need to discuss the form of the initial and
boundary conditions. Together they are the decisive fac-
tors in choosing the appropriate numerical method of
solving (4). For the representation of arbitrary initial
conditions, the continuous spectrum of linear Fourier
modes is needed and both initial and boundary condi-
tions in x become difficult to formulate. To keep all
results simple, we choose to initialize a problem with
a single mode with a wavenumber k. The case with a
pair of waves will be studied in Part II. Although it is
hard to claim that a complete dynamical picture can be
obtained by considering either a single wave or a pair
of waves, we hope to mimic the important properties

of nonlinear interactions and the effects they have on
the radiating properties in the problem.

In the course of nonlinear self-interactions, a set of
secondary modes that are shorter in x is created in ad-
dition to the primary mode: 2k, 3k, etc., together with
the x-independent component. Because of this special
structure of the solution, we can assume periodicity in
x with a period equal to the longest period in the set:
2p/k.

The formulation of the boundary conditions in y is
more difficult. The conditions need to remain the same
as in the linear problem and be equivalent to the ana-
lytical condition of boundedness at 6`. However, it is
not easy to implement such conditions numerically. Ide-
ally, one should require that any disturbance that ap-
proaches the numerical boundary in y, which is typically
more than seven jet widths away from the jet axis,
should be able to leave the domain without even partial
reflection.

One way to allow free transmission of a wave through
the boundary is to use modified Orlanski boundary con-
ditions (Orlanski 1976). At the boundary in y, we write

] ] 1
c 1 c(x, y, t) c 5 2c . (5)

]t ]y Tf

The speed c, with which a disturbance propagates,
can be calculated numerically and is used to determine
c at the boundary. We also introduce the numerical
damping on the right-hand side of the above equation.
The term controls the numerical instability at the bound-
aries (Blumberg and Kantha 1985). For all our com-
putations we choose Tf 5 1, which is sufficient for the
above condition to work well in our case. The finite-
difference form of the conditions is given in the ap-
pendix.

The next important task is to convince ourselves that
the conditions actually work. We check that by first
changing the size of our numerical domain. If the results
do not change, we are convinced that the boundary ef-
fects, such as a reflection or the amplification of the
boundary-trapped numerical modes, are minimal. Oth-
erwise the solution would depend on the size of the
numerical domain. We normally stop the integration at
the point when we suspect growing boundary effects.

We then choose the numerical method for the solution
that is the most efficient given the boundary conditions
just formulated. We use a rectangular basin with Nx

points in x and Ny points in y, where Ny is typically
larger than Nx. The grid spacings are Dx and Dy cor-
respondently. Equation (4) for the vorticity is time
stepped forward using the leapfrog scheme. The re-
sulting z is then inverted to obtain streamfunction c.

Analysis of results: Fourier components

The solution obtained by the method outlined above
has a complicated structure. As was noted in the pre-
vious section, several Fourier components in x are cre-



1664 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

ated in the course of nonlinear development. Because
the solution is periodic in x, it is possible to perform
the decomposition into Fourier series:

`

ik xnc(x, y, t) 5 Re F (y, t)e , (6)O kn
n50

where
Lx1

ik xnF (y, t) 5 c(x, y, t)e dxk En Lx 0

are the Fourier coefficients and kn 5 2pn/Lx.
When we use the term, for example, ‘‘component

‘0.25,’ ’’ it will mean the Fourier component with kn 5
0.25 and corresponding coefficient F0.25.

At the very beginning of the development, when only
a single linear wave of the general form ik (x2c t)n nf ( y)e
is present, we have

.2ik ctnF (y, t) 5 f (y)ekn

Other Fourier coefficients grow in time due to the
nonlinear interactions that produce new components,
representing the temporal evolution of spatial structure.
As we noted in the previous section, only a few of them
are significant. Secondary components ‘‘0,’’ ‘‘2kn’’ are
created by the self-interactions of the initial wave with
k 5 kn. Components ‘‘3kn,’’ ‘‘4kn,’’ etc., emerge later
as a result of secondary interactions.

The Fourier representation of solution (6) possesses
another convenient property. If we compute the x-av-
eraged kinetic energy using Eq. (6), we find

`

K 5 KOe kn
n50

` ``1 1
2 2 25 F dy 1 (F 1 k F ) dy. (7)OE 0y E k y n kn n2 4n502` 2`

All terms that are x-dependent disappear because of
the x-averaging over the interval [0, Lx]. We see that
the contributions of each component to the total per-
turbation kinetic energy are additive. The property is
convenient for analyzing the energetics in the problem.
By analyzing the values of , we will be able to seeKkn

which components contribute the most to the total value
of Ke.

In the analysis of the energetics in the problem we
will use another quantity that is the kinetic energy of
each component

1
2 2(F 1 k F )k y n kn n4

integrated from 2` to 22 and from 2 to 1`. We there-
fore exclude the region that contains the jet itself (u ±
0 for 21 , y , 1) and thus include only the energy
appearing well outside the region of the basic current.
We will denote this value by and will consider itsEkn

ratio to the total perturbation energy Ke. The ratio serves
as the measure of the effectiveness of radiation by each

component. It is a more meaningful quantity than the
absolute value of since the latter strongly dependsEkn

on initial conditions and would be hard to use in the
comparison between different cases.

For evaluation of the integral over the infinite interval
in y, we will use the integration over the numerical
interval.

3. Summary of linear results

Before we proceed with the analysis of the nonlinear
evolution of the solutions of the linear problem, we
briefly present the linear results themselves. The reader
is referred to Kamenkovich and Pedlosky (1996) for the
complete discussion.

Two unstable modes (mode 1 and mode 2 hereafter)
are found. The dispersion curves showing the phase
speeds cr and the growth rates ui as functions of the x-
wavenumber k are shown in Fig. 1 for different values
of the horizontal tilt a of the jet axis.

