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ABSTRACT

Internal waves propagating with an upward component of group velocity toward the ocean surface are reflected
at the base of the mixed layer. A simple model is constructed to examine nonlinear aspects of the reflection. It
consists of a uniform layer of depth h, representing the mixed layer, bounded above by a rigid surface and below
by an interface, across which there is a density discontinuity Dr and beneath which fluid is stably stratified with
buoyancy frequency, N 5 const. Attention is given to the case in which an internal wave in the stratified layer,
incident from below on the density interface, has frequency s , N/2. In addition to a first-order wave of
frequency s that is reflected downward from the density discontinuity, a second-order wave is then generated
with frequency 2s and with horizontal wavenumber twice that of the incident wave, which also propagates
downward away from the interface. The shape of the waves generated at the interface is investigated and a
measure of their nonlinearity is defined. Highly nonlinear waves, with steeper slopes ahead of the wave crest
than following it, are expected when the frequency of free interfacial waves with the same horizontal wavenumber
as the incident wave is close or equal to s and when the vertical wavelength of the incident waves is much
greater than h.

The results are used to describe the nature of forced waves in the thermocline as supercritical internal waves
propagate up a sloping boundary. The large soliton waves observed in the Bay of Biscay, where internal tidal
waves propagating from their source at the shelf break encounter the thermocline, may be a consequence of the
effects of nonlinear reflection.

1. Introduction

The problem to be addressed is that of the nonlinear
reflection of a train of internal waves from a narrow
thermocline separating a uniformly stratified region
of constant buoyancy frequency N from a uniform
upper ocean (or lake) mixed layer of depth h. This
came to our attention when considering interactions
that occur in the region where a stratified ocean or
lake meets sloping boundaries and, in particular, when
examining thermistor chain and CTD records made
in summer in the stratified waters close to the shore
of Lake Geneva over a sloping bottom boundary (e.g.,
see Thorpe and Jiang 1998). After a period of calm
weather lasting for a week, oscillations persist in the
almost uniform stratification of the deeper water with
amplitudes of 1–2 m. The strongly stratified seasonal
thermocline is relatively unperturbed. It is known
from the theoretical work of Phillips (1966) and Er-
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iksen (1985) and from laboratory experiments of
waves incident on slopes (Cacchione and Wunsch
1974; Thorpe 1987; Taylor 1993) that internal waves
impinging on a sloping boundary may, on reflection,
be amplified and propagate upward through the strat-
ified thermocline toward the mixed layer. Waves hav-
ing the form of a wave mode in deeper water are
decomposed on reflection so that, after reflection,
those traveling toward the mixed layer are more ap-
propriately described as rays. A condition for internal
wave propagation is that the wave frequency s is less
than N; the inclination of an internal wave ray path
to the horizontal (or the angle between the group ve-
locity vector and the horizontal) is sin21(s/N ) (Phil-
lips 1966). But what happens to the ray when it reach-
es the high density gradient boundary of the stratified
region and cannot propagate upward farther into the
overlying mixed layer where N is less than the wave
frequency? It may reflect if N gradually decreases below
s as depth decreases, as demonstrated by theory and
laboratory experiments by Nicolaou et al. (1993). More-
over, a linear theory and experiments of Delisi and Or-
lanski (1975), described below, show reflection occurs
at a density interface bounding a stratified region in
which internal waves propagate. But how do
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nonlinear terms affect reflection? Can waves over a shal-
lowing bottom, perhaps after successive reflections at a
density interface and at the sloping lower boundary
(where their wavenumbers and amplitudes are changed),
reach a critical condition in which their interaction with
the high density gradient in the thermocline becomes
very large?

