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Tidal Rectification: Friction or Not Friction?
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ABSTRACT

A survey of the theoretical aspects of tidal rectification over a continental slope in the inviscid fluid approx-
imation is proposed. In particular, the geostrophic degeneracy problem, evoked by A. W. Visser to justify the
need for friction in the momentum equations, is examined. It appears that geostrophic degeneracy is only due
to excessive approximations. In this process friction has only its classic effect, which leads to a slight modification

of the current obtained in the inviscid theory.

The residual current due to nonlinear interactions between barotropic tidal currents, sloping topography, and
earth rotation can be obtained by linearizing the equations describing the dynamics above the continental slope.
The long period dynamics as thus defined are compared with oceanic data acquired by the Centre Militaire
d’ Oceanographie Service Hydrographique et Océanographique de la Marine in the continental slope area of the
Bay of Biscay. Subject to the assumptions adopted for describing the spatial evolution of the semidiurnal current,

these comparisons are quite satisfactory.

1. Intoduction

Above a continental slope, the tidal current is altered
by both sloping topography and earth rotation. This pro-
cessisnamed ‘‘tidal rectification.” It partly explainsthe
long timescale alongslope current.

Evidence of such currents is generally observed in
field data acquired over continental slope areas (Pingree
and Le Cann 1989; Garreau and Mazé 1992, hereafter
GM92). The tidal rectification current is generally rec-
ognizable by its periodic component close to 14 days.
This timescale results from the interaction of the M —
S, tidal components. As this current israther large (typ-
ically 5-10 cm st in the Bay of Biscay), understanding
the generation process is an interesting challenge.

Qualitative theoretical explanations based on the con-
servation of potential vorticity or quantitative ones re-
sulting from rotation of the major axis of the ellipse
without tidal stress have been proposed. A summary of
these works is given in an earlier paper (Mazé et al.
1998). A different approach to the quantitative aspect
of this process has been suggested (GM92). The pro-
posed solution has been critically examined (Visser
1994, hereafter V94). V94's arguments are based on a
Lagrangian point of view and refer to geostrophic de-
generacy to justify the use of friction.

The object of the present study is to prove that on
one hand geostrophic degeneracy only results from ex-
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cessive approximations and on the other hand that the
friction parameterization used in the *‘tidal stress’ the-
ory is irrelevant and appears as an unnecessary com-
plication of the problem. Field data acquired by the
French Centre Militaire d’ Océanographie Service Hy-
drographique et Océanographique de la Marine (CMO-
SHOM) (MINT-94 experiment) in the continental slope
area of the Bay of Biscay allow specification, at |east
partially, of the influence on tidal rectification of the
development of the observed long-period current.

2. Eulerian and Lagrangian motions study

Consider the case of a shelf break parallel to the y
axis with a constant slope a in the x axis: h(x) = h, —
ax. In an inviscid, unstratisfied fluid, the momemtum
equations may be written as

B AL 1
at - Yax T VT 9% @)
9 9
T (T ©
ot X
and the continuity equation is
dJ an
—[(h + = ——, 3
I+ o = -2 ©

where u and v are the velocity components perpendic-
ular and parallel to the isobaths, respectively; 7 is the
free surface elevation.
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a. Integration of Laplace equations

AsEgs. (1), (2), and (3) are nonlinear, it isimpossible
to compute the exact analytical solution for the descrip-
tion of a particular mechanism. The tidal oscillation
description thus requires a linearization. For the study
of a monochromatic oscillation of frequency w, which
does not require a high degree of precision, the Laplace
equations corresponding to Egs. (1), (2), and (3) are
used:

an.

EA ™ @

v,

— 4 —

po fuu =0 (5)
9 I
—(hu) = ——*. 6
u) = == (6)

By introducing n = m[F(X) — jG(X)] expjwt, where
= /-1, it is found that

jgo Iy

U T o - 1) ax 0
___fg in
LT @ - 1) ax ©
with
Fn, _aom, | (0= 17
x> h ax gh M 0 ©

This well-known solution is clearly determined by
imposing harmonic motion, which eliminates the fol-
lowing spurious solution:

6_771 _ fuy(X)

W=0 X g

v, = Ul(X); (10)

In other words, the v, expression is obtained by inte-
grating Eq. (5) from t, to t:

v (X% 1) — v (X t)

f dF . aG ) .
—(wf’%ﬂ) x o (expj wt — expjt,);
thus, v, (X, t,) is defined by
___fom |OF 9G]
v (X t) = (02 — f2)|ox JHX expj wt,
and v, (X, t) by
___fome |oF 0G| .
v (xt) = (@ — 19| ox X expj wt.