In the case of a zonal jet, all solutions are strongly
trapped to the jet region. Mode 1 is a varicose mode
with the streamfunction antisymmetric in y and mode 2
is a sinuous mode with a symmetric streamfunction.
When a is different from zero, the waves with wave-
numbers close to the long-wave cutoffs of either of the
modes become radiating in the cross-jet direction.

The short waves of the each of the modes are trapped
due to their fast exponential growth in time. In what
follows, we mainly discuss the results for those short
and trapped waves, concentrating on the changes in their
radiating properties in the course of nonlinear devel-
opment.

4. Mode 1: Zonal jet

We start the analysis with the study of the nonlinear
development of a single mode in the case of a zonal
current, a 5 08. The linear theory predicts the strong
spatial trapping of all solutions for all wavelengths.
Does the solution remain trapped during the nonlinear
development as well?

We initialize the problem with a linear varicose mode
for k 5 1 and b 5 1. We now proceed with the analysis
of the numerical results. We carry out the computations
over a time interval of 112 nondimensional units. The
nondimensional e-folding timescale is 7.5 according to
the linear theory. The equilibration begins at t . 32.

The 1D plots of the perturbation streamfunction ver-
sus y for a fixed value of x are shown in Fig. 2. The
solution is trapped initially in the agreement with the
linear theory and is antisymmetric in y since we consider
a varicose mode. We now remark that the nonlinear
interactions cannot change the antisymmetry of the so-
lution because nonlinear terms in the equation J(c, ¹2c)
are antisymmetric if c is antisymmetric itself. In other
words, the solution should remain antisymmetric for all
times.
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FIG. 2. The streamfunction as function of y for x 5 1.4, a 5 08: k 5 1 and b 5 1. The time corresponding
to a snapshot is given on the top of a panel. The linear solution is shown by the dashed lines in the first
three plots. The scales are different between panels.

Nevertheless, we observe the change in the structure
of the solution for t . 64. The strong symmetric com-
ponent of the solution is present, and it amplifies even
further for later times. In addition, we observe a wave-
like response in the exterior region that reaches far from
the jet at t . 96. Do we see the influence of an additional
strongly unstable symmetric mode?

The analysis of the Fourier components of the stream-
function helps to clarify the picture. Components ‘‘0,’’
‘‘1,’’ and ‘‘2’’ are shown in Fig. 3. The problem is

initialized at k 5 1; the component ‘‘1’’ is much larger
in amplitude than component ‘‘2’’ for t # 48. The latter
is antisymmetric in y and, therefore, remains to be main-
ly produced by the nonlinear self-interactions of com-
ponent ‘‘1.’’

The situation changes at later times. At t 5 64, the
component ‘‘2’’ is practically symmetric and is almost
the same amplitude as component ‘‘1’’; it further am-
plifies with time. We can conclude that starting from t
5 64, the sinuous mode with k 5 2 dominates the de-
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FIG. 3. The Fourier coefficients F0 (solid lines), F1 (dashed lines), and F2 (dashed–dotted
lines) of the streamfunction as functions of y: a 5 08, k 5 1, and b 5 1. Corresponding times
are given on the top of each panel.

velopment (t 5 80). The sinuous mode at k 5 2 is the
most unstable wave in the problem; in particular, it has
a growth rate twice as big as that of a varicose mode
for k 5 1 (see Fig. 1). The wave is most likely initialized
by the presence of roundoff numerical error in the nu-
merical method during the development of the com-
ponent ‘‘2’’ created by the self-interactions of mode 1.

In a numerical experiment not presented here, we put
the sinuous mode with k 5 2 in addition to the varicose
mode as an initial condition. The sinuous mode initially
has much smaller amplitude (by a factor of 350). The
nonlinear development is very similar to that observed
in the numerical run with a varicose mode alone. Thus,
the present calculation mimics the production of the

sinuous mode in the previous experiment with a single
varicose mode. In the present calculation, the sinuous
mode shows up earlier as if in a more advanced stage
of nonlinear development.

We now come back to the experiment with a single
varicose mode. What is also interesting to see is that
the primary component ‘‘1’’ starts to decrease in am-
plitude after t 5 64. The amplitude of component ‘‘1’’
reduces by a factor of 10 from t 5 64 to t 5 96. Si-
multaneously it radiates away waves from the jet region
to which it is initially trapped. The whole process looks
as a transition from the development of the single var-
icose mode ‘‘1’’ to the development of the single sin-
uous mode ‘‘2.’’ During the transition, the component
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FIG. 4. Kinetic energy corresponding to each Fourier component
vs time: (a) (energy integrated over the whole domain) and (b)Kkn

(energy integrated from 2` to 22 and from 2 to `) divided byEkn

the total energy Ke for a 5 08, k 5 1, and b 5 1. Component numbers
are shown on the plot.

‘‘1’’ gives way to the component ‘‘2’’ and radiates away
the energy that it previously gained during the initial
unstable growth. The radiation is of transient nature and
has very small amplitudes.

One should also note the presence of the component
‘‘0’’; its significance will be discussed in detail in the
following sections. The x-independent component re-
mains trapped throughout the whole process of nonlin-
ear development.

The next plot, Fig. 4, shows the energy corresponding
to each Fourier component. We see that component ‘‘2’’
starts to dominate the process after t 5 64; integrated
over the whole domain, energy corresponding to this
mode K2 is the largest after that time (Fig. 4a).

The balance is very different if the energy for each
component is integrated everywhere except the region
[22, 2], which contains the jet itself. The component
‘‘1’’ is clearly dominant in the external region defined
above; see Fig. 4b. The ratio E1/Ke further increases
after the beginning of the radiation by this component.
However, the radiation is not energetic; E1 is about 1
percent of the total kinetic energy Ke. The contribution
of the other components to the external kinetic energy
is much smaller.