Our interest in the subject comes also from the in-
triguing observations of Holligan et al. (1985) and
New and Pingree (1990, 1992). Some 140–150 km
away from the shelf break in the deep water of the
Bay of Biscay they find large amplitude internal
waves, usually two or three, with deep troughs and
relatively broad crests resembling those found in so-
liton packets. The waves travel in directions away
from the shelf break. It is curious that, in general
contrast to observations elsewhere of internal wave
soliton packets, there are so few waves observed and
that the waves are confined to a local region. New
and Pingree argue convincingly that these thermocline
waves owe their presence to internal tidal waves. Gen-
erated at the shelf break by the interaction of the bar-
otropic tide with the topography, these internal waves
propagate downward as a ray, which is well docu-
mented by observations and a numerical model by
New (1988). The ray meets and reflects from the sea
bed at depths of some 3.8 km (where the interaction
with the benthic boundary layer may raise questions
related to those considered here; see also d’Asaro
1982). The waves then propagate upward toward the
seasonal thermocline. They are predicted to encounter
the upper layers of the ocean in the vicinity of the
location at which the large internal waves are ob-
served in the center of the Bay of Biscay. New and
Pingree remark that numerical experiments with
New’s linear model show that the amplitudes of these
waves are approximately double those found near of
the shelf break. In view of the recent increased interest
in the properties and long range propagation of in-
ternal tides (Dushaw et al. 1995; Morozov 1995;
Munk 1998), it is of importance to understand those
processes that may affect their propagation and de-
tection, one of which is the interaction with the ther-
mocline.

The elegant laboratory experiments and linear the-
ory of Delisi and Orlanski (1975) provide very useful
insights into the dynamics of wave reflection from an
interface between two layers of stratified and non-
stratified water across which there is a density dis-
continuity Dr. If dissipation is negligible, the energy
flux of the waves must be conserved. A reflected in-
ternal wave ray is therefore generated of amplitude
equal to the incident wave and, since it has the same
frequency as the incident wave, the reflected wave
travels downward from the interface at the same angle
below the horizontal as the incident wave has above
it. The reflected wave does not, in general, have the
same phase as the incident wave. The interface be-

tween the layers is perturbed as a consequence of
reflection, and an interfacial wave is locally forced in
the region of the reflecting ray. Photographs of the
experiments show the interfacial wave to be largely
confined to the region where the ray is incident on
the interface. The phase of the interfacial wave ad-
vances in the same direction as the horizontal phase
velocity component of the incident internal wave. The
interfacial wave has an amplitude (in the linear the-
ory) that depends on a ratio s/s 0 . Here s is the fre-
quency of the incident wave frequency and s 0 is a
frequency that depends on the density difference
across the interface. (Delisi and Orlanski use the ratio
of the horizontal phase speeds instead of s/s 0 , but
the two ratios are equal since the phase speed is s/k.
However s 0 is not, as suggested by Delisi and Or-
lanski, the frequency of interfacial waves that may
travel along the interface with the same horizontal
wavenumber as the incident waves—see section 2a.)
When s 5 s 0 , the interfacial waves have their max-
imum amplitude, twice that of the incident wave, and
the incident and reflected waves in the stratified layer
have the same phase.

Delisi and Orlanski do not provide any evaluation
of nonlinear effects on, for example, the amplitude of
the interfacial waves. When N is constant below the
interface, as supposed here for simplicity, both the
incident and the reflected waves may be described by
linear solutions of the equation of motion, which are
exact; no terms in the equations of motion are dis-
carded other than those of dissipation, which we shall
neglect here, and the solutions are valid even when
the waves are of such large amplitude that they de-
velop regions of static instability. Such solutions are
not, however, available for the interfacial waves, and
an objective is therefore to investigate, using a con-
ventional approximation scheme, the nonlinear terms
that affect the form of the interfacial waves during
reflection.

2. Theory

a. First-order solution

The model is that shown in Fig. 1. The upper ‘‘mixed
layer’’ is homogeneous of uniform density r1 and of
mean depth h, topped by a rigid boundary at z 5 h.
There is a density increase, Dr, across the interface at
z 5 0, below which the density increases steadily down-
ward and the buoyancy frequency N is constant. For
simplicity, the effects of rotation are ignored. The phase
and group velocities of internal gravity waves have op-
posite directions of propagation in the vertical. A plane
internal wave with phase vector (k, 2m) with k and m
. 0, traveling with a positive upward component of
group velocity in the x–z plane, is incident on the in-
terface and is represented by a streamfunction cI 5 a
cos(kx 2 mz 2 st). This form of the streamfunction is
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FIG. 1. The geometry of the analytical model. The upper boundary at z 5 h is a rigid surface.
The incident wave has wavenumber (k, 2m) and travels in a direction with group velocity vector
at angle b to the horizontal so that tanb 5 k/m. It produces a disturbance z 5 h(x, t) at the
interface across which there is a density discontinuity, Dr, between the lower layer, where N is
constant, and the upper layer, where the density is uniform.

