
Key Exchange Protocols: Security Definition,
Proof Method and Applications

Anupam Datta1, Ante Derek1, John C. Mitchell1, and Bogdan Warinschi2

1 Stanford University
2 Loria, INRIA-Lorraine

Abstract. We develop a compositional method for proving cryptograph-
ically sound security properties of key exchange protocols, based on a
symbolic logic that is interpreted over conventional runs of a protocol
against a probabilistic polynomial-time attacker. Since reasoning about
an unbounded number of runs of a protocol involves induction-like argu-
ments about properties preserved by each run, we formulate a specifica-
tion of secure key exchange that, unlike conventional key indistinguisha-
bility, is closed under general composition with steps that use the key.
We present formal proof rules based on this game-based condition, and
prove that the proof rules are sound over a computational semantics.
The proof system is used to establish security of a standard protocol in
the computational model.

1 Introduction

Key exchange protocols enable secure communication over an untrusted network
by setting up shared keys between two or more parties. For example, SSL [1]
and TLS [2] provide symmetric encryption keys for secure Internet transactions,
IPSec [3] protocols provide confidentiality and integrity at the IP layer, IEEE
802.11i [4] provides data protection and integrity in wireless local area networks,
and Kerberos [5] provides authenticated client-server interaction in local area
networks. While some of these protocols have been proved correct in the simpli-
fied symbolic Dolev-Yao model [6–9], most key exchange protocols in use today
have not been proved secure in the complexity-theoretic model of modern cryp-
tography. Our aim is to develop a formal logic that will allows us to convert
known proofs based on the Dolev-Yao model into formal proofs that are prov-
ably sound for the standard cryptographic interpretation based on probabilistic
polynomial-time attack. This paper presents progress on key exchange protocols,
in the form of an axiom system for relevant primitives, a soundness proof for
these rules, and a condition on key exchange that can be proved invariant under
steps that legitimately use an agreed key for its intended purpose.

In proving security of a key exchange protocol, it is necessary to state an
appropriate security property, one that is true of the protocol, and sufficient to
guarantee that the key is suitable for use. Several approaches have been proposed
in the cryptographic literature [10–13], including the concept of key indistin-
guishability: a key produced by a key exchange protocol should be indistinguish-
able (given access to messages sent in the protocol) from one chosen at random

from the same distribution. This is a very natural condition, and certainly a
desirable goal for key exchange protocols. However, key indistinguishability does
not appear satisfactory for incremental verification of some important protocols,
or stating the property achieved when the key exchange steps are combined with
protocols that use the key.

In this paper, we develop a compositional method for proving cryptograph-
ically sound security properties of key exchange protocols, develop a suitable
specification of acceptable key generation, and apply the method to an illustra-
tive sample protocol. We use a symbolic logic for specifying security and a formal
proof system for proving security properties of key exchange protocols. The spe-
cific logic we use in this paper builds on a computational version [14] of Protocol
Composition Logic (PCL) [15–18, 6] and offers several advantages. First, the an-
alyst may reason abstractly, without referring to probability, asymptotics, or
actions of an attacker. At the same time, a proof provides the same mathemati-
cal guarantees as more detailed reduction-based proofs because the semantics of
Computational PCL is defined with respect to a complexity-theoretic model of
protocol execution, and the axioms and proof rules are proved sound using con-
ventional reduction arguments. This framework is also flexible enough to treat
cryptographic primitives like CMA-secure signatures and complexity-theoretic
assumptions like Decisional Diffie-Hellman naturally as axioms in the proof sys-
tem. Second, PCL comes with composition theorems [17, 18], which also carry
over to Computational PCL. These theorems allow the security proof of a com-
posite protocol to be built up from proofs of its parts, without implicit assump-
tions like disjoint state of repeated instances of the protocol. This compositional
approach is useful for handling large, complex protocols like IEEE 802.11i [6]
and is relevant to key exchange protocols since key exchange is intended for use
in composition with other protocols. Finally, since the proofs are completely ax-
iomatic, in principle they can be machine-checked, although unfortunately we
currently do not have an implementation that allows this.

We demonstrate the applicability of the proof method by formalizing and
proving the security properties of the ISO-9798-3 key exchange protocol [19] and
its composition with a canonical secure sessions protocol. The security proof for
ISO-9798-3 relies on the Decisional Diffie-Hellman assumption and the use of
CMA-secure signatures, while the security of the secure sessions protocol relies
on the use of a CPA-secure symmetric encryption scheme [20] and a message
authentication code (MAC) that is secure against existential forgery [20]. The
fact that these two protocols compose securely when executed one after the
other follows from the sequential composition theorem [18]. In order to model
and prove security for these protocols, we had to extend the computational
model and logic [14] to include a number of additional cryptographic primitives:
signatures, MAC, symmetric encryption, as well as codify the Decisional Diffie-
Hellman assumption. This application provides evidence that Computational
PCL can support axiomatic proofs of interesting security protocols. The results
of the present paper open the way to developing computationally sound proofs
of larger practical protocols like IEEE 802.11i and Kerberos.

2

Organization Section 2 presents our security model for key exchange and secure
sessions and compares it to other models in the literature. Section 3 describes
the programming language for representing protocols and defines their execution
model. Section 4 presents the logic for expressing protocol properties and the
proof system for proving such properties. Section 5 presents the application of the
method to the ISO-9798-3 protocol, a generic secure sessions protocol, and the
proof of their secure composition. Section 6 presents the semantics of extensions
to the logic. Section 7 compares our model for key exchange to other models in
the literature. Finally, Section 7 concludes the paper and discusses directions for
future work.