The transient radiation reported in this case is very
closely related to the radiation by pulsating meanders

discovered in a series of zonal boundary forced models
(Malanotte-Rizzoli et al. 1987; Hogg 1988; Malanotte-
Rizzoli et al. 1995). In these studies, it is demonstrated
that the growth and decay periods in the life cycle of
meanders are essential for the mechanism discovered.
In our case, the radiation in the form of component ‘‘1’’
starts at an advanced stage of nonlinear development,
when component ‘‘1’’ starts to decay in amplitude. The
decay follows the period during which the component
remains trapped to the jet region and has a large am-
plitude, therefore representing meanders of the jet with
nondimensional wavelength 2p. Thus, the slow decay
of these meanders can produce radiation in accord with
the mechanism described in Malanotte-Rizzoli et al.
(1987), Hogg (1988), and Malanotte-Rizzoli et al.
(1995). The mechanism, however, is not very effective
in our case. The radiation is very weak, in part as a
result of the smallness of component ‘‘1’’ in the jet
region.

5. Slightly nonzonal jet: a 5 58

We now increase the value of the horizontal tilt from
zero to the small value of 58. We recall from Kamen-
kovich and Pedlosky (1996) that the linear solution
changes its radiating properties qualitatively. The slowly
growing long waves in the model become radiating,
whereas the shorter linear waves remain trapped during
the linear stage of development. Do the radiating prop-
erties of short waves change in the course of nonlinear
development?

To answer this question, we initialize the problem
with mode 1, which is the modified varicose mode of
the zonal jet for k 5 1, b 5 1. According to the linear
theory (see Kamenkovich and Pedlosky 1996), the so-
lution for this choice of k is strongly trapped.

One-dimensional plots of the streamfunction are pre-
sented in Fig. 5 for a chosen value of x. The observed
dynamical picture is similar to that in the case of a 5
0. The strong symmetric component is clearly seen in
the structure of the solution at t . 48, and the radiation
starts later. These facts suggest the presence of the dy-
namical process described in the preceding section in
which the interactions between the initially posed var-
icose mode and the excited, later highly unstable, sin-
uous mode cause the former to radiate. For the linear
problem with the tilt as small as 58 the results are almost
the same as for the zonal jet unless a wave is very long
in x; see Fig. 1 and Kamenkovich and Pedlosky (1996).
It is not therefore surprising to find the nonlinear be-
havior in both cases similar as well.

However, some important differences with the case
a 5 0 are obvious. First of all, the radiation starts much
earlier, at t . 40. The amplitude of the radiating re-
sponse is larger than that in the case a 5 08 and has
more complicated structure. Do we now observe the new
mechanism for radiation of short waves related to the
nonzonality of the current at work here? To give a de-



1668 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. The streamfunction as function of y. As in Fig. 2 but for x 5 1.37 and a 5 58: k 5 1 and b 5 1.

tailed answer to this question, we now consider the Fou-
rier coefficients in Fig. 6. The comparison of thisFkn

plot with Fig. 3 reveals a significant difference in the
dynamical development.

1) The radiation in the exterior region now starts as
early as t 5 40 and initially is in the form of x-inde-
pendent component ‘‘0’’ (F0). The component repre-
sents the change in the x-averaged momentum. Well-
pronounced radiating properties of the component ‘‘0’’
will be observed for all numerical experiments as long

as the tilt is nonzero. The reason for the component ‘‘0’’
radiating more easily than other components can be il-
lustrated by a simple example.

Imagine the forced-boundary problem in which the
boundary is x independent and oscillates with a given
frequency v. No linear wavelike solution is possible if
the boundary is oriented zonally. However, Rossby
waves can exist if the boundary is tilted. The dispersion
relation for the response in the rotated coordinate frame
is then
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FIG. 6. The Fourier coefficients F0 (solid lines), F1 (dashed lines), and F2 (dashed–dotted lines)
of the streamfunction as functions of y for a 5 58: k 5 1 and b 5 1.

b1v 5 .
l

If the frequency of the boundary oscillations v is
complex (the magnitude of oscillations is growing in
time), then l is complex as well and solution decays
away from the boundary. As long as v is purely real,
the response is a plane wave regardless of the value of
the frequency. In other words, the only reason for the
spatial trapping of the solution is its exponential growth
in time. No additional constrains on the value of the
frequency analogous to the phase speed condition (Ka-
menkovich and Pedlosky 1996; see also next section)
exist.

The other property of this simple example is that the
group velocity in the y direction is single signed:

b1c 5 2 .gy 2l

Since the cgy is always negative, the linear radiation
from the boundary can only exist for negative y. One
can see that this holds true in our case for a 5 58. In
Fig. 6 we observe that component ‘‘0’’ initially radiates
only to the left from the jet region. The radiation to the
right starts later, most likely as a local result of nonlinear
interactions in the exterior and is not directly forced by
the jet edge.
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FIG. 7. External kinetic energy corresponding to each FourierEkn

component vs time. As in the lower panel of Fig. 4 but for a 5 58:
k 5 1 and b 5 1; (E0 1 E1 1 E2)/Ke for the zonal jet is shown by
the dotted line (marked by a 5 0).

FIG. 8. The logarithm of perturbation kinetic energy for a 5 308:
k 5 1 and b 5 1 vs time; log(Ke(t)/Ke(0)) is shown by the solid line
with open dots, and 2vit is shown by the dashed line.

2) Component ‘‘1’’ (F1) radiates for t . 64 and re-
mains at least as large as F2. Its amplitude does not
decrease with time as it happens for a 5 08. The ra-
diation therefore does not simply accompany the tran-
sition from the mode 1 to mode 2 but rather is a robust
feature of the late stage of the development of com-
ponent ‘‘1.’’

3) The radiation is also more energetic now, as we
can see in Fig. 7. The external part of the energy cor-
responding to the component ‘‘1’’ is now approximately
2.5% of the total perturbation energy. One percent of
the total energy is radiated into the exterior by each of
the components ‘‘0’’ and ‘‘2.’’ The sum of these num-
bers, (E0 1 E1 1 E2)/Ke, is 4.5%, which is much bigger
than the same quantity for a 5 08 (dotted line in Fig.
7). The more energetic radiation in the case of the slight-
ly nonzonal current is apparent.