In this integration, t, is simply chosen so that v, (X, t,)

= 0 in order to eliminate the spurious solution (10).
GM92 have then linearized Egs. (1), (2), and (3) with

the approximation ud/ox = u,d/ox. The current com-
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ponents are then advected by a known current. We have
found that

u=u(xx,t); v = v (X*1);
an _ (e~ 1?)
ox fg (<, 0

constitute an exact solution for Egs. (1) and (2), and an
approximate solution for Eq. (3) if
o _ox X

- + 11
dt at - Ux 0 (11)

from which

t ©
x*:x—fuLdtnLEfi,

to

(12)

where 3, f, isaconvergent seriesif [ou, /0X| < w, which
is generaly verified over a continental shelf break. The
f; functions are easily determined by Eq. (11). To test
the precision of this approximation, we have used the
potential vorticity conservation principle (Q) on thetra-
jectory dQ/dt = 0 with Q = (dv/ox + f)/h, with n <«
h. This verification is also a continuity accuracy test. It
is easily shown that, in the case where d/oy = O, if Eq.
(2) and Eq. (3) are verified, dQ/dt = O is obtained. If
dQ/dt = 0 and Eq. (2) are verified, then Eqg. (3) is
verified too.

b. Eulerian and Lagrangian motions study

In the dynamical context defined above, near the shelf
break where au/ox is not negligible with respect to w,
then u, = D/h coswt with D = hyu, is a good approx-
imation of u, obtained with Eq. (7), which permits sim-
ple and locally correct analytical expressions for u,.
Thisformulation, used by both GM92 and V94, isequiv-
alent considering the rigid-lid hypothesis d(hu, )/ox =
0. In addition, for n < h in the mass conservation
equation (V94), Egs. (1), (2), and (3) become

ou au o
_— + _ = = ——
U YT O (13
W fu=o0 (14)
ot )
h
) _o (15)
X
In Lagrangian coordinates, this system becomes
du an®
— fv* = —g—, 16
dt v gax° (16)
dv*
+ fue = 17
" u* =0, and (17)
6 h. °
) _ o (18)
ox®
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The relations between the coordinates and solutions of
Egs. (13), (14), and (15) and (16), (17), and (18) are
the following:

1) the Eulerian coordinates and solutions of Egs. (13),
(14), (15): x, h, u(x, t), v(x, t), n(x, t), correspond
to the coordinates and solutions of Egs. (16), (17),
(18): x°®, he, u*, v*, n* so that

u® = u(xe, t); X =X+ j u(xe, t) dt;

h* = n* = n(x*, 1), (19)

where x* (u°®, v*®) defines at instant t the position
(the velocity components) of the particle that was at
X at instant t, with the velocity components u(x, t,)
and v(x, t,). Here h® and n° are the depth and the
free surface elevation at instant t at x°;

2) the Lagrangian coordinates and solutions of Egs.
(16), (17), (18): x*, h*, u*, v*, n* correspond to the
coordinates and solutions of Egs. (13), (14), (15): x,
h, u(x, t), v(x, t), n(x, t) so that

X = xX*°; h = h*e;
ulx, t) = u*® = u(xte, t);
v(X, t) = v** = v(x*°, 1), (20)

where x* [u(x*, tp), v(x*, ty)] defines at instant t;, the
position (the velocity components of the particle that
was at X at instant t with the velocity components
u(x, t) and v(x, t). We have

h —ax® — x);

X = X* + Jt u(xs, t) dt. (21)

As for the solutions of Egs. (4), (5), (6), the instants t,
and t; must be chosen so as to eliminate spurious so-
lutions. As for the v, determination by the integration
of Eq. (5), v* is obtained by integrating (17) from t, to t:

t
ve =X t) = vx t) — f f ue dt, and
to

with u® = dx*/dt, we have

v = (X% t) = v(X t,) — f(x* —x). (22)

The Eulerian component solution of Eq. (14) is, then,
(X, t) = v(xr, ty) — f(x — x*). (23)

Equations (22) and (23) are verified for any motion
studied with Egs. (16), (17), (18) or Egs. (13), (14),
(15). For example,

u= 9 COSwt; = —fx;
v ; v ;
d au au
g = = 4 u= + fx (24)
X ot X
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Obviously, the motion described by these expressions
has no interest in the case of tidally induced motion.
This solution corresponds to w < du/ox; Ot. These spu-
rious solutions appear because the phenomenon is ex-
pressed by partial derivative equations. When integrat-
ing these equations, the constants that appear are defined
by the boundary conditions and/or the initial conditions.
The spurious solutions are eliminated due to these com-
plementary conditions.