2 Security Model

In this section, we describe some problems with inductive compositional reason-
ing about key indistinguishability and present a new definition that is more suit-
able for our purposes. We also describe the definition for secure sessions used in
this paper. These definitions are formulated within a complexity-theoretic model
in the style of game-based definitions of modern cryptography [10]. In subsequent
sections, we use these definitions to develop a cryptographically sound proof sys-
tem for reasoning about key exchange protocols. The soundness proofs are subtle
and involve complexity-theoretic reductions.

2.1 Key indistinguishability

Our goal is to develop a method for compositional formal proofs of protocol
suites involving key exchange protocols. A central concept in compositional proof
methods [21–24, 18] is that of an invariant. In developing compositional security
proofs of complex protocols [6], we require that each protocol component respects
the invariants of the other components in the system [18].

Unfortunately, standard cryptographic security definitions for key exchange
like key indistinguishability [10, 11] are not invariant. Even if a key exchange
protocol, run by itself in isolation, produces a key that is indistinguishable from
random, key indistinguishability is generally lost as soon as the key is used to
encrypt a message of a known form or with partially known possible content.
Moreover, some situations allow one agent to begin transmitting encrypted data
before the other agent finishes the last step of the key exchange, meaning that
key indistinguishability is actually false at the point that the key exchange pro-
tocol finishes. Furthermore, some key exchange protocols even use the generated
key during the protocol, preventing key indistinguishability. Fortunately, many
protocols that use keys do not require key indistinguishability. In particular,
common cryptographic security conditions, such as semantic security, do not
require that the keys used remain indistinguishable from random.

To circumvent the technical problem with key indistinguishability, we develop
an alternative notion that is parameterized by the security goal of the application
in which the resulting key is used. As concrete examples, we consider cases where

3

the key is used for encryption or MAC. The security definition for key exchange
requires that the key produced is “good” for that application, i.e. an adversary
interacting with the encryption scheme using this key cannot win the security
game for that scheme (for example, the IND-CPA game for encryption). The
resulting definition for key exchange is invariant under composition with the
application protocol which uses the key.

We emphasize that the definition and subsequent theorems apply to any
cryptographic primitive that satisfies the application game condition, e.g., the
ENC axiom (presented in Section 4.2) holds for any encryption scheme that
satisfies the IND-CPA condition.

2.2 Secure Key Exchange

While there are many desirable properties a “good” key exchange protocol might
satisfy, such as key freshness, high key entropy, and agreement, one essential
property is that the key should be suitable for use. Specifically, an adversary
who interacts with the the key exchange protocol should not be able to extract
information that can compromise the application protocol which uses the result-
ing key. This is the main idea underlying our security definition. The specific
applications that we focus on here are symmetric encryption and message au-
thentication codes. But the definition can be extended in a natural manner to
cover other primitives.

We define the security of a key exchange protocol Σ with respect to an ap-
plication protocol Π in a set S via a two-phase experiment. The experiment
involves a two-phase adversaryA = (Ae,Ac). In the key exchange phase, the hon-
est parties run sessions of the protocol following the standard execution model:
each principal executes multiple sessions of the protocol (as both initiator and
responder) with other principals; and the communication between parties is con-
trolled by the adversary Ae. At the end of the key exchange phase, the adversary
selects a challenge session sid among all sessions executed by the honest parties,
and outputs some state information St representing the information Ae was able
to gather during its execution. Let k be the key locally output by the honest
parties in session sid. At this point, the experiment enters its second phase, the
challenge phase where the goal of the adversary is to demonstrate an attack
against a scheme Π ∈ S which uses the key k. After Ae receives as input St, it
starts interacting with Π according to the game used for defining security of the
application protocols in S. For example, if S is a set of encryption schemes, then
the relevant game may be IND-CPA, IND-CCA1, or IND-CCA2 [20]. Since the
specific task we treat in this paper is secure sessions, we formalize the case when
the game defines IND-CPA security. Thus, in playing the game, Ac has access
to a left-right encryption oracle under k, and in addition, it receives as input the
state information from Ae. The advantage of the adversary is defined as for the
standard IND-CPA game with the difference that the probability is taken over
the random coins of the honest parties (used in the execution of the protocol), the
coins of the two adversaries, and the coins used for encryption in the challenge
phase. The key exchange protocol is secure if this advantage is bounded above

4

by a negligible function of the security parameter, for all encryption schemes
in S. The universal quantification over schemes is used to capture the fact that
the security property is guaranteed for all encryption schemes which satisfy the
IND-CPA condition.

Definition 1. Consider the following experiment Expkeb

A,Σ,Π(η), involving an
adversary A = (Ae,Ac), a key exchange protocol Σ and an encryption scheme
Π = (K, E ,D). The experiment is parametrized by the bit b.

– The adversary Ae is given as input the security parameter and can make the
following queries:
• Request that a new principal i be added to the system: new pairs of en-

cryption/decryption keys are generated for the principal via (pki, ski)
$←

K(η). The principal is willing to engage in any number of sessions of
the key exchange protocol as both initiator and responder, with any other
principal in the system.

• Send a message m to a protocol session: the receiving party processes m
and returns to Ae the answers it computes according to the protocol.

• At some point Ae finishes its execution and outputs (sid, St), that is a
session identifier and some state information.

– Adversary Ac is given the state information St and is provided access to a
left-right encryption oracle E(LR(·, ·, b), k) keyed with the key k locally output
in session sid.

– Adversary Ac plays the standard IND-CPA game: it submits pairs of equal-
length messages (m0,m1) to the encryption oracle and obtains in return
E(mb, k).

– At some point Ac finishes its execution and outputs a guess bit d, which is
also the output of the experiment.

