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1. Introduction

In recent papers (Griffies et al. 1998; Griffies 1998),
the problem of isopycnal diffusion and Gent–Mc-
Williams stirring in z-coordinate models was reviewed
and a new discretization proposed. It was shown that
classical discretization (Cox 1987; Gent and Mc-
Williams 1990) needs rather heavy background diffu-
sion along the grid lines in order to stabilize the scheme.
Griffies et al. (1998) show the possible origin of the
problem: one reason is the imperfect balancing of tem-
perature and salinity diffusive fluxes along neutral sur-
faces and the other one the existence in the Cox dis-
cretization of a 2Dx mode invisible to the cross deriv-
ative in the isopycnal diffusion. The authors then present
solutions, which they show to work properly in an ex-
periment for long climate runs. Here, we will broaden
the discussion of the problem by pinning up another
basic numerical difficulty in discretizing rotated diffu-
sion operators. We will also not limit ourselves to iso-
pycnal diffusion in z-coordinate models, as the well-
known GFDL MOM2 (Modular Ocean Model), but
work in a more general context in which coastal ocean
models such as SPEM (Semi-Spectral Primitive Equa-
tion Ocean Circulation Model) along terrain-following
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coordinates may use rotated diffusion operators to ob-
tain isopycnal or geopotential diffusion. In the model
descriptions and their applications (e.g., Cox 1987; Pa-
canowski 1995; Hedström 1994), this rotation of the
diffusion operator is mentioned, but it is also always
stated that some additional background diffusion along
grid coordinates should be maintained, that rotations are
limited to weak slopes, that intermittent filtering is add-
ed or that the rotated diffusion option does not work
properly in all cases, a fact observed in several studies
(e.g. Cox 1987; Gerdes et al. 1991). This has also been
recognized by Griffies et al. (1998), and one could won-
der why a diffusion term that, in principle, has a smooth-
ing behavior needs such additional damping, potentially
masking the desired diffusion along a specific coordi-
nate surface. In addition to the problems established by
Griffies et al. (1998), we will show that classical dis-
cretizations of rotated diffusion operators lead also to
problems due to the violation of another physical prop-
erty of diffusion: a well-known characteristic of pure
diffusion is that diffusion operators are positive definite,
which guarantees that, in a closed domain, the maximum
and minimum of the variable being diffused do not in-
crease and decrease, respectively, a property which will
be referred to as the ‘‘min–max principle.’’ In addition,
the variance decreases if natural or Dirichlet boundary
conditions are applied. The min–max principle should
hopefully be recovered in the discretized version; oth-
erwise, tracers would clearly show nonphysical behav-
ior since positive definite quantities (e.g., turbulent ki-
netic energy or concentrations) could become negative
and dynamical state variables as density would create
unphysical pressure gradients. Even if this effect on
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FIG. 1. Grid and naming convention.

density and pressure may be limited in practice by some
compensation of temperature and salinity errors when
computing the corresponding density, this feedback gen-
erally has a destabilizing effect (e.g., Mathieu 1996).

In the large-scale Cox model, the major problems are
those described in Griffies et al. (1998), namely the
noncancellation of temperature and salinity flux contri-
butions to density fluxes along isoneutral surfaces and
the inapproriate computation of products of coordinate
and tracer gradients. But for other types of models or
passive tracers, the violation of a min–max principle
may lead to grid noise that amplifies to a level where
heavy filtering or diffusion along the numerical grid is
needed to get rid of the numerical noise. Then, obvi-
ously, the potential advantages of rotated diffusion op-
erators are lost since filtering is carried out along grid
lines. Violation of the min–max principle or the de-
creasing variance principle is thus a potential problem.
Beside the MOM2, for which Griffies et al. (1998) bring
some important improvements, there is a range of mod-
els using different coordinate systems and a series of
assumptions on the preferred direction of diffusion,
which generally does not coincide with the model co-
ordinates, unless the diffusion is purely a numerical ar-
tifact to damp noise of the numerical scheme. A few
well-known implementations of the preceding concepts
are the following:

1) diffusion on potential density surfaces, be it isopyc-
nal (Redi 1982) or isoneutral (McDougall and
Church 1986), in the Cox GFDL model (Cox 1987)

2) isopycnal diffusion in terrain-following coordinates,
as for example the implemenation of Hedström
(1994) in SPEM (Haidvogel et al. 1991). Here the
authors clearly state in the user manual of SPEM
version 5.1: rotated mixing tensors do not work yet
(Hedström 1996)

3) z diffusion in s-coordinate models (Stelling and Van
Kester 1994).