The described radiation for a ± 0 is different from

the weak transient radiation in the case of the zonal jet.
The radiation is more energetic and occurs much earlier
in the case of a nonzonal jet. The radiating response has
complex structure and does not weaken with time.

6. a 5 308

We now turn our attention to the analysis of the de-
velopment of a short wave, k 5 1 in the case of a large
tilt. The comparison of the following results with the
results from the previous sections 4 (a 5 08) and 5 (a
5 58) for the same k will help us to understand the
dynamical effects of the nonzonality.

The logarithm of Ke(t)/Ke(0) is shown in Fig. 8 by
the solid curve. One can see that the solution grows in
agreement with the linear theory initially since the curve
is very close to the dashed line showing the linear
growth 2v i t. Then the growth begins to slow at t . 16,
significantly decreases by t 5 40, and the curve starts
to oscillate reaching the period of relatively slow
growth. We will call the second phase of development
associated with the small growth rate (t . 40) the non-
linear equilibration, although the solution does not reach
a steady state.

We now analyze the energy budget in the problem.
The zonally averaged perturbation energy equation in-
tegrated in y from 2yb to yb takes the form

F Fluxbrt
by (8)yb] x x x 1 x 1 x

2 2 2K (y ) 5 u c c dy 1 2u c c 1 cc 2 b c 2 c ¹ c ,e b E y x y x y yt 1 x[ ]]t 2 2 2y2y bb
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FIG. 9. The ratios of the terms in the energy equation to the total
perturbation energy: ][Ke(yb)/Ke]/]t is shown by the solid line with
circles, Fbrt/Ke is shown by the dashed line with stars, and flux/Ke is
shown by the dashed–dotted line with crosses; yb 5 2, a 5 308, k
5 1, and b 5 1.

where a horizontal bar represents averaging in x and
yb 1 x

2 2K (y ) 5 (c 1 c ) dy.e b E x y2
2yb

Flux terms on the right-hand side of the above equa-
tion should vanish at infinity ( yb 5 `), leaving the above
equation in the form of a balance between the energy
production term Fbrt and the rate of change of energy.
At the boundaries of our numerical domain, flux terms
typically remain negligible until the end of each ex-
periment. Note also the absense of an energy source
directly related to the forcing.

We plot all three terms as functions of time for a
region twice as wide as the jet itself in Fig. 9. We ob-
serve the almost perfect balance between the term Fbrt

and the rate of change of energy until t 5 40, after
which time the energy flux terms become significant. In
fact, at t 5 40 the flux exactly balances the rate of
change of the perturbation energy. The flux is always
negative indicating the outflow of energy from the re-
gion. Does it indicate the beginning of radiation at this
stage?

We observe the evolution of the structure of the so-
lution in the 2D contour plots of the total streamfunction
C( y) 1 c(x, y) (Fig. 10). The full flow field is notice-
ably different from the basic state starting at t 5 16.
The initially parallel basic flow is strongly modified by
the presence of meanders that are trapped to the jet
region. The dominant wavenumber of those meanders
is k 5 1 since the width of the numerical region Lx in
the x direction apparently equals two wavelengths and
2 3 2p/Lx 5 1.

The solution remains trapped until t 5 32. The per-
turbation field extends in the cross-jet direction for later
times: t . 40. We remember that time t 5 40 time

corresponds to the transition from fast exponential
growth to the phase of the very slow rate of increase
in the kinetic energy. Therefore, we observe radiation
beginning at the moment when fast growth significantly
slows.

For negative y, eddies elongated in the x direction are
formed in the far field by the end of the numerical
experiment (t 5 72). For positive y, the eddies are elon-
gated in the direction that makes an angle to the jet axis,
which, in turn, is tilted itself. The heavy dashed lines
in the figure parallel to the latitude circles give us an
idea about the orientation of these eddies in the con-
ventional, nonrotated coordinate frame. As we can see
from the figure at t 5 72, the eddies for positive y are
oriented nearly east–west, demonstrating the asymmetry
of the dynamical field in the cross-jet direction.

We now analyze the 1D plots of the streamfunction
in Fig. 11, which provide us with additional information
about the structure and the amplitudes of perturbation
motions. The amplitude of the wavelike radiating re-
sponse in the exterior grows in time after the start of
radiation at t 5 40. We can see that by t 5 56 the
perturbations with large amplitudes have filled the entire
numerical domain, which is 15 times wider that the jet
itself. What we observe is the process that effectively
transfers energy from the energetic unstable current to
the remote exterior regions. The importance of this pro-
cess requires a detailed study.

At first glance, the structure of the radiating response
appears complex. What is the detailed structure of the
obtained solution? Is mode 2 excited the way it is in
the previous numerical experiments for a 5 08 and a
5 58 and, if so, what is its role now? We note that even
if a 5 308, short linear waves in the problem are still
easy to identify as modified symmetric (mode 2) and
antisymmetric (mode 1) modes of a zonal jet, which
simplifies the answer to the last question.

We present the Fourier coefficients as functions of y
in Fig. 12 for certain chosen times. The overall dynam-
ical picture is similar to that for the case with a 5 58.
The radiation starts in the form of an x-independent
component F0 after t 5 40 and takes place mainly in
the half-plane where y is negative. The component rep-
resents the change in the x-averaged velocity field; it
reaches large amplitudes for y . 0 at later times.

The component ‘‘1’’ starts to radiate immediately fol-
lowing component ‘‘0.’’ The amplitude of the radiating
response in both the exterior regions is almost as large
as that inside the jet region [21, 1]. In contrast, com-
ponent ‘‘2’’ mainly radiates for positive y.