As far as we are concerned, the mechanism is char-
acterized by the fact that [ou/ox| < w. If [Ju/ldX] < w,
the solution must converge toward the solution of the
Laplace equations. In the integration of Eq. (14), which
leads to expression (24), the initial instant must be cho-
sen as in the integration of Eq. (5) where v(x,* ty) =
0. The solution is, therefore,

v(x, t) = —f(x — x*). (25)

The introduction of this expression in Eq.(14) shows
that this equation is verified, whatever the u(x, t) and
v(X, t) expressions, under the following condition:

LA

+ =— =0, 26
ot u X dt (26)
The following solution suggested by GM92,
u(x, 1) = D coswt ;
h 1+ 2 gnat
wh?
o(x 1) = _i D sinwt ;
o 2aD .
h |1+ m S nwt
2 f2
om_ (2= 1 27)

aX fg

is therefore totally defined and complete. This approx-
imate solution of Egs. (1), (2), (3) convergesto thelinear
solution if |ud/ox| < w (or aD/h? < w). V94 criticizes
this solution based on on the solution of the Lagrangian
equations (4), (5), (6) with the approximation d(h*u*)/
dx = 0. Let h*u® = D coswt; thus,

D
e — coswt ' 29)
2aD .
h 1- o Sinwt
and integrating (17), we obtain
fh 2aD . fo.
v —v0=;< 1_wh2 Slnwt—1>=a(h —h). (29

V94 affirms that ve is determined only within the con-
stant v,. As seen above, this constant is perfectly de-
termined by the fact that v* must be harmonic [v, =
fh/a corresponds to the unacceptabl e solution (24)], and
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must converge toward the value — fD sinwt/wH if |ou/
X < w.

Considering the approximation h*u® = hu = D coswt
used by V94, the Lagrangian component is, therefore,

f
v = a(h - h) (30)
to which corresponds the Eulerian component:
wx, ) = 1h — h(e)] (31
with
hoe) = h 11 + 222 sinat. (32)
wh?

The reasoning of V94 (i.e., the approximation: h*u® =
hu = D coswt) leads to a Lagrangian circulation defined
by

D coswt

us = . thus,u®* =0 and (33)
2aD .
h/1- oh? sinwt
Ve = m( 11— 2aD Sinwt — 1); thus,
a wh?
— 1 fa D2
VT Taww (39
and an Eulerian circulation
D
ux t) = h coswt; thus, o0 = 0 (35)
fh 2aD . .
v(x t) = ;(1 - 1+ o smwt), thus,
_ 1fab?
" aen (30

whereas with GM92’s solution, the Eulerian velocities
are

D coswt

ulx, t) = ; thuss ot =0 (37)
2aD .
h |1+ wh? Sinwt
and
f D sinwt
v t) = —— SN ; thus,
@ 2aD .
h 1+ o Sinwt
~ 1faD?
Ve (38)

and the Lagrangian velocities are
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D coswt —
Ut =uRx ) = — — thusu® =0 (39
and
f D sinwt —
v = U(X', t) = —— w; thus, v* = (40)
o h

Hence, GM92's residual circulation balances the linear
approximation of the Lagrangian drift, and when com-
pleting the V94 solutions, the residual circulations com-
pensate only half of this drift.

Beyond the fact that it is not necessary to use the
friction *‘approach,” this study shows that the approx-
imations used have an important effect on the result.
For this reason, it is necessary to verify them with an
accurate numerical simulation of the complete system
of Egs. (1), (2), (3) asin arelated study (Mazé et al.
1998).

3. The friction effect

The most important friction effect is the creation of
a boundary layer above the bottom. This mechanism
is expressed by the linearized Navier—Stokes equa-
tions:

au ¢ Mg d2u

M _ o gt U

ot Tox " Hone

Wy fu= il

ot Konz
g (" Mo
2 udh= - Tk (41)
ox J, ot

where h represents the depth and w, the eddy viscosity
coefficient, is assumed to be independent of h. (As a
matter of fact, the momentum conservation equations
over the continental shelf break must be written in the
X, Z axis system, where the x and z axes are perpen-
dicular to the slope. The vertical diffusion term is ac-
tually no2u/oz?. The form used here is however suf-
ficient because it respects the main friction character-
istic, that is to say the creation of a boundary layer
above the bottom.)