For any adversary A = (Ae,Ac) we define its advantage as:

Advke
A,Σ,Π(η) = Pr[Expke1

A,Σ,S(η) = 1]− Pr[Expke0
A,Σ,S(η) = 1]

and say that Σ is a secure key exchange protocols for schemes in S if for any Π ∈
S the advantage of any probabilistic, polynomial-time adversary A is negligible.

The definition can be easily modified to capture security of key exchange for
other primitives, by appropriately changing the security game that is played in
the second phase. For instance, in the case of message authentication codes, we
consider a single experiment Expmac

A,Σ,S where after the exchange phase, adver-
sary Ac is provided access to tagging and tag verifiaction oracles. It attempts to
produce a verifiable tag for some message which he did not query the tagging
oracle about, in which case the experiment returns 1. The key exchange pro-
tocol is deemed secure if for any probabilistic polynomial-time adversary A its
advantage:

Advmac
A,Σ,S(η) = Pr[Expmac

A,Σ,S(η) = 1]

is negligible.

5

The security model is consistent with accepted definitions of symmetric key-
based primitives based on security against adversaries that are allowed arbitrary
uses of the primitive in a priori unknown settings. In addition, our model con-
siders the possibility that key generation is accomplished using a key exchange
protocol instead of a non-interactive algorithm. The adversary is provided with
auxiliary information obtained by interacting with this protocol.

2.3 Logical formalization

The game described in section 2.2 is used to define the semantics of a “Good-
key” predicate and to provide the basis for computational proofs of the soundness
of formal axioms using this predicate. In fact, the basic predicate of the logic
is GoodKeyAgainst, which asserts that a key is good against a specific agent;
the truth of this predicate at any point in the run of one or more protocols
will depend on the additional information available to that agent from observa-
tions about the protocol steps and actions of any protocol adversary. In logical
proofs involving key exchange protocols and their use, we use a derived predicate
SharedKey, which asserts that a key is good against any agent not among those
sharing the key. (The against who share the key are arguments to the predicate.)

Formulas involving SharedKey are also used to reason about protocols that
use a key generated by a key exchange protocol. A key obtained by running
a key exchange protocol may be used to encrypt and authenticate subsequent
communication in what is commonly referred to as a secure session or secure
channel. As an example, we will use a formula involving SharedKey as a precon-
dition to a proof of security of a simple one-message session in which the sender
encrypts some data using a symmetric encryption scheme and appends a MAC
of the ciphertext to the message. Such a session provides secrecy if, assuming the
sender flips a coin and sends one of two know messages m0 or m1 depending on
the outcome, the attacker’s probability of determining which message was sent
is close to 1/2. A session provides authentication if a receiver accepts a mes-
sage from A only if A indeed sent it, with overwhelming probability. We express
these additional probabilistic properties using other predicates of Computational
PCL. The proof rules for reasoning about these properties are presented in Sec-
tion 4.2 and used in Section 5. The formal semantics for the predicates and the
soundness of the proof rules is in Section 6. The security proofs rely on the
encryption scheme being IND-CPA secure and the MAC scheme being secure
against existential forgery.

3 Modelling Protocols

We use a simple “protocol programming language” based on [16–18] to repre-
sent a protocol by a set of roles, such as “Initiator”, “Responder” or “Server”,
each specifying a sequence of actions to be executed by a honest participant.
Protocol actions include nonce generation, signature creation and verification,
pattern matching, and communication steps (sending and receiving). The actions

6

Init(Ỹ) ≡ [

new x;

gx := expg x;

send X̂, Ŷ , gx;

receive Ŷ , X̂, z, s;

verify s, (z, gx, X̂), Ŷ ;

r := sign (gx, z, Ŷ), X̂;

send X̂, Ŷ , r;

]X̃

Resp ≡ [

receive X̂, Ŷ , w;

new y;

gy := expg y;

r := sign (gy, w, X̂), Ŷ ;

send Ŷ , X̂, gy, r;

receive X̂, Ŷ , t;

verify t, (w, gy, Ŷ), X̂;

]Ỹ

Fig. 1. Roles of the ISO-9798-3 protocol

expg and dhkeyken are used to create a public Diffie-Hellman key (v := gx),
and to create a key based on a Diffie-Hellman public/private key pair (v :=
KeyGen(PRF (yx))), respectively. The roles of the ISO-9798-3 protocol are writ-
ten out in this language in Table 1.

The computational execution model for this language is presented in an ear-
lier paper [14] with a summary included in Appendix A. At a high-level, the
execution of a protocol generates a set of computational runs. Informally, a run
is a record of all actions executed by honest principals and the attacker during
protocol execution. Since honest principals execute symbolic programs, a run will
contain symbolic descriptions of actions executed by honest parties as well as
the mapping of bitstrings to variables. On the other hand, the attacker can pro-
duce and send around bitstrings using arbitrary polynomial time computation.
The run only records the send-receive actions of the attacker, not the internal
actions.

4 Protocol Logic

In this section, we present relevant parts of the syntax and proof system of Com-
putational PCL [14]. The syntax indicates the kinds of protocol security proper-
ties that are expressible in the logic. The proof system is used for axiomatically
proving such properties for specific protocols. It includes axioms capturing prop-
erties of cryptographic primitives like signature and encryption schemes, which
are used as building blocks in protocol security proofs.