an exact progressive wave solution of the inviscid equa-
tions of motion when the Boussinesq approximation is
valid (Thorpe 1994a). The perturbed density is equal to

2r {1 2 (N /g)[z 2 (ak/s) cos(kx 2 mz 2 s t)]},0

or r0[1 2 (N 2z/g)] 1 rI, where r0 is a mean reference
density and rI is the density perturbation at (x, z) and
time t, caused by the incident wave. The angle that the
group velocity makes with the horizontal is b 5 sin21(s/
N), and the dispersion relation is s 2 5 N 2k2/(k2 1 m2).
Although the density perturbation is sinusoidal, the iso-
pycnal surfaces are not, except at very small amplitude.
The waves on the isopycnal surfaces have steeper for-
ward faces than rear faces, where ‘‘forward’’ means
ahead of the wave crest, which advances in the x di-
rection and is therefore the horizontal direction of phase
advance. The appropriate measure of wave steepness is
Am (Thorpe 1994a), where A 5 ak/s is the amplitude
of the vertical fluctuations in the density field caused
by the waves. If Am 5 1, isopycnal surfaces become
vertical somewhere in the wave field. They overturn if
Am . 1.

Following Delisi and Orlanski (1975) we can find a
solution that represents motion and density perturba-
tions in the three parts of the system and satisfies the
condition of zero vertical velocity at z 5 h and also the
linearized kinematic and pressure boundary conditions
at the interface, that particles follow the interface and
that pressure is continuous, respectively. The solution
consists of a reflected wave with streamfunction cR1 and
density perturbation rR1 below the interface, an inter-
facial wave z 5 h1(x, t), and a forced motion with ve-
locity potential f 1 in the homogeneous layer above the
interface. The velocity potential satisfies Laplace’s
equation and the boundary condition w 5 ]f 1/]z 5 0
at z 5 h. The solution for the reflected streamfunction is

c 5 a cos(kx 1 mz 2 s t 1 g), (1)R1

where tan(g) 5 2tbtkhp/( 2 p2 ) with tb 5 tan(b), tkh
2 2t tkh b

5 tanh(kh), and p 5 [1 2 /s 2] where 5 gkDrtkh/2 2s s0 0

r0. The latter is not the dispersion relation of interfacial
waves traveling along the interface between uniform
density layers, which is s 2 5 gkDrtkh/(r0tkh 1 r1),
where r1, r2 are the densities of the upper and lower
layers, respectively; see LeBlond and Mysak (1978).
Nor is it the dispersion relation of interfacial waves on
an interface between a uniform and a stratified layer, as
is the physical situation here. (The dispersion relation
for s . N is then found to be

2 2 2 1/2s 5 gkDrt /[r 1 r t (1 2 N /s ) ].kh 1 0 kh

There is no unique dispersion relation if s , N .) The
amplitudes of the incident and reflected waves (i.e., the
amplitudes of the vertical displacements of isopycnal
surfaces) are both equal to A 5 ak/s. When p 5 0 (i.e.,
when s 5 s0), the angle g 5 0, and the incident and
reflected waves are in phase. The reflected streamfunc-
tion (1) is, like the incident wave, an exact solution of
the equations of motion but the slope of forward faces
of its isopycnal surface displacements (ahead of the
wave crests) is less than the rear. The displacement of
the interface at the foot of the mixed layer is sinusoidal
at this first order and is given by