With the boundary conditions u(u, v) = 0 for h =
H and du/oh = 0 for h = 0 (no surface friction), a
classic calculation (Prandle 1982) leads to

- L ohh) . oh(Gh)
U=t O = oy~ @ Do)
and
- bw Ch(K,h) (. . bw) Ch(K,h)
v = ol 1 T kR (1 f )Ch(KzH) !
(42)

where u, (X, t) and v, (X, t) are defined by the relations:
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) — fu(x, ) = —g— — = —
jotn(x, 1) = fug(e ) = —g—° o= ) ==
jouy(X, t) + fuy(x, t) = 0. a2u*
= —(t, h, X*) = —(t, h,
pYe ahz( ) = ( X)

Here b isaconstant, b = w(w — f)/(w? + 2); K, and
K, are complex numbers: K; = k(1 + j), K, = k,(1
+ j) with k; = [(0 + f)2u]¥?2 and k, = [(w — f)/
2u]¥2. The expressions in square brackets are complex
numbers:

Ch(K,h) = coshk;h cosk,h + j sinhk;h sink,h,

and, as jov,(X, t) = —fuy(x, t) and jfuy(X, t) = wvy(X,
t), u and v can be written as a linear combination of
Uo(X, t) and vy (X, t).

If Jou/ox| is not negligible with respect to w, the mo-
tion is defined by the equations:

ou* au* on* a92u*

ot ax X oh?

at X K on
a (" an*
2 wdh=-"0 (43)
X ot

—Mo
which are the Navier—Stokes equations written with the
hydrostatic approximation and linearized with the ap-
proximation (GM92):
ou* ou*
u* =u—.
8X X
We observe that for x = x*
u* = u(t, h, x*) = u(t, h, x)
v* = w(t, h, xX*) = u(t, h, X).

With (26) and for x = x*, the expressions

(44)

constitute an exact solution of the momentum conser-
vation equations and an approximate solution of the
continuity equation.

Thus, the residual circulation is defined by
1 T

u(x, h)y = _IE_JT u* dt; v(x h) ==

T v* dt.

(45)

The expression of x* as a function of x, t, h is the
following:

0

X5 =X - ft ud + i f.(x, t, h), (46)

whichisaconvergent seriesif [0u/ox| < . Thefunctions
f.(x, t, h) are defined by (26). Let t, = t,(x, h) be such
as v(t,, X, h) = 0. For example,

fl(x,h,t)=f f—dt~——<Jtudt)2.

The exact analytical calculation of T(x, h) and v(x, h)
is very long except when h = H, whereu = 0; u* =
u = 0 and therefore U(x, H) = 0.

If h = 0, when limiting x* to x — L u dt, we can
obtain the “‘approximate’” residual C|rculat|0n which
remains a good approximation for fairly large depth.

For cos?’k;H < sinh2k,H, cos?k,H < sinh2k,H,
tanh?k,H = 1, and tanh?k,H = 1, which is the case for
commonly used w values, the residual current thus ob-
tained close to the surface is, with uy(x, t) = (D/H)
coswt:

_ laD?| bkH . . (1—b)k,H . .
= — + — —_
u(x, 0) 2wH?| Snhek,H (coshk,H cosk;H — sink;H sink,H) sSnhekH (coshk,H cosk,H — sinhk,H sink,H)
b coshk,H cosk,H a- b)coshk2H cosk,H\/b sinle - )
sinh2k;H sinh2k,H sinhk,H smhk H
1 af D2 bw coshk, H cosk, H coshk,H cosl,H\?> (b sink,H kH \?
=—— — 1+ —_— | —|————-(1+
0 =5 i he ( £ osnhekH P DT e f snhkcH & Dolf) 5 hk H
bow kH . .
: sinhzle(COShle cosk,H — sinhk,H sink;H)
— 1+ bw/f)— (coshk,H cosk,H — sinhk,H sink,H)| .

h2k H
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If we suppress the friction by putting n close to 0, k;
and k, converge toward infinity, but k,H/sinhk,;H con-
verges toward zero. We then find

1 af D?