4.1 Syntax

The formulas of the logic are given in Table 1. Protocol proofs usually use modal
formulas of the form ψ[P]X̃ϕ. The informal reading of the modal formula is that
if X̃ starts from a state in which ψ holds, and executes the program P , then

7

Action Predicates:
a ::= Send(T, t) |Receive(T, t) |Verify(T, t, N) |Sign(T, t) |Encrypt(T, t, k) |

Decrypt(T, t, k) |New(T, n)

Formulas:
ϕ ::= a | t = t | Start(T) | Indist(T, t) |GoodKeyAgainst(T, t) |Fresh(T, t) |Honest(N) |

Start(T) |Contains(t, t) |DHSource(T, t) |PSource(T, n, t, t) |
ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V. ϕ | ∀V. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Strand]T ϕ

Table 1. Syntax of the logic

in the resulting state the security property ϕ is guaranteed to hold irrespective
of the actions of an attacker and other honest agents. Many protocol properties
are naturally expressible in this form (see Section 5 for examples). Most formu-
las have the same intuitive meaning as in the symbolic model [17, 18], except
for predicates Indist and GoodKeyAgainst. We describe the meaning of standard
formulas informally below, and give a precise semantics in a later section. Predi-
cates that are most relevant to the key exchange example are presented alongside
proof rules in the next subsection.

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example, Send(X̃, t) holds
in a run where the thread X̃ has send the term t. Action predicates are useful
for capturing authentication properties of protocols since they can be used to
assert which agents sent and received certain messages. Fresh(X̃, t) means that
the value of t generated by X̃ is “fresh” in the sense that no one else has seen
any messages containing t, while Honest(X̂) means that X̂ is acting honestly,
i.e., the actions of every thread of X̂ precisely follows some role of the protocol.

4.2 Proof System

The proof system used in this paper is based on the proof system for the symbolic
execution model developed in [17, 18, 25]. A first step towards developing a proof
system faithful to the complexity-theoretic semantics is given in [14] with a
summary included in Appendix C. In this section, we describe the predicates and
axioms for reasoning about Diffie-Hellman, symmetric encryption, and signature
primitives introduced in this paper. The soundness theorem for the extended
proof system is in Section 6. We reiterate that the advantage of using the proof
system is that its justification using cryptographic-style arguments is a one-time
mathematical effort; protocol proofs can be carried out symbolically using the
proof system without explicitly reasoning about probability and complexity.

8

Diffie-Hellman key exchange: Reasoning about Diffie-Hellman key exchange can
be divided into two steps. First we reason about symbolic actions of honest
participants, then we deduce computational key secrecy properties from the fact
that honest principals follow certain rules when dealing with Diffie-Hellman key
material.

The DHSource predicate is used to reason about the source of a piece of
information, such as a nonce. Intuitively, the formula DHSource(X̃, x) means that
the thread X̃ created the nonce x, and in all subsequent actions of that thread
it appears only in expg and dhkeyken actions. In other words DHSource(X̃, x)
holds if a thread only uses exponent x “inside” exponential gx or a key k =
KeyGen(PRF (yx)).

We extend the proof system with the following axioms used for reasoning
about the DHSource axiom.

S0 > [new x]X̃ DHSource(X̃, x)

S1 DHSource(X̃, x)[a]X̃ DHSource(X̃, x)
where (x 6⊆ a or a = expg x or a = dhkeyken y, x and x 6⊆ y)

Axioms S0 and S1 model introduction and persistence of the DHSource predi-
cate. Informally, after a thread X̃ creates a new nonce x, DHSource(X̃, x) holds
(axiom S0), and it continues to hold (axiom S1) as long as the thread does not
use x, other than creating a public key gx, and creating and using a shared key
v = yx. Axioms S0 and S1 capture simple properties about information flow
within a program and we prove their soundness using direct arguments. When
we use these axioms in a formal proof, we are essentially performing induction
over symbolic actions of honest parties proving that they treat Diffie-Hellman
exponents in a correct way.

The result of a good key exchange protocol is a shared key k which is in-
distinguishable from a randomly chosen key by a polynomial-time attacker. As
discussed in the introduction, after the key is used (e.g. to establish a secure
session), partial information about the key is revealed to the attacker. In our
model we capture the quality of a key using the predicate GoodKeyAgainst. In-
formally we wish to capture the property that the key can be securely used
for encryption, even if the attacker has some partial information about the
key. A bit more formally, GoodKeyAgainst(X̃, k) holds whenever no probabilis-
tic polynomial-time algorithm, given X̃’s view of the run, can win the IND-
CPA game if the challenger uses key k instead of a key generated using the
key generation algorithm. We often use the shorthand SharedKey(Ã, B̃, k) to de-
note, that k is a good key against everyone except Ã and B̃. More precisely
SharedKey(Ã, B̃, k) ≡ ∀X̃(X̃ = Ã ∨ X̃ = B̃ ∨ GoodKeyAgainst(X̃, k)).

We extend the proof system with the following axiom used for establishing
key secrecy in Diffie-Hellman key exchange.

DH Honest(X̂, Ŷ) ∧ DHSource(X̃, x) ∧ DHSource(Ỹ , y) ⇒ SharedKey(X̃, Ỹ , gxy)

Axiom DH says that if two threads of honest agents X̃ and Ỹ use their
respective private key in a safe way, then the shared key gxy can be safely

9

used with any IND-CPA secure encryption scheme. Note that this axiom does
not capture key agreement: threads X̃ and Ỹ could in principle have different
keys (or no keys at all). Key agrement has to be established by other methods.
We prove the soundness of axiom DH using a cryptographic-style reduction to
the security of the underlying IND-CPA secure encryption scheme and to the
Decisional Diffie-Hellman assumption. The proof employs a hybrid argument
and is sketched in Section 6.

Signatures: The signature axiom is given below.

SIG Verify(X̃, m, Ŷ) ∧ Honest(X̂, Ŷ) ⇒ ∃Ỹ .Sign(Ỹ , m)

Informally, this axiom says that if a thread X̂ performs a successful signature
verification step using a public key of an honest party Ŷ then there has to be
a thread Ỹ of agent Ŷ that performed the signature operation on the same
message. This axiom captures unforgeability of signatures and its soundness is
proved by reduction to the CMA-security game for signatures. The complete
proof is in Appendix C.