We will thus concentrate on a very general formulation
of the subgrid-scale parameterization formulated in a co-
ordinate system not coinciding with the numerical grid.

Here we analyze the pure diffusion term associated
with the subgrid-scale mixing processes, and no addi-
tional eddy-induced advection term (Gent and Mc-
Williams 1990) is retained here. The latter is indeed
generally dealt with by the advection scheme of the
numerical model (e.g., Gerdes et al. 1991) or as the
antisymmetric part of a generalized diffusion tensor
(Visbeck et al. 1997; Griffies 1998).

Here we have to mention that dealing with the ad-
vection part in the antisymmetric part of a diffusion
tensor is generally not a way to ensure a positive defined
method since, when it is a linear scheme, only the up-
wind scheme obeys this property in the abscence of
diffusion. In particular, for a Gent–McWilliams advec-
tion velocity that is uniform and horizontal, the scheme
of Griffies (1998) reduces to a classical horizontal cen-

tered advection scheme when no diffusion is added. In
this case, we know the behavior. Of course when com-
bined with the isopycnal diffusion the behavior of the
scheme improves, but unless the isopycnal diffusion co-
efficient A is larger or similar to the thickness diffusion
coefficient k, the centered nature of this skew flux com-
putation may be grid-noise producing.

Limiting our investigation to the diffusion part im-
plies that a symmetric positive definite diffusion tensor
is assumed.

2. Generic formulation

In order to analyze the problem of rotated diffusion,
we will restrict the dimensions to a vertical section. This
limitation to 2D is not penalizing since at least any
method should work in 2D. If problems appear in two
dimensions, then they will surely be present in general
3D situations, at least for the long waves in the addi-
tional direction. We even expect more severe problems
in 3D because of the appearance of cross-derivative
terms coupling the two horizontal directions when ro-
tating diffusion tensors. As our purpose is to show that
the rotation of diffusion operators leads to a fundamental
numerical problem, we will remain in the framework of
a 2D case. Because we often do not only wish to express
the diffusion tensor to be diagonal in a specific coor-
dinate system, but also often introduce a numerical co-
ordinate change, which is used to operate in a conve-
nient discrete space, we shall analyze the configuration
of Fig. 1, which contains all possibilities, from isopycnal
grids to generalized vertical grids (Kasahara 1974) and
classical z coordinates.

The normalization of j, h is by no means limiting;
in the contrary, it encompasses all possible situations,
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including nonuniform grids by allowing the general
transformation

j 5 j(x, z) (1)

h 5 h(x, z). (2)

In this way, the nodes of the numerical grid are easily
referenced. We now assume that diffusion should be
expressed in a specific relative coordinate system (s, t):

s 5 s(j, h) (3)

t 5 t(j, h). (4)

Between these two coordinate systems, the Jacobian
J is

]s ]t ]s ]t
J 5 2 . (5)

]j ]h ]h ]j

The most general formulation of a diffusion operator
applied to variable C reads

]C 

] ] K K  ]s ss stD 5 . (6) 1 21 2]s ]t K K ]Cst tt  
]t 

Since we assume that in the special coordinate system
(s, t), the diffusion tensor is diagonal by construction,
there should simply be a ‘‘vertical’’ and ‘‘isopycnal’’
diffusion:

] ]C ] ]C
D 5 A 1 A . (7)t1 2 1 2]s ]s ]t ]t

We will analyze the pure diffusion along s because
diapycnal or vertical diffusion may become very weak,
especially if a turbulent closure scheme is used. Since
we want to be sure that the diffusion along s does not
create any problem, we cannot rely on the vertical or
diapycnal component to compensate for problems re-
lated to the diffusion along s since we generally cannot
guarantee that diapycnal or vertical diffusion is always
present. In other words, we focus on the diffusion along
a given coordinate line, regardless of another diffusion
in the vertical or diapycnal direction. In this case, any
diffusion of a field C along the coordinate line s(j, h)
may be written as

] ]C
D 5 A . (8)1 2]s ]s

If variations of the distances H between the coordinate
curves on which diffusion acts are to be taken into ac-
count, this is generally parameterized as

] ]C
HD 5 HA . (9)1 2]s ]s

In our dicussion, we work with formulation (8) since

an appropriate renaming of A (which remains positive)
allows one to switch from one formulation to the other.