2 2 2h 5 2A[t /(t 1 p t )]1 kh kh b

3 {t cos(kx 2 s t) 2 pt sin(kx 2 s t)}kh b

5 2A cosa cos(kx 2 s t 1 a ), (2)1 1

where a1 5 tan21(ptb/tkh) (taking the principal value) is
the phase of the interfacial wave relative to that of the
incident wave. When p 5 0, the amplitude of the in-
terfacial wave is equal to 2A, twice that of the incident
wave, and the phase difference, a1, is zero. Equation
(2) is a first-order, and not an exact, solution for the
interface displacement.
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In the experiments conducted by Delisi and Orlan-
ski, internal waves generated by a horizontal paddle
arrangement propagate in rays through a uniformly
stratified layer to reflect from an interface beyond
which the density is uniform. This reproduces com-
pletely the geometry of the analytical model, except
that it proved more convenient for the incident waves
to propagate downward through a uniform stratifi-
cation beneath which was an interface and mixed lay-
er ; the laboratory model is the inverse of that shown
in Fig. 1 but the dynamics are the same. Experiments
are run with h 5 0.45(60.005) m and 2p/k 5 0.24
m, so that t kh is always close to unity. The buoyancy
frequency ranges from 0.72 to 0.84 s21 , and the wave
frequencies from 0.42 to 0.72 s21 , and b ranges from
338 to 628. The parameter p is varied from about 260
to unity, mainly by varying the density differences
across the interface. The interfacial wave slopes, k|h1|,
are less than 0.5. Interfacial phase and amplitude are
examined as functions of Dr/r 0 . The agreement be-
tween the linear theory and observations is fairly
good, demonstrating the trends predicted by the the-
ory, with phase agreeing to within about 308 and am-
plitude to typically about 650%. Delisi and Orlanski
observe the development of regions of static insta-
bility within the region of overlap of the incident and
reflected rays that, from their orientation, appear to
be a manifestation of the small-scale parametric in-
stability often observed in laboratory experiments on
internal waves and explained by McEwan and Rob-
inson (1975) to be associated with subharmonic fre-
quencies, s/2 (see also Mied 1975; Thorpe 1994b).
They do not appear to affect the density interface, our
focus of attention, and are not considered further here.

b. Second-order solution

Second-order effects are accounted for in the now
conventional way of seeking a solution of the equations
of motion and the boundary conditions as a perturbation
about the first-order solution (see e.g., Thorpe 1968,
1987). If cR2, f 2, and h2 are the second-order stream-
function below the interface, the second-order velocity
potential in the mixed layer and the second-order in-
terface perturbation, respectively, then it may be shown
that cR2 must satisfy the linear equation

[]2¹2/]t2 1 N 2]2/]x2]cR2 5 0, (3)

where ¹2 is the Laplace operator, ]2/]x2 1 ]2/]z2. All
first-order product order terms vanish indentically and
cR1 satisfies (3). The velocity potential f 2 must, like
f 1, satisfy Laplace’s equation and the boundary con-
dition ]f 2/]z 5 0 at z 5 h. All the nonlinearity derives

from the boundary conditions at the interface. The
boundary conditions are given in appendix A. The so-
lution is straightforward. The second-order terms are
forced by products of first-order terms, leading to sec-
ond-order terms with phase proportional to 2(kx 2 st).
Equation (3) then implies that cR2 is proportional to
exp[2i(kx 1 m2z 2 st)], where 5 k2(N 2 2 4s 2)/2m2

4s 2. This wavenumber can also be written as m2 5 (m/
2)(1 2 )1/2. If s . N/2 (or equivalently b . p/6),23tb

m2 is imaginary and the forced second-order reflected
component is an evanescent mode, decaying exponen-
tially with distance below the interface. (Similar eva-
nescent reflected modes are found in internal waves re-
flecting from a slope; Thorpe 1987). If, however, s ,
N/2 (i.e., if b , p/6 or 308), this forced reflected com-
ponent is a free wave propagating downward from the
interface when the positive root for m2 is taken. We
shall here suppose that s , N/2, which is the case most
applicable to the ocean and lakes, although not that
which corresponds to the experiments by Delisi and
Orlanski where larger values of b are used.