Symmetric Encryption: In the symbolic model [17, 18], the predicate Has states
that a principal can “derive” a message or its contents from the information
gathered during protocol execution. Since secrecy in the computational model
involves absence of any partial information, we use the predicate Indist(X̃, t) to
state that no probabilistic polynomial-time algorithm, given X̃’s view of the run,
can distinguish the actual bitstring corresponding to the term t from a random
bitstring chosen from the same distribution.

The PSource(X̃, b, m, k) predicate means that the bit b and the message m
were chosen by X̃ via a pick action, and in all subsequent actions of that thread
b does not appear, and m appears only inside encryptions with the key k. We
use it for expressing security properties of symmetric encryption schemes and
reasoning about protocols which use such schemes.

We extend the proof system with the following axioms used for reasoning
about symmetric encryption.

PS0 > [(m, b) = pick m0,m1]X̃ PSource(X̃, b,m, k)

PS1 PSource(X̃, b, m, k)[a]X̃ PSource(X̃, b, m, k) (m, b 6⊆ a or a = enc m, k)

ENC PSource(X̃, b, m, k) ∧ Honest(X̂, Ŷ) ∧ SharedKey(X̃, Ỹ , k) ∧
(Decrypts(Ỹ , m, k) ∧ Contains(m,m′) ∧ Send(Ỹ , m′′) ⊃ ¬Contains(m′′,m′)) ∧
(Decrypts(X̃, m, k) ∧ Contains(m,m′) ∧ Send(X̃, m′′) ⊃ ¬Contains(m′′,m′)) ∧
∧Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

Axiom ENC captures the properties of an IND-CPA encryption scheme.
Informally, in a scenario where k is a shared key between threads X̃ and Ỹ , if X̃
chooses a message m and the bit b via a pick action, and both threads follow
the rules of the IND-CPA game (i.e. the do not send parts of messages they
decrypt) then the bit b should be indistinguishable from a random bit to any
other party.

10

Discussion: The presented axioms deduce computational properties based on
symbolic actions executed by individual honest parties. This resembles the setup
in defining security properties of cryptographic primitives using games. For ex-
ample, in the IND-CPA game the challenger is required to generate a random
key and use it for encryption only. If this syntactic property is satisfied, then
the security condition (semantic security) is guaranteed to hold for all compu-
tational adversaries interacting with the challenger. The predicates DHSource
and PSource are used to exactly state symbolic constraints for actions of honest
parties. The axioms DH and ENC bridge the gap between the symbolic and
computational world and are proven sound by reduction to security properties
of corresponding primitives.

In Section 2.1 we pointed out that the key indistinguishability property is
not an invariant under composition. Specifically, focusing on the Diffie-Hellman
example, we could have formulated the DH axiom to guarantee key indistin-
guishability by modifying the DHSource predicate to preclude the case where
the resulting secret is used as a key. The resulting axiom could be proven sound
by a similar reduction. However, this axiom will not be useful win a proof in-
volving a composition of a key exchange protocol with a protocol that uses a
key.

5 Applications

5.1 Key Exchange

In this section, we use the protocol logic to formally prove a property of the
ISO 9798-3 protocol. The ISO 9793-3 protocol is defined by a set of two roles
QISO = {Init,Resp}, comprising one role Init for the initiator of the protocol
and one program Resp for the responder. The roles of the protocol, written
using the protocol language are given in Figure 1.

Writing Init = Init(Ỹ) for the protocol steps of initiator X̂ communicating
with responder Ŷ , the security guarantee for the initiator is expressed by the
following formula:

φInit ≡ > [Init]X̃ Honest(X̂, Ŷ) ⊃ ∃Ỹ .∃y. z = gy ∧ SharedKey(X̃, Ỹ , gxy)

In words, this formula says that after the initiator X̂ completes the initiator steps
with Ŷ then, assuming both agents are honest in all of their threads, there is one
thread Ỹ of agent Ŷ that has established a shared key with X̂. The meaning of
predicate SharedKey in this formula is defined by the game condition explained
in Section 2.

The formal proof, given in Table 2, illustrates some general properties of our
method. This example proof is modular, consisting of three distinct parts. In the
first part of the proof, steps (1)-(2), we establish that value x generated by the
initiator is only used to create gx and the final key gxy. The reasoning in this
step is non-cryptographic, and only relies on the structure of the program of the
initiator. In the second step the analog property for y is established based on the

11

S0 > [new x;]X̃ DHSource(X̃, x) (1)

S1, (1) > [Init]X̃ DHSource(X̃, x) (2)

AA1 > [verify s, (z, gx, X̂), Ŷ ;]X̃ Verify(X̃, (z, gx, X̂), Ŷ) (3)

P,SEQ, (3) > [Init]X̃ Verify(X̃, (z, gx, X̂), Ŷ) (4)

SIG, (4) > [Init]X̃ ∃Ỹ .Sign(Ỹ , (z, gx, X̂)) (5)

HON Honest(Ŷ) ∧ Sign(Ỹ , (z, gx, X̂)) ⊃ ∃y. z = gy ∧ DHSource(Ỹ , y) (6)

(6) > [Init]X̃ Honest(X̂, Ŷ) ⊃ ∃Ỹ .∃y. z = gy ∧ DHSource(Ỹ , y) (7)

(7), (2) > [Init]X̃ Honest(X̂, Ŷ) ⊃ ∃Ỹ .∃y. z = gy ∧ DHSource(X̃, x) ∧ DHSource(Ỹ , y)(8)

(8),DH > [Init]X̃ Honest(X̂, Ŷ) ⊃ ∃Ỹ .∃y. z = gy ∧ SharedKey(X̃, Ỹ , gxy) (9)

Table 2. Secrecy proof for the initiator in the ISO-9798-3 Protocol

security of the signature scheme, and the structure of the responding program.
Finally, the axiom that captures the DDH assumption is used to conclude that
the key derived from gxy is secure. Notice that the axioms SIG and DH are
used independently to establish different security properties. The two properties
are only combined in the last step of the proof.