We can rewrite the diffusion term in the numerical
coordinate system used for discretization:

2 22 2 2]j ] C ]h ] C ]j ]h ] C
D 5 A 1 A 1 2A

2 21 2 1 2]s ]j ]s ]h ]s ]s ]j]h

] ]j ]C ] ]h ]C
1 A 1 A . (10)1 2 1 2]s ]s ]j ]s ]s ]h

This expression is equivalent to the rotated Cox tensor
if coordinate lines are z levels and diffusion is done
along isopycnals (s is along constant r and H 5 r0/

1 ).2 2r rÏ x z

It also contains the case of horizontal diffusion in
generalized s coordinates (for which x was conveniently
normalized):

j 5 x (11)

z 1 h
h 5 F(s), s 5 (12)

z 1 h

s 5 x 5 j (13)
21t 5 z 5 F (h)(z 1 h) 2 h (14)

]j
5 1 (15)

]s

]h h (z 1 h)(z 1 h )x x x5 F9 2 . (16)
25 6]s z 1 h (z 1 h)

For classical s coordinates with uniform spacing F(s)
5 s, and its inverse function F21 is readily obtained.

3. Discretization

We will now show that any nine-point, linear, con-
sistent discretization of Eq. (10) leads necessarily to a
scheme that does not satisfy the min–max principle of
real diffusion, except in some simple and well-known
degenerated cases. This means that such schemes may
generate minima and maxima outside the range of the
initial data. At this stage we do not even require precise
or conservative schemes, but only a consistent scheme
(that is equivalent to the mathematical expression when
time steps and grid sizes tend independently to be in-
finitely small). To demonstrate the conjecture that such
a scheme cannot in general satisfy the min–max prin-
ciple of its physical counterpart, we will use the most
general nine-point discretization that can be taken on
the stencil around the local point (0, 0). This discrete
version reads

D 5 a C(i, j). (17)O O i, j
i521,1 j521,1
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If we assume that we have found a consistent dis-
cretization of the space operator, one then simply has
to focus on the time T tendencies ]C/]T to retrieve some
necessary conditions upon the coefficients ai,j when the
discretization has to fulfill the min–max principle:

]C
(0, 0) 5 a C(i, j). (18)O O i, j]T i521,1 j521,1

From there a necessary condition for the min–max prin-
ciple is

a # 0 (19)0,0

0 # a , (i, j) ± (0, 0). (20)i,j

This is indeed necessary to assure the min–max prin-
ciple; otherwise, as shown for example in Jameson
(1995), assuming a constant field everywhere except a
higher value at the point (i, j) for which one of these
necessary conditions does not hold, it is easily shown
that the time derivative will have a tendency such that
C(0, 0) will have a lower value than the constant field
or an even higher value than the value at point (i, j),
thus violating the min–max principle.

We will now show that, indeed, the rotation of the
diffusion can cause the appearance of coefficients vi-
olating condition (19) or (20).

Using classical Taylor development of the field C
around (0, 0) we have

2 2]C ]C j ] C
C(j, h) 5 C(0, 0) 1 j 1 h 1

2]j ]h 2 ]j

2 2 2 3h ] C ] C ] C
1 1 jh 1 O . (21)

2 m 32m1 22 ]h ]j]h ]j ]h

Requiring that the scheme is at least consistent demands
that, when replacing each C(i, j) by its Taylor devel-
opment in Eq. (17) we retrieve Eq. (10), the reformu-
lation of the initial diffusion law (8); consistency re-
quires that this is true by neglecting derivatives of the
third order and higher. Since we are dealing with a linear
scheme, the coefficients ai,j do not depend upon the
function C, and we must impose that the coefficients
multiplying the different derivatives of C appearing
when doing the actual discretization are equivalent to
those emerging from the analytical development. This
requirement leads to six equations for the nine coeffi-
cients ai,j. At this point of reasoning, one could hope
that it is possible to find coefficients where only a0,0 is
negative. One then could even think about taking ad-
vantage of the remaining three degrees of freedom to
add constraints of tracer conservation, higher-order pre-
cision, or variance diminishing. Unfortunately, we will
show that at least one other coefficient than a0,0 is strictly
negative. Indeed, consistency requires by identifying the
coefficients that multiply C(0, 0):

a 5 0. (22)O O i,j
i521,1 j521,1

Identification of the coefficients multiplying ]C/]j
leads to

] ]j
a 2 a 1 a 2 a 1 a 2 a 5 A ,1,1 21,1 1,0 21,0 1,21 21,21 1 2]s ]s

(23)
and similarly for ]C/]h

] ]h
a 2 a 1 a 2 a 1 a 2 a 5 A .1,1 1,21 0,1 0,21 21,1 21,21 1 2]s ]s

(24)
These equations [(22), (23), and (24)] do not lead to
any interesting conclusion here except that the retrieval
of a0,0 is negative when all other coefficients are posi-
tive. Far more interesting are the relationships emerging
from the identification of the higher order derivatives:

2
]j

a 1 a 1 a 1 a 1 a 1 a 5 2A1,1 21,1 1,0 21,0 1,21 21,21 1 2]s

(25)

2
]h

a 1 a 1 a 1 a 1 a 1 a 5 2A1,1 1,21 0,1 0,21 21,1 21,21 1 2]s

(26)

]h ]j
a 1 a 2 a 2 a 5 2A .1,1 21,21 1,21 21,1 ]s ]s

(27)

By defining

]h /]s
r 5 (28)

]j /]s

and adding Eq. (25) to (27) and subtracting Eq. (27)
from (25) we get two other equations:

2
]j

2a 1 a 1 a 1 2a 5 2A (1 1 r) (29)1,1 1,0 21,0 21,21 1 2]s

2
]j

2a 1 a 1 a 1 2a 5 2A (1 2 r). (30)21,1 1,0 21,0 1,21 1 2]s

Similarly, adding Eq. (26) to (27) and subtracting Eq.
(27) from (26) we get

2
]j

2a 1 a 1 a 1 2a 5 2A (r 1 1)r (31)1,1 0,1 0,21 21,21 1 2]s

2
]j

2a 1 a 1 a 1 2a 5 2A (r 2 1)r. (32)21,1 0,1 0,21 1,21 1 2]s

We have now four equations, (29), (30), (31), and (32),
where the unknowns are multiplied by positive coeffi-
cients. If the unknowns ai,j other than a0,0 are to be positive,
then at least all right-hand sides of equations must be
nonnegative. But it is easily seen that one of them is always
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negative, if we suppose r ± 0, r ± 61, and r ± 6`.
The cases excluded are simply the configurations where
the line along which diffusion must take place is just cross-
ing the grid points, in which case a direct classical dif-
fusion discretization along these grid points works well.
But if the diffusion direction does not lie on the grid, there
is always one coefficient ai,j that is negative, thus leading
to a scheme which violates the min–max principle. It
should be noted that, even if in practice the way the vari-
able grid spacing, variable diffusion coefficients, and co-
ordinate transformations are computed may vary, the con-
sistency constraint is simply requiring that the coefficients
ai,j satisfy a relationship in which the actual discretization
of ]h/]s etc. does not matter, provided that it is done also
in a consistent way.

Very disappointing is the result that even for constant
slopes, uniform grid spacing, and constant diffusion co-
efficient [leading to constant right-hand sides of (29),
(30), (31), and (32)] no well-behaved scheme can be
found. In this case of constant slopes, we have to men-
tion that the variance diminishing method of Griffies et
al. (1998) applied to a passive tracer will not assure the
min–max principle.

Furthermore, it is also clear that any method limiting
the isopycnal slope to a prescribed maximum amplitude
a priori is not appropriate to eliminate the min–max
violation. In any case it is not the slope that is the
important control factor of the ‘‘negativeness,’’ but the
slope compared to the coordinate slope, as reflected by
the parameter r. This parameter can also be interpreted
in terms of the hydrostatic consistency requirements in
the case of s-coordinate systems (e.g., Deleersnijder and
Beckers 1992; Mellor et al. 1994; Haney 1991; Burchard
and Petersen 1997).