As in previous cases, we also find nearly symmetric
F2(y) at t 5 40. It is the sum of the very unstable nearly
symmetric mode 2 that is generated due to the numerical
noise in the problem and the presence of the secondary
component produced by self-interactions of component
‘‘1,’’ which is antisymmetric. The symmetric structure
in the interior points to the dominance of mode 2 in
component ‘‘2’’ in the region. However, despite the
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FIG. 10. Two-dimensional contour plots of the total streamfunction C (y) 1 c(x, y). Corre-
sponding times are given on the top of each plot. Heavy dashed lines are parallel to the latitude
circles. Mode 1: k 5 1, b 5 1, and a 5 308.

large growth rate (see Fig. 1) of mode 2 for k 5 2,
component ‘‘2’’ is never larger than the component ‘‘1’’
and does not dominate the development. The amplitude
of component ‘‘1’’ remains the largest in the set.

We now consider plots of the kinetic energy calcu-
lated for each component (Fig. 13). The values of Kkn

integrated over the whole domain are shown in the upper
panel. Component ‘‘1’’ is very important energetically;
unlike the case with a 5 0, component ‘‘2’’ does not
dominate the late stage of the development.

In the lower panel, the external kinetic energy isEkn

divided by Ke to give the portion of total energy that is
contained in both the regions [2`, 22] and [2, `]. The
picture further emphasizes the efficiency of the radiation

from a nonzonal current now enhanced by the large tilt.
The plotted values are very small before the beginning
of the radiation, approximately at t 5 40. After this
time, we observe the increase in the radiated energy
associated mainly with the component ‘‘1.’’ More than
17% of Ke is radiated by this component by the time t
5 72.

The components ‘‘0’’ and ‘‘2’’ contribute approxi-
mately 10% and 6% of Ke to the total value of the
external energy. The x-independent component of the
solution has large amplitudes; its contribution to the
kinetic energy is however smaller, mainly because of
the zero y velocity associated with it.

We can conclude that the mechanism that causes the
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FIG. 11. The streamfunction as a function of y. As in Fig. 2 but for x 5 1.37 and a 5 308: k 5 1 and b 5 1.

solution to radiate as soon as its growth becomes very
slow is much more effective compared to the relatively
weak transient process of radiation found in the case of
a 5 0. More than 30% of Ke is eventually transferred
into the external regions at a 5 308. The ability of short
waves to radiate is related to the change in their dy-
namical nature related to the nonzonal orientation of the
current. The change is the strongest for slowly growing
solutions; in the linear problem, it can only be observed

for long waves. Nonlinear effects stop the growth and
enable short waves to radiate.

a. Component phase speed

One of the most important criteria for radiation that
we used in the linear problem was the phase speed con-
dition that requires that the frequency and wavenumber
of the linear solution match those of the free Rossby
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FIG. 12. The Fourier coefficients F0 (solid lines), F1 (dashed lines), and F2 (dashed–dotted
lines) of the streamfunction as functions of y for a 5 308: k 5 1 and b 5 1.

wave in the far field (see, e.g., Pedlosky 1977; McIntyre
and Wessman 1978). The condition, therefore, sets the
limits on the phase speeds of a radiating wave (Ka-
menkovich and Pedlosky 1996):

(1 1 cosa) (1 1 cosa)
2b , c , b . (9)

2 22k 2k

It is hard to apply the same condition to the finite
amplitude solution everywhere in the domain because
solution is no longer a wave with well-defined phase
speed. However, it may be relevant to the radiating re-
sponse in the exterior. The motions there have small
amplitudes during the beginning phase of radiation and
should be nearly in a linear balance locally. As long as

the amplitude of a Fourier coefficient is small, we can
define the phase speed for each Fourier component
through the time derivative of the complex phase:

Imf (y, t)1 ] knc (y, t) 5 2 arctan . (10)kn 1 2k ]t Ref (y, t)n kn

It is easy to check that in the case of a plane wave,
the above relation gives the correct constant phase
speed. In our nonlinear problem, the phase speed defined
by (10) is generally a function of time and y, but should
be close to the constant value if is nearly in theFkn

linear balance. The values c1 computed for the com-
ponent ‘‘1’’ are presented in Fig. 14.

At t 5 16 the solution is still practically linear and
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FIG. 13. Kinetic energy corresponding to each Fourier component.
As in Fig. 4 but for a 5 308: k 5 1 and b 5 1. FIG. 14. The function c1 (y, t) defined by Eq. (10) as a function of

y for different times, k 5 1: b 5 1 and a 5 308. The upper and
lower bounds on the allowed for radiation phase speed set by the
phase speed condition (9) is shown by the dashed lines. The jet region
[21, 1] is not shown.

the phase speed is very close to constant. Its value lies
outside the interval set by the phase speed condition
(9), which implies spatial trapping according to the lin-
ear theory. The propagation of the phase slows at later
times; in fact, c1 at t 5 8 is already smaller than that
for the linear solution. At t 5 40, which is the beginning
of the strong radiation in the model, c1 satisfies the phase
speed condition (9), which is the necessary condition
for radiation in the linear problem. The phase speed is
mostly negative and small in absolute value.

The solution in the exterior at t 5 40 is still nearly
linear because of its small amplitude. As a result, the
phase speed calculated using Eq. (10) is reasonably
close to the constant in the region 23 , y , 21 and
for positive y. Therefore, the beginning of radiation is
dynamically consistent with the linear theory. The phase
speed c of the initially trapped solution decreases due
to the nonlinear effects, and the radiating response starts
to develop as soon as c becomes small enough to satisfy
the phase speed condition.

The situation changes for later times: c strongly de-
pends on y at t 5 64, which can be explained by the
nonlinear nature of the radiating response. The phase
speed still satisfies the phase speed condition; however,
the analogy with the linear-boundary-forced problem is
difficult to draw in this case.

b. Long wave: k 5 0.25

As can be seen from Eq. (4), the influence of the x
component of the planetary vorticity gradient b1 5
b sina is the strongest for waves long in x. Indeed, in
the long-wave limit all x derivatives become smaller
and the significance of the term b1cy in Eq. (4) increas-
es. The results for a long wave presented below should
therefore emphasize the effectiveness of the mechanism
for radiation related to nonzonality as it is described in
the preceding sections.