2 w2 H?
which is the first term of the v development obtained
in GM92. Consequently, friction modifies the current
existing in an inviscid flow and creates of a bottom
boundary layer for both the residual current and the
harmonic current.

u(x, 0 - 0 and v(x 0) — (47)

4. Comparison with the tidal stress method

The tidal stress method ““requires’ friction, which is
parameterized by

218y,

where 7(H) is the stress and p is the mass density.
With the current components u* and v* (independent
of h), the problem is defined by the following system:

(48)

au* au* an
L — fu* = —g— — k * 4
ot x 0 oy ~ KOQU - (49)
av* *
S 50
L (50
d aon
ZIH + ] = -2, 51
2+ e = -2 51

The free surface elevation » and the current components
u* and v* are developed in a series:

vt =7 + 2 v, eXpjnwt. (52)
n=1

These series are limited to the first two terms: v* = v
+ v, expjwt.
The harmonic motion is defined by

an

jou, — fu, = —ga—x1 — ku, (53)
jov, + fu, = —kv, (54)
0 M
< (Huy) = -2, 55
~(Hu) = 1] (55)
and the residual motion by
au, . on
=ty =g~k 56
U, ax v g ax (56)
w4t = i (57)
tox v
O
&(Hu + mu;) = 0. (58)

With the approximations n, = n, and ku = ku,, where
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n, and u, remain the solutions of Laplace equations,
the following is obtained:

K (0? + f2)

U, = Uy + f (0)2 — fz)vo and
2k f
T muo. (59)
In addition, with
D i f
Uozﬁ exp.l(l)t, UOZI—UO, and k(X) =k = Cs[e,
w
(60)
the residual components are
1af D2
u=0 ad 1}:2%m ifk - O. (61)

Here v is then the residual component paralel to the
continental shelf break in an inviscid fluid, but it de-
pends upon the friction parameterization:

1 _af D2
R0

or
1 _ 3af D2
ST e

Using the eddy viscosity defined above, the same rea-
soning and corresponding approximations lead to a de-
termination of v by

%v

v _ v
K one

u )
X

(62)

where u and v are the current components at the depth
h. With the boundary conditions,

v
vhey =0 ad ) =0, (63)
the integration of Eq. (62) leads to
1 (" ("0
v = Iim(——f f ua—v dh dh’)
u-0 1 h o X
af D2 1(w?2 — f2)
=———(1+-—7) forh=0.
ww — f)H3< 4 (e + fz)) orh=0

It appears clear that such a variety of results obtained
depending upon the chosen friction form raises a prob-
lem that needs to be resolved.

To explain the **geostrophic degeneracy’” notion in-
voked by V94 to justify the arbitrary use of friction,
the problem is addressed by splitting u*, v*, n* in series
in Egs. (49), (50), and (51):
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C

U* =T + >, u, expjket
k=1

vt =7 + E v, expjkwt
k=1

n* =7 + >, . expikot,
k=1

where U, u,, v, v,,
Noting that

Z, expjkot -z expjlwt

7, and n, are complex numbers.

= %(i z) expj (| — Kot + 1/2(z.z) expj(l + K)ot

the Egs. (49), (50), (51) can then be separated as

Uy au
kol + T + u W t
kot ax o ax 2k21<

IR T
= —97 [Tkl (64)
. _ vy w 1 ok
+ +u— + = * +
kov, Fax T Mo 2;1( K x) fu
= O[—k(ud (65)
0 _ 1&, )
_X Hu, + Un, + 5 2 (U n2)| = jkom,  (66)
k=1
with 7 < H. The residual motion is defined by
1S au, L P
u s k21 (uk ax) fo = —g— [—k(u]  (67)
d 1
IEANEEN (u*; —k> + fu = 0[—k(x)v] (68)
d 2ic
—|HT +22(unk)=o (69)
k=1
For k(x) = 0, we find that U is defined by
0= = 2 ) (70)
and
v 1&
= —|z +
X 52 > lu ( ) fu/ (71)

with the boundary condition v = 0 both on the abyssal
plain and the continental shelf. For k(x) # O,

kE( >+fu/U. (72)

It appears in this last expression that, if k = 0O, then U,

-
a_?( + k(Xo/T = —
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u,, and v, take the values of the previous case, and v,
takes the value defined for k(x) = 0. It is also clear that
the external force parameterization —ku has no other
effect than to complicate the problem. The introduction
of these U and v expressions in Egs. (64), (65), (66)
leads to a nonlinear system of 3N eguations, with N —
o, which is impossible to solve exactly if k(x) = 0 and
even less so if k(x) # 0. It is due to the nonlinearity of
the equations, and definitely has nothing to do with the
geostrophic degeneracy. The calculation of the exact
residual current isimpossible; thus, linearization of the
equations leads to an approximation that will be stated
precisely by arigorous numerical simulation [setting of
course k(x) = Q].
Two types of linearization can be considered:

1) The first one consists in simplifying equations (64),
(65), (66) and (67), (68), (69): first, by truncating
the series at first order, and, then, by neglecting some
terms.