One could wonder why the present simple diffusion
problem has, to our knowledge, never been analyzed in
the scope of computational fluid dynamics. In fact, in
classical computational fluid dynamic models in cur-
vilinear grids, diffusion is isotropic so that the right-
hand side of Eqs. (29), (30), (31), and (32) contain
additional terms that can cancel the negative parts, thus
possibly eliminating the problem of negative coeffi-
cients. This canceling decreases, however, when grids
are strongly distorted. This has been shown by Kershaw
(1981), and he concluded that the Laplacian diffusion
cannot be both monotonic and linear for arbitrary and,
in particular, strongly distorted grids. This is, however,
very different from our case: The demonstration of Ker-
shaw holds for a full Laplacian diffusion, not a direc-
tional diffusion along a line as the isopycnal diffusion.
This is very different since Laplacian diffusion is iso-
tropic and does not know anything about directions,
whereas isopycnal diffusion does, which means that the
demonstration of Kershaw deals with the problem of
expressing an isotropic diffusion in a distorted grid, not
the problem of rotating the direction of diffusion. Fur-
thermore, the theorem of (Kershaw 1981) shows that
that it is impossible to have a consistent and min–max

method on arbitrary grids. It does not say that it is
impossible in all cases. When grids are sufficiently
smooth and sufficiently orthogonal, then isotropic dif-
fusion discretization does work correctly. In particular
for orthogonal grids, which may be curvilinear, the five-
stencil method does work and reflects again that it is a
Laplacian diffusion, which is isotropic and retains its
mathematical formulation (and hence well-conditioned
discretization) on orthogonal coordinates.

On the contrary, our theorem shows that a directional
diffusion is never both consistent and min–max satis-
fying, however small the slopes of the rotating.

To summarize, Kershaw (1981) shows that the La-
placian diffusion may have problems when grids are too
distorted, while we show that isopycnal diffusion always
has problems if linear schemes are used. This has, of
course, a very important practical consequence: On the
one hand, the problem of consistency and violation of
the min–max principle can be controlled in linear La-
placian diffusion discretizations by controlling the grid.
This is currently done by appropriate grid generators.
On the other hand, isopycnal diffusion discretizations
cannot be controlled by slope clipping, unless the slope
is forced to be aligned on the grid, which is of course
uninteresting.

One may wonder if some other solutions than grid
controlling exist in the case of a Laplacian diffusion,
which could be useful here. Indeed, for the case of iso-
tropic Laplacian diffusion in strongly distorted grids,
Demirdz̆ić et al. (1987) and Zijlema (1996) suggest an
ad hoc method how an isotropic conservative diffusion
discretization can satisfy the min–max principle, even
if grids are strongly distorted. Unfortunately, the non-
isotropy of our problem prohibits their approach and we
have to search for other remedies to the flaw found in
classical oceanic rotated diffusion discretizations.

4. Remedies

We will not describe in detail all possible remedies
but mention some possibilities that could be interesting
for some specific models.

a. Variance diminishing methods

One possibility is not to impose the min–max principle
as a mandatory condition for the numerical discretization,
but a decreasing variance characteristic. This approach is
used in Griffies et al. (1998), where a linear scheme was
designed so as to decrease variances over finite volumes,
which are not however the finite volumes used for the
model computation. This method seems to work well for
diffusion of active T, S fields at large scales, but fails to
assure the min–max principle in the case of passive tracers
in a fixed uniformly sloped density field. In this case, the
numerical stencil (which has to be multiplied by time steps,
grid spacing, and a slope factor, all of which are constant)
of the diffusion term is given in Fig. 2 and shows that, in
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FIG. 2. Stencil for the new method of (Griffies et al. 1997) in the
case of constant slopes and grid spacings.

this case, the discretization is just a straightforward linear
centered finite differencing of the rotated operator. This,
however, exhibits unsatisfactory results if we diffuse, for
example, a tracer in a vertical plane that is zero everywhere
except in the center. By running the so-obtained pure dif-
fusion scheme for different values of the relative slope r,
the global variance indeed continously diminishes, but
there is an appearance of local minima, which after rel-
atively few iterations already reach absolute values of 10%
of the maximum signal of the tracer field at that moment.
This is certainly undesirable in case of tracing CFCs or
other variables in climate models or biological components
in shelf models. Global variance diminishing methods are
thus not the final solution for all applications. Our un-
derstanding is that the reason for the important improve-
ment obtained by Griffies et al. (1998) of the original Cox
method is mostly due to the balance of isoneutral diffusive
fluxes of the active tracers. Indeed their experiments
showed that balancing the fluxes had a major effect, while
subsequent addition of the new triad diffusion scheme
showed no significant differences in the switching exper-
iment. Of course they showed that the triad method also
improved the diffusion of a passive tracer in a fixed short-
wave density field, but this is to be expected since the
whole design of their scheme is based on a more appro-
priate averaging technique for slopes and tracer gardients,
which occurs in such a situation as short waves. But this
misses the point that we just showed: that in smooth den-
sity fields, passive tracers will not behave according to the
min–max principle.