We choose our initial conditions in the form of a
single linear wave for k 5 0.25, b 5 1, and a 5 308.
Despite that its growth rate is almost half that of the
wave with k 5 1, the wave still grows rapidly (see Fig.
1c). As a result, the solution initially should be trapped.

The Fourier coefficients are presented in Fig. 15. We
observe that F0.25 is, indeed, weakly trapped during the
very early stage of development. The radiation further
develops at later times when nonlinear effects cause
other components of the solution to emerge.

Component ‘‘0’’ reaches finite amplitudes at t 5 40,
and the radiation starts quickly after that and occurs
initially to the left from the jet region only (t 5 64).
Component ‘‘0.5’’ produces radiation as vigorous as that
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FIG. 15. The Fourier coefficients F0 (solid lines), F0.25 (dashed lines), and F0.5 (dashed–dotted
lines) of the streamfunction as functions of y for a 5 308: k 5 0.25 and b 5 1. Corresponding
times are given on the top of each panel.

produced by the component ‘‘0.25’’ (t 5 64). The ra-
diation is very dramatic at later times; see Fig. 15 for
t 5 88. All three components correspond to the very
energetic radiation in the exterior region. The process
of the transfer of energy from the jet to the remote in
the cross-jet direction regions is very effective.

The effectiveness of the aforementioned transfer of
energy is further outlined by the values of the ratio of
the external part of energy to the total perturbationEkn

energy Ke (see Fig. 16). The component ‘‘0.25’’ dom-
inates the radiating response initially since the linear
wave used as the initial condition is only weakly
trapped. The corresponding energy in the external
regions increases in absolute value together with the

kinetic energy integrated over the whole domain. As a
result, the ratio between two values increases only
slightly in the course of nonlinear development.

In contrast, the relative importance of other compo-
nents rapidly grows in time. As a result, the energetically
significant part of the spectrum is broad in the described
numerical experiment. By the time t 5 96, component
‘‘0’’ gives 5% and component ‘‘0.5’’ gives 8%.

Short waves are very energetic in the described ex-
periment. Their wavenumbers correspond to large
growth rates in the linear problem (see Fig. 1). The
secondary harmonics created by the nonlinear interac-
tions can in turn cause the growth of unstable linear
modes for the same wavenumbers because of the round-
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FIG. 16. External kinetic energy corresponding to each component
divided by total perturbation energy Ke for (a) components ‘‘0,’’
‘‘0.25,’’ and ‘‘0.5’’; (b) ‘‘0.75,’’ ‘‘1,’’ and ‘‘1.25’’: a 5 308, k 5
0.25, and b 5 1. Component numbers are shown in the plot.

off error in the numerical method. The anticipated pro-
cess is similar to the excitation of mode 2 in the pre-
ceding section and can explain the widening of the spec-
trum in the described case.

The secondary harmonic ‘‘1.25’’ contributes almost
as much as the primary component ‘‘0.25’’ to the value
of the external energy. Component ‘‘0.75,’’ which is
excited by the secondary interactions between compo-
nents ‘‘0.25’’ and ‘‘0.5,’’ quickly overcomes the latter
in terms of corresponding energy in the external region.
Its external portion of energy is almost 14% of the Ke

by the end of the numerical experiment.
One should expect the structure of the radiating re-

sponse to become more complex in the course of further
development with a larger number of short waves form-
ing. One fact that will hold true is the remarkably en-
ergetic radiation. Indeed, if we add individual contri-
butions of each the component presented in the plot
together, we get almost 70% by t 5 96! (Compare to
less than 40% for k 5 1.)

The vigorous radiation observed in the numerical ex-
periment initialized by the long wave is clearly a result
of the change in the dynamical nature of the solution
caused by the nonzonality of the mean current. In gen-
eral, the long part of the spectrum is favored by the
radiation if a ± 0, although energetically radiating short

waves also develop in the course of nonlinear interac-
tions.

c. Dependence on b

We have observed that the nonzonality of the mean
current and the resulting presence of the downstream
component b1 of the planetary vorticity gradient have
a large effect on the radiating properties in the problem
(sections 6 and 6b). Large b1 results in the very ener-
getic radiation of the initially trapped short waves of
mode 1 for k 5 1. The ability to radiate energy to regions
remote from the jet itself is further enhanced if long
waves are considered (k 5 0.25) on which the x com-
ponent of the planetary vorticity gradient has especially
large influence (see preceding section).

The value of b1 5 b sina in our model is controlled
by both the nondimensional planetary vorticity gradient
b 5 /U and the horizontal tilt a. We therefore need2Ljet

to consider the influence of each of the parameters in-
dividually on the radiating properties in the model.

Note that the forcing F in (1) depends only on b1,
that is, the combined effect of b and the tilt. Investi-
gating the effect of b and a independently will allow
us to attribute the radiation to the tilt of the jet rather
than to the potential vorticity forcing F.

We have already studied the case in which b is rel-
atively large, but the tilt is small: a 5 58, b 5 1 in
section 5. A slightly nonzonal, strong and narrow jet
was therefore considered in the experiment, and the
planetary vorticity gradient had a small downstream
component: b1 5 0.087. The comparison with the ex-
periment for a 5 308 and the same b (section 3c) reveals
the enforcing effect that larger tilt has on the radiation.
But does the tilt by itself or, rather, the related increase
in b1 enhance the radiation in the latter case? The ques-
tion is especially important because, as noted, the mag-
nitude of forcing needed for balancing the basic flow
b1u is directly proportional to the value of b1.

We try to answer these questions by doing the nu-
merical experiment with smaller b. We will keep b1 as
small as in the case b 5 1, a 5 58, but make a as large
as in the case a 5 308, b 5 1. For the next numerical
experiment we consider a smaller value of the planetary
vorticity gradient, b 5 0.25 for k 5 1, a 5 308. The
downstream component b1 is small and equals 0.125,
making the comparison with the case b 5 1, a 5 58
meaningful. If b1 governs the process of radiation, the
two cases will be very similar in radiating properties.