2) The second one consists of linearizing Egs. (49),
(50), and (51).

Let us first examine the first linearization type: The
first-order truncation eliminates all the termsin the sum
3% ,in Egs. (64), (65), and (66). In Egs. (67), (68), and
(69) the sum is limited to the first term (k = 1). In the
low ““nonlinearity” cases (Huthnance 1973), the inter-
action term averaged current-harmonic current in (64)
and (65) plus the terms Tou/ox and Tov/ox in (67) and
(68) are aso neglected. These approximations lead to
systems (53), (54), (55) and (56), (57), (58). The prob-
lem is ‘‘degenerate”’ for k(x) = O—that is, the residual
component v cannot be determined without friction be-
cause all the terms alowing this calculation have been
eliminated. Then, neglecting u,0v/dx in (65) signifies
that the relation |u,|0v/ox <« kv < flu,| is admitted.
Now v is of the order of af|u,|?/(w?H). With the ob-
served values for the Bay of Biscay: a = 1071, f =
10*s?t, w=14X10*s?, |u| =05ms? for H
= 300 m, then dv/ox = 1.5 X 10~* s7%; thus dv/ox >
f. This approximation is valid only in the case where
H islarge, that is, up to the continental shelf break. To
solve the highest nonlinearity cases, Loder (1980) re-
tains the term u,0v/0x in (65) but supposes u, = u, =
D expjwt/H. In this case, U (complex number) is equal
to zero, and Egs. (65) and (68) become

jov, + uog—z + fu, = 0(—kv,) (73)
1 v,
—ur— = 0(—kv). 74
U= 0(—ko).  (74)
Thus, for k(x) = 0, (73) yields
f j ov
v, = jz)uo + J;uoax. (75)

Introducing (75) into (74) leads to
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0%v a a
iS5+ 2t =0

76
oxz  H H (76)

This equation, therefore, defines the residual component
v for k(x) = 0. With the boundary conditions v ,, and
v, everywhere on the abyssal plain (H = H,) and,
thus up to the continental shelf break inx = 0, it follows
that

1a
———fx2 and
2H,

Re(v(o)) 0 Vgreo =

Vro) =

Uy = IM(Tg) = 0. (77)

If the external force (—ku) is used with, for example,
k(x) = Cs=e, solution of Egs. (73) and (74) becomes more
complex. Theimaginary component v, of v isnecessary
and leads to the resolution of two nonlinear equations.
The unknown quantities are the real and imaginary parts
of v, vk, and v,. Obviously, this system of equations
can be solved using the Runge-K utta method, but Egs.
(73), (74) show clearly that, if k(x) - 0, the solution
must absolutely converge to v,,. The approximations
used remain excessive; neither the direction nor the in-
tensity of v, correspond to the observations. On the
eastern side of the ocean and with a continental shelf
oriented southeast to northwest as in the Bay of Biscay,
the observations reveal a current orientation toward the
northwest of 5-10 cm st at a depth of 200 m on a
continental shelf break slope of a = 0.1. The obtained
v, is oriented southeastward. Its strength is too great,
and, in addition, this current does not depend on the
tidal current.

To study the influence of truncation examine now the
direct linearization of (73) by the substitution u*a/ox =
Uyd/0x. Thus the motion is defined by

au* au* L

Tt U — for = — 7
ot Yox Y Tox (78)
o
T i (T ) (79)
ot X
d an*
—(HU* + uyn*) = ———. 80
i\ o) p (80)

As has been demonstrated, the ** external force” —ku is
of no interest and is no longer included. This system is
linear and the component u, provides the advection of
u*, v*, p*. Itis true that u* = uy(t, X*); v* = v,(t,
X*), and an*/1ox = dnylox (in X = X*) = an,/ox*(t, X*)
constitute an exact solution for (78) and (79) and an
approximate solution for (80) if dx*/dt = ax*/ot +
Udx*/ox = 0. Thus,

ou* ou* )

ot U = e

v o

% + uO;’—X = jov* = —fu*. (81)
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When u* and v* are developed in a series, it follows
that

and v, = jiul,

82
2w X w (82)

which can be used in the previous method to determine
v [which is directly defined by v — (%)juldv,/ox/ w].
The equations become

ov 1  dv,
=42 =0 83
Uox T 20 ox (83)
and
1 v,
—-ur— + fu = 0. 84
2 ° 9x (84)

Thus, Eq. (83) demonstrates that v, is defined by the
second harmonic component v*. In the case where u,
can be represented by u, = D expjwt/H, it follows that

v 1 v,
7, = Rd = | = —= Re{ 2|,
vox e<ax> 2 e<ax)

Thus, with v = 0 and v, = 0 on the abyssa plain:

(85)

1
v, = -5 Re(v,). (86)
The unacceptable result (77) has vanished; it was due
only to the approximation U = 0 instead of Re (U =
0). Besides, it appears clearly that this second harmonic
v* component defines v.