Expressions for the amplitude |h2| and the phase a2

of the second-order interfacial wave displacements, so
that h2 5 |h2| cos[2(kx 2 st) 1 a2], are given in ap-
pendix B. The natural expansion for interfacial waves
is in terms of the first-order wave slope (Hunt 1961;
Thorpe 1968). A measure of the nonlinearity of the
interfacial waves, x, is given by the ratio of the second-
order amplitude to that of the first, divided by the wave
slope of the first order wave, k|h1|; x 5 |h2|/k|h1|2. This
may be written in terms of m since k 5 mtb.

3. Discussion

a. Nonlinearity and wave shape

Values of x and the difference in the phase angles, g
5 (a1 2 a2/2), of the first- and second-order interfacial
displacements are plotted in Figs. 2 and 3, respectively,
for various values of p, tb, and tkh. The angle g is a
measure of the distortion of the first-order sinusoidal
wave shape by the superposition of the second-order
terms. If g 5 0, the troughs are flattened and the peaks
narrower. When g 5 p/2, the waves have narrow
troughs and flattened peaks. If 0 , g , p/2, the forward
face of the waves is steeper than the rear face, while
the contrary holds true when p/2 , g , p. The behavior
is cyclic with period p so that, for example if g 5 2p/
2, the waves again have narrow troughs and flattened
peaks. At p 5 0 [i.e., s 5 s0, and when the first-order
interface displacement has its largest value, h1 5 2A
cos(kx 2 st)], the second-order interfacial wave dis-
placement is

2 2 2 2 2 2 2 2 2 2 1/2h 5 A k{(3t 2 t t 2 2t )/[t t (1 2 3t 1 t t )]}[t t cos2(kx 2 s t) 2 (1 2 3t ) sin2(kx 2 s t)], (4)2 kh b kh b b kh b b kh kh b b
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FIG. 2. (a) The interfacial wave nonlinear parameter x and (b) the angle g 5 a1 2 a2, which
defines the wave shape (see text), for varying p at t b 5 tanb 5 0.1 and values of tkh 5 tanhkh
5 0.03, 0.1, and 0.3, as marked on the curves.

or, if both tb (5 k /m) and tkh K 1, (when tkh ø kh)
22h /2A 5 Am[3/2 2 (mh) ] sin2(kx 2 s t). (5)2

Here |h2|/2A is approximately equal to 3Am/2 if mh k
1; that is, if the inverse wavenumber of the incident
internal wave, m21, is much smaller than the thickness
of the upper mixed layer, h. The interfacial wave then
has steeper slopes ahead of the wave crest than follow-
ing it and so resembles the shape of the incident internal
wave, but the perturbation from sinusoidal is generally
small if the incident wave steepness, Am, is small. If,
however, mh K 1 (i.e., when the vertical wavelength
of the incident internal wave, 2pm21, is much greater
than the thickness of the upper mixed layer), |h2|/2A is
approximately equal to Am/(mh)2, which may be of or-
der unity, even when the slope of the incident wave,
Am, is small. The wave shape is asymmetrical with
steeper slopes following the wave crest than in front of
it. In this case x 5 1/(2kmh2). Figure 2a shows the
variation of x with p at tb 5 0.1 and at tkh 5 0.03, 0.1,
and 0.3. When p 5 0 and tkh 5 0.03, then mh 5 0.3
and x has large values as predicted. Figure 2b shows
how g, and therefore the wave shape, varies for the same
set of parameter values.

If p K 21 (i.e., when |p| k 1 or s K s0), h1 ø
2[2Atkh/ptb] sin(kx 2 st), h2 ø 2[p/4tkhk |h1|2] cos2(kx
2 st) and x ø |p|/2tkh. This tends to infinity, as indicated
by the increasing values of x at large negative p in Fig.
2a. The waves have flattened crests and narrow troughs
but, since |h1| is small compared to the incident wave
amplitude at large negative p, the amplitude of the in-
terfacial waves is small even though the nonlinearity is
great; the mismatch of natural frequences of the incident
and interfacial wave makes the interface relatively un-
responsive to the forcing by the incident wave. For com-
parison, Fig.3 shows the variation in x and g at p 5
0.2 as tkh varies from 0 to 1 for tb 5 0.1, 0.2, and 0.4.
Large values of x occur at sufficiently small tb, as ex-
pected.