The Fourier coefficients F0, F1, and F2 are presented
in Fig. 17. The difference with the results for larger b
(see Fig. 12) is apparent.

The x-independent component of the solution reaches
finite amplitudes by t 5 48 and starts to radiate waves
long in y to the left from the current. By the end of the
numerical experiment, the component reaches very large
amplitudes, becoming the largest in amplitude in the
set. The change in the x-averaged field is much larger



1678 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 17. The Fourier coefficients F0 (solid lines), F1 (dashed lines), and F2 (dashed–dotted
lines) of the streamfunction as functions of y for b 5 0.25, k 5 1, and a 5 308.

than in the case of larger b. The planetary vorticity
gradient acts as a restoring force for Rossby wave os-
cillations; therefore smaller beta destabilizes the jet even
further, leading to the large changes in the x-averaged
momentum over the whole domain.

Despite the absence of the corresponding y velocity,
the kinetic energy of component ‘‘0’’ at t 5 96 is larger
than of component ‘‘1’’ (Fig. 18a). Unlike all cases
considered before (see, in particular, Figs. 13b and 7),
the radiating response is dominated energetically by the
x-independent component of the solution. Nearly 40%
of the total perturbation energy is radiated by this com-
ponent; one can compare this number to 10% for b 5

1 (Fig. 13b) in which case the radiation is also very
strong.

Component ‘‘1’’ is mainly confined to the region from
22 to 2 until t 5 56, which can be seen in both Figs.
17 and 18. After that, the component slowly extends in
the y direction, especially to the right from the jet (Fig.
17). However, even at t 5 104 significant amplitudes
of the streamfunction are only observed in the interval
[25, 5]. The amplitudes are still smaller than those of
the component ‘‘0.’’ This slow spreading of the com-
ponent is different from the vigorous radiation of waves
observed, for example, in section 3d.

Nevertheless, we observe the transfer of energy from
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FIG. 18. Kinetic energy corresponding to each Fourier component.
As in Fig. 4 but for b 5 0.25, a 5 308, and k 5 1.

the jet to the regions that are five times farther from the
jet axis than the edge of the jet. Although by the end
of the numerical experiment the radiation by component
‘‘1’’ is less energetic than the radiation by component
‘‘0,’’ the corresponding external energy E1 is still ap-
proximately 15% of Ke. The number is only slightly
smaller than that for the case b 5 1, a 5 308 and is
significantly larger than in the case of a 5 58 (less than
2.5% in that case; see Fig. 7).

The remarkable growth in the external part of the
kinetic energy in the described case leads us to the con-
clusion that the main factor in setting the radiation is
the nonzonal orientation of the mean current, not the
downstream component of the planetary vorticity gra-
dient b1 and the magnitude of the potential vorticity
source b1u , which are both small. Small b leads to the
very energetic development of x-averaged component,
but slows the radiation of the component ‘‘1.’’

7. Mode 2

We have already observed in section 3a that the emer-
gence of the very unstable mode 2 in the course of
nonlinear development of mode 1 leads to the weak
radiation by the latter. What are the radiating properties
of mode 2 alone?

This mode is strongly trapped in the linear problem
if the jet is zonal. The radiating properties in the problem

change significantly if the horizontal tilt of the jet is
made nonzero. The long waves become radiating, al-
though the radiation is weaker than for mode 1. What
happens in the nonlinear regime?

In the numerical experiment not presented here, no
radiation is found in the case of a zonal jet for k 5 2.
The solution remains trapped to the jet throughout the
whole nonlinear development (the problem is integrated
until t 5 96). It is, therefore, the interaction with the
shorter wave of mode 1 that produced weak radiation
in the experiment described in section 3a.

The next step is to make the mean current nonzonal
and observe changes in the radiating properties of the
solution. For this purpose, we initialize the model with
mode 2 for k 5 1.8, b 5 1, and a 5 30. The wave
evolves very rapidly because of the very fast initial
growth; the growth rate is more than twice as large as
that of mode 1 for k 5 1 (see Fig. 1). The problem is
integrated until t 5 52.

We turn our attention to the Fourier coefficients of
the solution (see Fig. 19). In the way typical of the
nonlinear development in our model, the radiation starts
in the form of the x-independent component of the so-
lution at t 5 24 and occurs for negative y. We note that
radiation begins earlier than for the mode 1 because of
the faster development of the linear solution. The be-
ginning of the nonlinear equilibration is once again the
beginning of the radiative phase in the development.

Component ‘‘1.8’’ dominates the development (Fig.
20a). Unlike mode 1, the nonlinear development of
mode 2 does not result in the excitation of the short,
very unstable linear waves because the linear problem
is stable for k larger than 3b (Fig. 1).

The x dependence of the radiating response develops
for t . 36, when components ‘‘1.8’’ and ‘‘3.6’’ start to
radiate. However, the radiating response formed by
component ‘‘1.8’’ decays in space away from the jet
region. The radiation still reaches as far as y 5 25 and
y 5 10 for negative and positive y correspondently by
t 5 52, but the amplitudes are much smaller than those
for mode 1.

The energy E1.8 of component ‘‘1.8’’ contained in both
the external regions is about 5% of the total perturbation
kinetic energy Ke (Fig. 20b). Large gradients of the
streamfunction compensate the smallness of its ampli-
tude in the value of corresponding energy. Component
‘‘3.6’’ contributes very little (less than 0.5%).

One can recall from the linear problem that even long
waves of mode 2 are weakly radiating (see Kamenkov-
ich and Pedlosky 1996). Despite the absence of spatial
trapping of the solution at the long-wave cutoff of the
dispersion curve, the process of radiation is significantly
less energetic than that for the long waves of mode 1.
As we have just observed, nonlinear effects do not sig-
nificantly change the radiating properties of mode 2;
radiation is weak. The difference with the longer non-
linear waves of mode 1, which radiate a significant por-
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FIG. 19. The Fourier coefficients F0 (solid lines), F1.8 (dashed lines), and F3.6 (dashed–dotted
lines) of the streamfunction as functions of y. Corresponding times are given on the top of each
panel. Mode 2: a 5 308, k 5 1.8, and b 5 1.

tion of kinetic energy into the external regions, is ap-
parent.