5. Field data analysis

The data used in the present study were acquired
during the MINT-94 experiment in the Bay of Biscay
(18 May 1994-17 June 1994) carried out by the French
Navy’s CMO-SHOM (Outré and Pichon 1995; Pichon
1997). Doppler current meter measurements were ac-
quired at a location on the 300-m isobath above the
continental slope (Figs. 1 and 2). From an acoustic
Doppler current profiler (ADCP) fixed on the sea bot-
tom, data were obtained within layers of thickness éh
= 4 m between 48 m and 280 m. At the beginning of
the experiment, the water column was weakly stratified.
A thermocline 5 m thick and characterized by g’ = 1.2
X 1072 m s2 (reduced gravity) was located at 80-m
depth. The amplitude and phase of the tidal components
have been deduced from harmonic analysis of the data.
In the study area, diurnal tides are weak. The semidi-
urnal tide includes fundamentally the M,, S,, K,, and
N,, components. The tidal current, which is then re-
constructed from these four components will be called
hereafter *‘linear semidiurnal.” Therefore, at each
depth, the cross-slope and the alongslope components
of the above linear semidiurnal currents can be com-
pared with the measured current (Figs. 3 and 4) for the
two examples, the cross-slope component is in the
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Fic. 1. Location of the ADCP mooring.

south—north direction and the alongslope component is
in the west—east direction. In many cases, the compar-
ison between data and results given by theoretical mod-
els is a rather difficult challenge. Thus, the examples
presented here are chosen to be more explicit and to
show limiting cases. a ‘““‘good” example and a ‘‘less
favorable” one.

These observations show different characteristics of
the cross-slope and the alongslope components. For the
cross-slope component, differences between in situ mea-
surements and linear semidiurnal valuestend to balance.
Thus, the residual component, that is, the low-frequency
cross-slope component, practically vanishes. For the
alongslope component, variations are not symmetrical.
The maximum amplitude of the measured current in the
east direction is weaker than that given by linear semi-
diurnal reconstruction. This feature appears clearly in
the data at 184-m depth (Fig. 4) but much less in the
dataat 88 m (Fig. 3). In thewest direction, the maximum
measured value is strongly marked, leading to a low-
frequency residual current (Fig. 6). This feature can be
observed at 184 m, 88 m, and also at other depths. This
unsymmetrical featureis, of course, related to the pres-
ence of a mean semidiurnal current. The magnitude of
this current increases as the linear semidiurnal current
increases. Consequently, the alongslope residual current
contains a fortnightly component due to the linear semi-
diurnal current. It is possible that the aforementioned
feature can be explained in different ways. However, it
is clear that reference to frictional influence here is a
misinterpretation.

To understand these observations in terms of the the-
oretical approach proposed in GM92, the standard ap-

1341
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km

FiG. 2. Slope topography in the vicinity of the ADCP mooring.

proximation used previously for a monochromatic cur-
rent can be adopted:

D ) fD .
u, ZECOSa)t, v = _;ﬁ Sinwt
u* = E CoSwt; v*¥ = —}E Sinwt
H' ' 2H
with
, 2aD . \"*
H =H<1+;msmwt> ,
where
aD D
— =04 and — =04ms?
wH H

Comparisons between u* and u, on one hand and be-
tween v* and v, on the other (Fig. 5) reveal evolutions
quite similar to those suggested by observations (Fig.
4).

To understand the importance of tidal rectification in
the development of the observed low-frequency current
(Fig. 6), some assumptions must be made:

1) The linear current is the sum of four semidiurnal

components; that is, at 88 m:
u. = (u, + u, sinQt) coswt (S - N)

v, = (vy + vy, SINQ) sinwt (W - E)
at 184 m:

U, = (U, + U, sinQt) coswt

v, = (vy + v, SINQ) Sinwt

fort, <t <t,+ 25days, wheret,=8h, w =14
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Fic. 5. Comparison between u_ and u* and between v, and v* for a monochromatic current.