The modular symbolic proof can be compared with conventional compu-
tational arguments, such as the computational proof of the same property by
reduction. The reduction proof starts from an adversary against the key de-
rived from gxy and constructs two different adversaries, one against the DDH
assumption and the other one against the signature scheme. The assumptions
on signatures and DDH are used intertwined. Specifically, to argue that the ad-
versary against DDH is successful, it is necessary to argue that the values that
occur in a possible simulation are created by the honest party, and consequently,
to argue that the signature scheme is secure. More generally, the analysis of
protocols that use more primitives, and where the reduction uses multiple ad-
versaries, the proofs become increasingly complex. In contrast, evidence drawn
from work with the symbolic version of the logic indicates that axiomatic proofs
are at the same level of complexity as our proof for the ISO-9798-3 protocol [4].

5.2 Secure Sessions

We formalize the definition of secure sessions presented in Section 2.3 for a
protocol QSS = {InitS,RespS} below.

S |=
[
(m, b) = pick m0,m1; InitS(Ỹ,m)

]
X̃

Honest(X̂, Ŷ) ∧
Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

In words, this formula states that if initiator X̂ picks one of two messages at
random and executes the secure sessions protocol with Ŷ , then the attacker
cannot distinguish, which of the two messages was transmitted.

12

As a concrete example, we consider the secure session protocol with the
following initiator program. The responder simply decrypts the message.

InitS(Ŷ , m, k) ≡
[
e := enc m, k; send Ŷ , e;

]
X̃

Using the proof system we can prove that this protocol provides the secure-
session property between threads X̃ and Ỹ assuming that the key k is a shared
key between X̃ and Ỹ , formally:

SharedKey(X̃, Ỹ , k)
[
(m, b) = pick m0,m1; InitS(Ỹ,m,k)

]
X̃

Honest(X̂, Ŷ) ∧
Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

The security property of an IND-CPA secure encryption scheme (expressed by
axiom ENC) is central to this proof. This is a point of difference between the
logic and the approaches which relate the symbolic and computational mod-
els [26, 27] and require stronger cryptographic assumptions such as IND-CCA-2.

5.3 Composition

We prove that the sequential composition of ISO-9798-3 and the secure sessions
protocol described above is also a good secure session protocol, when the key
generated in the first part is used in the second part. We use the general se-
quential theorem of [18]. This involves two steps: a) the property guaranteed by
ISO (that k is a shared key between X̃ and Ỹ) is precisely the assumption of
the secure sessions protocol b) two protocols satisfy each other’s invariants (e.g.
line (6) of Table 2). This step guarantees that one protocol does not provide an
oracle that can be used to break the security of the other protocol (see [18] for
further elaboration and examples of composition). The composition would not
have worked if we used key indistinguishability instead of the weaker shared-key
property.

6 Computational Semantics and Soundness Theorem

In this section, we outline the main ideas behind computational semantics and
present semantics for predicates introduced in this paper. We also state the
soundness theorem for the proof system and sketch the proof for one repre-
sentative axiom making a connection between validity of logical formulas and
standard security definitions of cryptographic primitives. A complete presenta-
tion of computational semantics is contained in [14]. A summary is included in
Appendix B.

The meaning of a formula is defined with respect to a set of computational
traces, where each trace corresponds to one particular execution of the protocol
with all the parameters fixed (including the randomness of the attacker and hon-
est parties). Intuitively, the meaning of a formula ϕ on a set T of computational
traces is a subset T ′ ⊆ T that respects ϕ in some specific way. For example,

13

an action predicate such as Send selects a set of traces in which a send occurs.
The semantics of predicates Indist and GoodKeyAgainst are more complex and
involve a second phase of execution where the distinguisher tries to guess the
secret value or break the encryption scheme.

We inductively define the semantics |[ϕ]| (T, D, ε) of a formula ϕ on the set T
of traces, with distinguisher D and tolerance ε. The distinguisher and tolerance
are not used in any of the clauses except for Indist and GoodKeyAgainst, where
they are used to determine whether the distinguisher has more than a negligible
chance of distinguishing the given value from a random value or wining an IND-
CPA game, respectively. A protocol Q will satisfy a formula ϕ, written Q |= ϕ
if for all adversaries, distinguishers, and sufficiently large security parameter,
|[ϕ]| (T, D, ε) is an overwhelming subset of the set of all possible traces produced
by the interaction of protocol Q and attacker A.

Every trace t ∈ T includes a set of symbolic actions executed by honest
participants, as well as the mapping λ assigning bitstrings to all terms appearing
in symbolic actions. A trace t also includes a mapping σ assigning bitstrings to
free formula variables. Informally, σ represents the environment in which the
formula is evaluated. Technically, as the binding operators (such as quantifiers)
are parsed, σ is used to keep track of the values assigned to the variables by
these operators.