In contrast to the case of active tracers at large scales,
which was shown by Griffies et al. (1998) to be well
reproduced by their new method, other problems would
arise in regional model where the geostrophic adjust-
ment does not arrange the velocity field to be tangent
to density surfaces. In those models, rotated diffusion

of active tracers (for example, geopotential diffusion in
s-coordinate models) may cause other problems due to
a possible amplification of perturbations by the feedback
between density fields and advection of these pertur-
bations in the direction of the pressure gradient rather
then perpendicularly.

b. Min–max methods

In order to assure a min–max satisfying method, one
of the requirements which we used in our demonstration
needs to be eliminated: we assumed a nine-point stencil,
a linear method (discretization not changing depending
on the solution), and a consistent scheme. At least one
of these conditions cannot be satisfied by a min–max
satisfying algorithm. On the other hand, a conservative
scheme would be more than appropriate for long-term
climatic calculations and tracer dispersion. If we decide
to sacrifice one of the conditions just mentioned, we
would at least want to improve the scheme by designing
a conservative method. For this purpose, the diffusion
term can be reformulated as follows:

]
D 5 (2F), (33)

]s

where F is the diffusion flux

]C
F 5 2A . (34)

]s

Equation (33) is readily written as

] ]
(j ) (h)2JD 5 (Ja F) 1 (Ja F) (35)s s]j ]h

]j
(j )a 5 (36)s ]s

]h
(h)a 5 . (37)s ]s

We now have a formulation in which the derivatives
are expressed in different coordinate systems, but it has
the advantage that by using a classical integration over
the finite volume box this mixed formulation can be
translated into a conservative finite-difference scheme,
provided that the quantities J F are known at the( )a *s
interfaces.

1) NONLINEAR FLUX COMPUTATION

An interesting possibility would be to use the ap-
proach of Stelling and Van Kester (1994). In their work,
the authors tackle the problem of real horizontal dif-
fusion in a s-coordinate-like model. Their approach is
based on a ‘‘back to z’’ paradigm, in the sense that the
finite volumes are first rotated so as to have rectangular
horizontal boxes. Then, since these boxes are not nicely
connected to their neighbors, a z interpolation of scalars
is needed to compute the fluxes at interfaces. For small
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slopes this involves only the classical nine points and
can be efficient but, when slopes are arbitrary, the in-
terpolation method requires the scanning of the whole
water column for each flux computation, a heavy burden
in terms of CPU requirements. On the other hand, the
authors prove their scheme to be min–max, in the case
the fluxes are computed nonlinearly by choosing the
minimal amplitude flux of two possible interpolations
at the interface if they have the same sign or a zero flux
otherwise. This consistent method is unfortunately time
consuming in a general case. As the computational bur-
den of a hopefully small effect (‘‘horizontal’’ diffusion)
should not penalize the whole ocean model, we could
adopt the approach of Stelling and Van Kester (1994)
if relative slopes are small (which could eventually be
enforced by slope limiting in the code) or if we find
another similar nonlinear interpolation method limited
to the local stencil rather then the whole water column.

2) NONCONSISTENT DIFFUSION

When a grid has regions for which r $ 1 and one
wants to avoid the previous method, a nonconsistent
combination of diffusion along the grid lines can be
envisaged: In a nonflux form this can be written as

/ 2 / \D 5 aD 1 bD 1 gD 1 dD (38)
/D 5 C(0, 1) 1 C(0, 21) 2 2C(0, 0) (39)

2D 5 C(1, 0) 1 C(21, 0) 2 2C(0, 0) (40)
/D 5 C(1, 1) 1 C(21, 21) 2 2C(0, 0) (41)
\D 5 C(1, 21) 1 C(21, 1) 2 2C(0, 0). (42)

This discretization is generally not consistent, but if the
coefficients a, b, g, d are nonnegative, then the min–max
principle is easily satisfied for small time steps. The choice
of these coefficients can then at least be done so as to
have a discretization that mimics at best the real diffusion.
It can also be reformulated in a conservative fashion and
the strategy would probably impose weightings that favor
the grid direction closest to the s line.