X 10*st Q =5X 10°¢s* (T = 15 days), and
U, =03 ms?tu,=015ms? v, =03m
shLv,=01ms?tu, =03ms?tu,=01lm
stv, =024ms? and v, = 0.08 mst The
topographic slopeisa = 2/3 X 10

2) The continental slope shape is linear (thisis not the
actual shape shown in Fig. 2).

3) The spatial evolution of the linear current is given
by

_ Db,

u, —Fcos(ut and v, =

D,(t)

H*

Sinwt,

where

2a T 2
H* = H<1+ﬁf D, (t) coswt dt) if H= 200 m
0

and H* = 200 m if the above calculated value is
less than = 200 m. This last restriction is connected
to the fact that H* represents the actual water depth
associated with a parcel moving from location x*,
whereitisat timet =t, [v (t;) = 0sot, = 0], to
location x, which is reached at timet with avelocity
(u*, v*). Hence, H* cannot be less than H, = 200
m if a continental shelf of constant depth is assumed
beyond the 200-m isobath.

The current amplitude increases with depth because
of the stratification. Thisfeature implies baroclinic com-

ponents that are not described in the expression of u*
and v*. The “apparent’” water displacement can then
be theoretically calculated:

t t
x—xozfu*dt and y—yozfv*dt.
to to

To smooth this water parcel trajectory only one value
for each tidal period is plotted. Hence, the M, tidal
component iseliminated. The same procedureisadopted
for the representation of in situ data.

The vertical structure of the ‘““measured’” trajectory
is shown on Fig. 6. As with the semidiurnal current
amplitude, the mean current increases with depth. This
current practically flows in the alongslope direction to-
ward the west. The ‘‘apparent” trajectories computed
at 88 and 184 m (Fig. 7) are quite similar in order of
magnitude. The assumptions restrict the generality of
the above comparisons. Howewer, it appears that the
theoretical view of this problem allows specification of
the effect of tidal rectification on the development of
the alongslope current. Nevertheless, the spatial char-
acteristics of the linear tide in the continental slope area
must be exactly known. The use of a schematic tidal
solution of the hydrodynamic equations allows numer-
ical simulations of the ‘““mean’ current induced by this
process (Mazé et al. 1998). Analysis of in situ data
suggests that a *‘linear tide’” very close to the actual
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Fic. 6. Apparent trajectories of a water parcel obtained from data at different depths.

tide must be used; hence, this linear tide must be ex-
pressed from the tide-producing force associated with
both the lunar and solar tidal potentials.

6. Conclusions

This study helps to clarify the problem of residual
motion due to tidal rectification on a continental shelf
break. It clearly leads to three conclusions:

1) The geostrophic degeneracy isonly due to excessive
approximations and can certainly not be considered
as ‘‘a fundamental feature of the dynamics in-
volved,” as stated in V94.

2) The friction strength (—ku) used in the tidal stress

3)

4)

theory is in reality an external force applied to an
inviscid fluid. It is of no interest and can certainly
not define the strengths balance of the residual mo-
tion in the Lagrangian reference frame under the
form (V94, p. 2199):

kKOv®) = k0o + k@Oue).

(87)

The development in series, followed by truncation
of the series at first order, is a method that leads to
unacceptable resultsif the residual component U per-
pendicular to the continental shelf break (i.e., as a
matter of fact, the complete solution) is unknown.

The true reason of the indeterminacy of U(U, v) lies
in the nonlinear character of the equations, which
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Fic. 7. Apparent trajectories resulting from time integration of u* and
v* at depthsh = 88 mand h = 184 m.

expresses the physics of this mechanism. It appears
that the approximate residual current can be obtained
by linearizing these equations, for example, with
u*a/ox = ugydlox. As the result obtained remains an
approximation, it is necessary to state precisely its
validity by using an accurate numerical solution of
the nonlinear problem and with, of course, k(x) = 0.
The analysis of field data clearly explains the tidal
rectification mechanism: when the aongslope com-
ponent of the current has shallow water on the right
(in the Northern Hemisphere), its intensity is highly
amplified. In the opposite case, the current intensity
is reduced. Thus, the forcing of a residual current
results. This residual current presents the character-
istic structure of the tidally rectified current with a
periodic component associated with the fortnightly
period due to the M-S, interaction. Qualitative and
quantitative comparisons between theory and data
seem very satisfactory. Nevertheless, this conclusion
must be moderated because of uncertainties due to
the various assumptions used in the expression of
the spatial evolution of the tidal current above the
continental slope.
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