–
∣∣∣
[
DHSource(X̃, x)

]∣∣∣ (T,D, ε) is the collection of all traces t ∈ T such that

for all basic terms y with σ(x) = λ(y) there is a single symbolic action
(new (X̃), y), and term y does not appear in any symbolic actions except
maybe in (v := expg (X̃, y)) and (v := dhkeyken (X̃, z, y)) for some term z
different from y.
Notice that the condition σ(x) = λ(y) is used to tie the formula variable x to
a trace variable y by requiring that they both evaluate to the same bitstring.
Therefore, if we fix a particular trace t ∈ T with an environment σ, then
t ∈

∣∣∣
[
DHSource(X̃, x)

]∣∣∣ (T, D, ε) if in the trace t, the thread X̃ created a

new nonce (represented by a trace variable y) with a bitstring value equal
to that of σ(x), and used the variable y only inside an exponentiation action
or a key generation action.

–
∣∣∣
[
PSource(X̃, b, m, k)

]∣∣∣ (T, D, ε) is the collection of all traces t ∈ T such that

for all basic terms m′, b′ with σ(m) = λ(m′) and σ(b) = λ(b′), such that
there is symbolic action ((m′, b′) := pick X̃, m1, m2), terms b′ and m′ do
not appear in any symbolic actions except maybe in (v := enc X̃, m′, k′),
with σ(k) = λ(k′).

–
∣∣∣
[
GoodKeyAgainst(X̃, k)

]∣∣∣ (T, D, ε) is the complete set of traces T if the dis-

tinguisher D, who is given a complete X̃’s view of the run, has an advantage
greater than ε in winning the IND-CPA game against a challenger using
the bitstring corresponding to term k, and empty set ∅ otherwise. Here the
probability is taken by choosing an uniformly random trace t ∈ T (which in-

14

cludes the randomness of all parties, the attacker as well as the distinguisher
randomness).

–
∣∣∣
[
Sign(X̃, m)

]∣∣∣ (T, D, ε) is a collection of all traces where X̃ performs a sym-
bolic signing operation of on a variable whose bitstring value corresponds to
the bitstring value of m.

–
∣∣∣
[
Verify(X̂, m, Ŷ)

]∣∣∣ (T, D, ε) is a collection of all traces where X̃ performs a
successful symbolic signature verification operation where the bitstring value
of the signed text corresponds to the bitstring value of m, and the bitstring
value of the agent name corresponds to the bitstring value of Ŷ .

Note that the predicates defined by reference to a set of symbolic actions by
a thread X̃ only make sense if the agent X̂ is honest and therefore its threads
only performing symbolic actions. For the threads of dishonest agents, we can
define the semantics of these terms arbitrarily. In all meaningful formulas, these
predicates will be always used in conjunction with the assumption that the
corresponding agent is honest.

Theorem 1. Proof system [14] extended with axioms above is sound with respect
to semantics [14] extended with clauses above.

This theorem is proved by showing that every axiom is a valid formula and
that all proof rules preserve validity. For some axioms and proof rules soundness
will follow directly from the execution model or by information theoretic reason-
ing. Axioms stating properties of cryptographic primitives are proved sound by
transforming a protocol and an attacker breaking the axiom to an attacker on
the game defining the security property of the cryptographic primitive. Proofs
for selected axioms are given in Appendix C. Below we give a proof sketch for the
soundness of the DH axiom (introduced and informally discussed in Section 4.2).

Proof (Proof sketch for axiom DH). Assuming the axiom is false we deduce that
there exist an adversary A, and a distinguisher D such that:

||[¬ϕ]| (T, D, ν(η))| ≥ ν(η)

is non-negligible (as a function of η). By unwinding the semantics of ¬ϕ, we
obtain that there exists three parties bX , bY and bZ such that the set:

|[¬ϕ]| (T,D, ν(η))[X̃ → bX][Ỹ → bY][Z̃ → bZ]

is of non-negligible size in rapport with |T |. More precisely, with non-negligible
probability, the distinguisher D can successfully break the IND-CPA game played
against a standard left-right encryption oracle keyed with the key that party bX

outputs at the end of the protocol execution with party bY , provided that D has
access to the view associated to party bZ . Given adversary A and distinguisher
D we explain how to construct two adversaries A1 and A2, one against the DDH
assumption and the other one against the IND-CPA security of the encryption

15

scheme, such that at least one of these two adversaries has non-negligible prob-
ability of wining the corresponding security game.

We consider two execution scenarios that involve A and D. The first scenario
is exactly the execution described in Section A.2, followed by the execution of
D. At the end of the execution D outputs a guess bit d. Let guess1(A,D) be
the event that the output of D coincides with the bit b of the left-right oracle
to which it has access. By the assumption that D is successful we conclude that
P1 = Pr[guess(A,D)1] is non-negligible. (Here, to simplify notation we omit to
explicitly show the dependence of the event on the security parameter.)

In the second scenario, the execution of A proceeds as in Section A.2. The
interaction of D however is with an oracle keyed with a randomly generated
key (that is a key independent from all keys exchanged in the execution of the
protocol). Let guess2(A, D) be the event that D correctly guesses the bit that
parameterizes the left-right oracle, and let P2 = Pr[guess2(A,D) = b].

Intuitively, if the DDH assumption holds, adversary D should not observe
any difference between the two different execution scenarios that we consider.
Formally, we construct the following adversary A1 against the DDH assumption.
The adversary takes as input a triple (X = gx, Y = gy, Z = gz) and works as
follows. It executes adversary A as a subroutine, and emulates for A the behavior
of the honest parties. The difference is that for parties bX and bY , the adversary
does not generates the values x and y needed for the execution, but whenever
it needs to send gx and gy it sends X and Y respectively. Notice that here we
crucially use that DHSource(X̂, x) and DHSource(Ŷ , y) hold, since this implies
that parties bX and bY only send the values x and y as exponents. (Otherwise,
it would be impossible to carry out the simulation).