8. Summary

The present study concerns the ability of a nonzonal
ocean current to support unstable disturbances that are
not spatially trapped to the current but, rather, are of
radiating nature. These radiating instabilities can effec-
tively transfer the kinetic energy of the basic current,
initially localized in space, into regions remote from
such an energy source. An energetic eddy field can be
induced in the far field as a result.

Two main issues are addressed in the study. The first
is the difference in radiating and stability properties
between a zonal and nonzonal flow. The second is the
effects that nonlinear interactions have on the radiating
properties of a solution in the finite-amplitude regime.
A simple barotropic QG model with a nonzonal current
as a basic state is used in the study.

The radiation of short waves that are strongly linearly
unstable and trapped during the initial stage of devel-
opment takes place during the nonlinear equilibration
in the model with a nonzonal current. The fast initial
growth of those waves, which is the main cause for their
spatial trapping, slows significantly during the equili-
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FIG. 20. External kinetic energy corresponding to each Fourier
component divided by total perturbation energy Ke for a 5 308, k 5
1.8, and b 5 1. As in Fig. 4 but for mode 2.

bration and a solution starts to expand in the cross-jet
direction.

As in the linear problem (Kamenkovich and Pedlosky
1996), the difference in the radiating properties between
a zonal flow and a nonzonal current is large. The ra-
diation by the zonal flow is weak and takes place as a
result of the transient growth of secondary instabilities
in the model. In contrast, the radiation is robust and
very energetic if the horizontal tilt is different from zero.
For a 5 58, the radiation starts when initially fast ex-
ponential growth significantly slows. The corresponding
radiating response is much more energetic than that in
the case of the zonal current.

The observed radiation by a nonzonal current is
caused by the reduction in the disturbance growth,
which happens during the equilibration of solutions. On
the other hand, the radiation does not seem to cause the
equilibration in the model since the latter also occurs
in the case of a zonal current, in which case no ener-
getically significant radiation is found.

A wide spectrum of secondary modes is generated in
the course of nonlinear development of a single primary
mode as a result of wave–wave interactions. All these
components become radiating when they reach finite
amplitude. The radiation typically starts in the form of
the x-independent component that represents the change
in the x-averaged momentum. The other harmonics in

x follow; they extend into regions remote from the axis
of the basic current, resulting in the complex spatial
structure of the radiating response in the far field. The
radiating response in the exterior is initially in agree-
ment with the phase speed condition of the linear theory
while the amplitudes are still small.

The radiation is especially remarkable when longer
waves are considered, since the effect of the downstream
component of the planetary vorticity gradient is the larg-
est for those waves [see Kamenkovich and Pedlosky
(1996) and Eq. (4)]. For k 5 0.25, the broad spectrum
of vigorously radiating waves is excited, eventually
transporting more than 70% of the total perturbation
energy into the far field. The radiation starts very quick-
ly, largely because of the small initial growth rate and
resulting weak trapping of the linear solution.

The effects of smaller b are also studied in detail.
For b 5 0.25, the downstream component of planetary
vorticity gradient b1 is as small as in the case of larger
b but smaller tilt (b 5 1 and a 5 58). The radiation,
however, is significantly stronger. We can conclude that
the nonzonal orientation of the current is the main factor
controlling the strength of the radiation in the model.

We recall that the forcing, which acts as a vorticity
source necessary to balance the mean field, is propor-
tional to b1 (section 2). That radiation is strong despite
the smallness of b1 demonstrates that the radiation is
not directly related to the forcing itself but is, rather,
caused by the nonzonal orientation of the mean current.
The role of forcing is limited to supporting the nonzonal
current.

Although the details of the development depend on
the initial conditions used in any particular numerical
experiment, the transfer of energy is effective in all
cases. A large portion of the perturbation kinetic energy
is contained in the far field by the end of all numerical
experiments described in the present work.

We have considered only the nonlinear development
in the problem initialized with a single Fourier mode.
In the more general case in which initial conditions
consist of a set of linear waves, the short waves that
typically grow faster initially can eventually dominate
the development in the region of the jet. The longer
nonlinear waves that are more radiating can be either
suppressed by those trapped short waves and not pro-
duce radiation, or they can continue radiation dominat-
ing the far field. In any case, the dynamical properties
of both types of modes should change. Those changes
are studied in Part II of this study.
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APPENDIX

Open Boundary Conditions

For the open boundary conditions we use the modified
Orlanski boundary conditions (5). For the finite-differ-
ence form, we first write (5) with unknown propagation
speed c (Blumberg and Kantha 1985):

t t22 t22c 2 c c 1 cN N Nt t22 t211 c 1 c 2 c 5 2 .1 2N N N71[ ]2Dt Dy 2 Tf

(A1)

The index N represents a grid point on the open bound-
ary. The upper sign in the double-sign expressions cor-
responds to the boundary on the right, and the lower
sign corresponds to the boundary on the left. Here x
dependence is omitted from all expressions in this sec-
tion.

The next step is to determine the propagation speed
c. To do that, we write the above expression now for a
grid point neighboring to the boundary N 7 1, rather
than at the boundary itself, and without the damping
term. We get the expression for c (Orlanski 1976):

t t22c 2 c DyN71 N71c 5 . (A2)
1 2Dt

t t22 t21c 1 c 2 c1 2N71 N71 N722

As is pointed out in Orlanski (1976), we need also
to make sure that the disturbance propagates to the
boundary. Therefore, c should be set to zero if expres-
sion (A2) gives negative number for the right boundary
and positive value for the left boundary.

The above conditions have proven to work very well
for most cases in our model. The experiments show in
particular that open boundary conditions result in much
less reflection than if sponge layers were used.
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