b. Waves traveling over a slope toward a thermocline

Supercritical internal waves approaching a slope
from deep water, and reflecting and continuing with
a positive component toward shallow water, will be
reflected downward from an overlying thermocline.
The second-order component with frequency 2s will
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FIG. 3. (a) The interfacial wave nonlinear parameter x and (b) the angle g 5 a1 2 a2, which
defines the wave shape (see text), for varying tkh 5 tanhkh at p 5 0.2 (s0/s 5 0.89) and values
of tb 5 tanb 5 0.1, 0.2, and 0.4 (b 5 5.78, 11.38, and 21.88, respectively) as marked on the curves.

be either evanescent and therefore trapped in the vi-
cinity of the thermocline if b . p/6 or free if b ,
p/6. If the latter, it (and higher-order components)
will travel at a steeper angle to the horizontal than
the incident or first-order reflected wave but with the
same group speed. It will therefore lag behind the
linear component in its propagation toward shallow
water ; the thermocline reflection does not lead to a
mechanism that reduces the time of travel of the in-
ternal waves toward shore. On each reflection from
the bottom the horizontal wavenumber component
will increase. The frequency s 0 will therefore in-
crease, and p 5 [1 2 /s 2 ] will decrease since s2s 0

remains constant, p eventually becoming large and
negative. The amplitude of the first-order wave on the
thermocline is then proportional to 2A/ptb [see (2)]
and, since p is proportional to 2k, its change as the

internal wave proceeds toward shore will depend on
A/k, provided the density distribution, so tb and ther-
mocline depth remain the same. However, on internal
wave reflection from a sloping boundary, A/k is con-
served (Eriksen 1985) so that little change in the am-
plitude of the forced thermocline displacement may
occur as waves approach shore, at least after the po-
sition is passed where p 5 0, although because the
wavenumber k increases, they will become progres-
sively steeper. The nonlinear terms examined here do
not appear to lead to significant processes occurring
at the interface except perhaps for waves with p . 0
in deep water for which p may become close to zero
after reflection at the bottom. For waves with p , 0
in deep water, wave breaking is most likely to occur
as a consequence of wave steepening on reflection at
the sloping bottom.
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c. Waves in the Bay of Biscay

New’s (1988) linear numerical model of the internal
tides in the Bay of Biscay shows the internal wave
ray propagating at an angle of about 1 in 25 to the
horizontal, so tb 5 0.04. The internal waves observed
in the center of the bay by New and Pingree are 1–2
km in wavelength, and the mixed layer is about 50 m
deep. These values give values of t kh of about 0.156
to 0.304, and so p, 5 1 2 gkDrt kh /s 2 r 0 , is approx-
imately 1 2 (2.5 2 9.7) 3 10 5 Dr/r 0 . This is large
and negative for typical fractional density differences
corresponding to the 2–48C temperature across the
seasonal thermocline. While x may therefore be large
(Fig. 2a), the first-order interface displacement will
be small compared to the incident wave amplitude.
When, however, the horizontal scale of the internal
tidal waves is as small as 1–2 km, their vertical scale
will be only 40–80 m; this makes untenable the as-
sumption that the thermocline can be represented by
a step change in density. If alternatively the incident
internal tidal waves have horizontal scales of 10–15
km, their vertical scale will greatly exceed the ther-
mocline thickness, gkDrt kh /s 2 r 0 is of order unity, and
consequently p is near zero, g is near 3p/4, and x is
large (Fig. 2). The interfacial wave amplitude is about
twice that of the incident wave, second-order terms
are large, and the backward facing slope of the waves
will be steeper than the forward slope. The devel-
opment of soliton packets as found on the continental
slope (e.g., Small et al. 1998) is to be expected. More
information is required about the vertical and hori-
zontal scale of the internal tidal ray in the center of
the bay before the processes operating in the reflection
region of the thermocline can be properly assessed.