3) EQUIVALENT NONLINEAR DIFFUSION ALONG

GRID LINES

Another possibility seems to be the use of a scheme as
in Harvey (1995), but this is neither easily implemented
into existing GCMs nor very efficient in terms of CPU
resources since it is fully implicit. But Harvey (1995) leads
to another way of thinking: One can indeed rewrite

2
] ]j r ]C

JD 5 J A 1 21 2 1 2[ ]]j ]s R ]j

2
] ]h R ]C

1 J A 1 2 , (43)1 2 1 2[ ]]h ]s r ]h

where

]C/]j
R 5 (44)

]C/]h

is the relative slope of the field to be diffused, compared
to the aspect ratio of the numerical coordinates grid. The
problem is thus formally equivalent to a diffusion along
the grid lines with diffusion coefficients that depend on
the solution and can be negative locally in time and space.
A sufficient condition to assure a min–max principle is
the use of a positive apparent diffusion coefficient along
the grid lines. This is, of course, not necessary since the
diffusion along s satisfies the min–max principle and Eq.
(43) is just a reformulation of it, showing that ‘‘negative’’
or upgradient diffusion along the grid lines can be nec-
essary. This also means that judging a scheme only by
looking at local upgradient fluxes at an interface is not
satisfactory since the physical fluxes may indeed be up-
gradient at a given interface. What really matters is the
subsequent compensation of these upgradient fluxes by
downgradient fluxes at other interfaces of the grid box.
Downgradient fluxes at the interface are sufficient to assure
a positive definite scheme, but they are not necessary. So
limiting the apparent (solution dependent) diffusion co-
efficients at the interfaces to positive values is sufficient
to satisfy the min–max principle if the time step is chosen
short enough (otherwise one could also impose an upper
limit on the apparent diffusion coefficient), but it is not
necessary. This scheme is also conservative but not con-
sistent when limitations are introduced. It should also be
relatively easy to avoid the problems shown by Griffies
et al. (1998) concerning the mismatch of computed neutral
directions and the isolines of locally referenced potential
density. Indeed, the values can be computed at the same
point by the same stencil. There are thus numerous ad-
vantages, but unfortunately, when the s line and the so-
lution have a slope of the same sign, imposing a local
downgradient flux at the interface always requires a lim-
iting of the apparent diffusion coefficient. In this case,
when disregarding negative apparent diffusion coeffi-
cients, the scheme is not consistent.

Some other remedies could be searched, including flux
limiter approaches or larger stencils. However, the local
stencil used here limits the computational cost, and it is
not expected that a linear model will behave better by
using more points since the risk of introducing other neg-
ative coefficients increases. On the other hand, for non-
linear schemes larger stencils can eliminate the problem
of strong slopes at the price of an increased complexity
in the numerical algorithm and problems in designing ver-
tically implicit schemes. Some kind of flux limiter scheme
could, however, be interesting since it would modify the
upgradient interface fluxes only if they are not compen-
sated by downgradient fluxes.

5. Conclusions

Griffies et al. (1998) presented some important im-
provements to the discretization of the Cox rotated
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diffusion. However, we argue that their improvements
are mostly due to the balance of isoneutral diffusive
fluxes of the active tracers, while subsequent addition
of the new triad diffusion scheme improves the dif-
fusion of a passive tracer in a fixed short-wave density
field. But we showed that even in smooth density
fields, passive tracers will not behave according to the
min–max principle with their scheme. Our demon-
stration shows even that any linear consistent nine-
point scheme cannot satisfy the min–max principle,
which is rather annoying. When designing a rotated
diffusion discretization, this has to be taken into ac-
count and, in our opinion, the operator should have
the following properties:

R be conservative,
R satisfy the min–max principle or at least a reduced

variance property,
R extend only over a nine-point stencil [for the (x, z)

case],
R reduce to the classical horizontal stencil 1, 22, 1 when

no transformation is present,
R be computational efficient since diffusion should be

small anyway and a scheme should not be penalized
by a second-order term.

These requirements are somehow subjective and could
seem easy to satisfy, but we showed that even a con-
sistent nonconservative linear discretization on a nine-
point stencil cannot meet the min–max requirement. In
addition to the problems identified by Griffies et al., this
is another explanation why classical rotated diffusion
operators are used with additional filtering along the
grid coordinates and/or time. It is also clear that, even
if the new method improves drastically active tracer
distributions, passive tracer simulation still ask for a
more appropriate method. To cope with this problem,
we proposed some partial remedies that hopefully can
be tested and improved in different models and config-
urations. Finally, we expect even more severe problems
in case of biharmonic diffusion formulations in rotated
coordinate frames.
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