In this simplistic analysis we have, however, ig-
nored several factors. These include the higher-order
terms that may affect wave shape, small disturbances
and instabilities (e.g., those related to parametric in-
stability that may affect the reflection process), and
the narrow beam structure of the incident wave. Two
other effects that may affect the amplitude or shape
of the internal waves, the earth’s rotation with its con-

sequent Coriolis effects and dissipation, have not been
taken into account. All these should be carefully as-
sessed in a more thorough comparison with particular
observations.
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APPENDIX A

Second-Order Boundary Conditions

To second order, the kinematic boundary conditions
for the lower and upper layer are

](h 1 h )/]t 1 (u 1 u )]h /]x 5 w 1 w 1 w (A1)1 2 I R1 1 I R1 R2

and

](h 1 h )/]t 1 (u 1 u )]h /]x 5 w 1 w , (A2)1 2 1 2 1 1 2

respectively, both evaluated at z 1 h1 1 h2. Here w is
the vertical velocity component, and the u and w sub-
scripts follow the convention already adopted. Expand-
ing about z 5 0 and recalling the equality of first-order
terms gives

]h /]t1 ]c /]x 5 2]h /]x []c /]z 1 ]c /]z]2 R2 1 I R1

2 22 h [] c /]x]z 1 ] c /]x]z] (A3)1 I R1

and

2 2]h /]t 2 ]f /]z 5 2]h /]x(]f /]x) 1 h ] f /]z , (A4)2 2 1 1 1 1

respectively, each evaluated at z 5 0.
The pressure boundary condition is found by equating

the pressure gradients in the upper and lower fluids
along the interface. The pressure gradient is

]p /]x 5 ]h/]x(]p /]z)

at z 5 h. Using the equations of motion in the lower
layer and the (exact) Bernoulli equation for the pressure
in the upper layer, expanding about z 5 0, and discarding
terms that balance at first order we find, at second order,

2 2] c /]t]z 1 g(Dr /r )]h /]x 2 ] f /]t]xR2 0 2 2

3 2 2 3 2 25 h ] f /]t]x]z 1 (]/]x)[(]f /]x) 1 (]f /]z) ]/2 2 h (] /]t]z )(c 1 c ) 2 (]/]z)(c 1 c )[(] /]x]z)(c 1 c )]1 1 1 1 1 I R1 I R1 I R1

2 2 2 21 (]/]x)(c 1 c )[(] /]z )(c 1 c )] 2 g[(r 1 r )/r ]]h /]x 1 (]h /]x)[(] /]x]t)(c 1 c ) 1 ] f /]z]t],I R1 I R1 I R1 0 1 1 I R1 1

(A5)
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evaluated at z 5 0. The terms on the rhs of (A3)–(A5)
are derived from the solutions found at first order.

APPENDIX B

The Second-Order Solution for the
Interfacial Waves, h2

When b , p/6,

h2 5 A1[B1 cos(2(kx 2 st) 2 B2 sin2(kx 2 st)],
(B1)

where

2 2 2 2 2 2 2 2 2A 5 k |h | /{4t t [t (1 2 3t ) 1 t (p 1 t ) ](t 1 p t )} , (B2)1 1 kh b kh b b kh kh b

2 2 2 2 2 2 2 2 2 2B 5 t ^(p t 2 t )[2pt (1 2 3t ) 1 (p 1 t ){t (2 1 t 2 p ) 2 3t }]1 b b kh kh b kh b kh kh

2 2 1/2 2 2 2 2 22 2pt (1 2 3t ) [t (2 1 t 2 p 2 2p 2 2pt ) 2 3t ]&, (B3)kh b b kh kh kh

and
2 2 2 2 1/2 2 2 2 2 2 2B 5 2t ^(p t 2 t )(1 2 3t ) [2t 1 t t (1 2 2p) 2 3p t 2 3t ]2 kh b kh b b kh b b kh

2 2 2 2 2 2 2 2 21 2pt [2pt (1 2 3t ) 1 (p 1 t ){(2 1 t )t 2 3t 2 p t }]& . (B4)b kh b kh kh b kh b

Hence,

h2 5 |h2| cos[2(kx 2 st) 1 a2], (B5)

where |h2| 5 A1{ 1 }1/2, and a2 5 tan21(B2/B1),2 2B B1 2

with the principal value to be taken if B1 . 0, and p
plus the principal value if B1 , 0.
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