When A finishes its execution, adversary A1 flips a bit b and simulates for
D the left-right encryption oracle parameterized by b and keyed by the key
generated from Z. When D finishes and outputs a bit d adversary A outputs 1
if d = b and 0 otherwise.

Notice that when (X,Y, Z) are such that z = xy, the view of (A,D) is as
in the normal execution of the protocol, and thus we have that Pr[A1 = 1|Z =
gxy] = Pr[guess1(A,D)]. When Z is such that z is randomly chosen, the view of
(A,D) is as in the alternative execution scenario that we consider, and thus we
obtain that Pr[A1 = 1|Z = gz] = Pr[guess2(A, D)].

The advantage that A1 has in breaking the DDH assumption is thus:

AdvDDH,A1(η) = Pr[guess1(A,D)]− Pr[guess2(A,D)] (10)

Next, we bound the probability of guess2(A,D). Intuitively, if the encryption
scheme is IND-CPA secure, no adversary should be able to win the IND-CPA
game in the second execution scenario (since the key used in the oracle is a ran-
domly generated key, thus independent from that generated in the key exchange
phase). Formally, we construct adversary A2 against the IND-CPA security of
the encryption scheme. The adversary has access to a left-right encryption oracle
parameterized by a bit b and proceeds as follows. It runs adversary A as a sub-
routine and simulates for A the execution of the honest parties involved in the

16

protocol. Thus, it generates the encryption and decryption keys of the honest
parties receives and outputs messages as prescribed by the protocol. Whenever A
finishes its execution, adversary A2 provides to D the view of party bZ , whatever
state information A has output, and offers access to his own oracle (parameter-
ized by a bit b to be guessed). Notice that if at any point, in order to carry out
the simulation adversary A needs to output the encryption of some message m
under the key k of the oracle (this is the case for example when the parties ex-
change confirmation messages using the exchanged key), A2 can simply submit
(m,m) to its encryption oracle.

The guess of A is whatever D outputs. The key observation is that the view
of the pair (A, D) is exactly as in the second execution scenario that we consider.
Thus A2 successfully guesses the bit b precisely when, following the execution
we have just described, the distinguisher D outputs b. Thus, we obtain that:

AdvIND-CPA,A2(η) = Pr[A2 wins the IND-CPA game] = Pr[guess2(A,D)] (11)

By Equations (10) and (11) we get that:

Pr[guess1(A,D)] = AdvDDH,A1(η) + AdvIND-CPA,A2(η)

Since the left-hand side term is a non-negligible function so is at least one of
the summands on the right-hand side. Thus, either the DDH assumption is not
valid, or the encryption scheme is not IND-CPA secure.

7 Related Work

Computational Soundness Abadi and Rogaway [28] have initiated a line of re-
search to link symbolic techniques and tools with widely accepted computational
models. Their main result is a soundness theorem for a logic of encrypted ex-
pressions: a symbolic notion of equivalence between such expressions based on
Dolev-Yao deducibility [29] implies computational indistinguishability. This work
has been extended to the case of (symbolic) static equivalence [30], while other
works investigate completeness aspects of the Abadi-Rogaway logic [31–33]. All
these results hold for a passive adversary, while our results are set in the more
general and more realistic framework of active adversaries.

The active setting has been investigated by Backes, Pfitzmann, and Waid-
ner [27] and by Micciancio and Warinschi [26], with further refinements and ap-
plications provided in [34–36]. In these approaches, the core results are emulation
theorems that state that the behavior of arbitrary computational adversaries can
be emulated by symbolic adversaries. It follows from an emulation theorem that
security in the symbolic model implies security in the computational model.
However, current emulation theorems require strong cryptographic assumptions
(e.g., IND-CCA2 encryption) while the present paper allows weaker assumptions.
Our approach appears to offer a higher degree of flexibility and modularity when
compared to [27, 26], which requires a new emulation theorem for each added
primitive; this may be difficult or impossible in some cases [37]. Similarly, new

17

primitives can be added to the present framework by adding appropriate axioms
and proof rules to the logic and proving them sound. However, this appears
easier, primarily because it is not necessary to completely axiomatize new prim-
itives, but only to formalize the properties that are needed to prove protocols of
interest correct. For instance, our axiom for exponentiation does not explicitly
give any algebraic properties (although the soundness proof certainly accounts
for them), and only reflects the Decisional Diffie-Hellman assumption.

A complementary line of research is proposed by Impagliazzo and Kapron [38],
who provide a logic for reasoning about indistinguishability. Their logic is ap-
propriate for reasoning about security of primitives, but has not been extended
to deal with protocols.

An approach similar to the present paper is taken by Gupta and Shmatikov [39]
who extend the logic of [14] with signatures and Diffie-Hellman keys, and then
use the resulting logic to express security properties of key exchange protocols.
The main result is a proof that protocols that satisfy their security requirement
are secure with respect to a computational model for secure key exchange due
to Shoup [12]. Their logical characterization of secure keys is based on indistin-
guishability, and unlike our notion is not composable.

Other models of key exchange In previous work, three different approaches that
have been used to define security of key-exchange protocols: the indistinguishability-
based approach [10], the simulation-based security paradigm [12], and universal
composability [40] or reactive simulateability [41].

The indistinguishability-based approach was proposed by Bellare and Rog-
away [10]. A central aspect of this definition is the notion of key indistinguisha-
bility, which states that an attacker cannot distinguish between the real key
and one chosen at random. This model was refined and extended by Bellare,
Petrank, Rackoff and Rogaway (in unpublished work) and later by Canetti and
Krawczyk [13]. The approach of Canetti and Krawczyk also offers a limited form
of composition guarantees. Specifically, they prove that a key exchange protocol
which satisfies their definition can be securely composed with a specific secure
sessions protocol, which uses the exchanged key. However, as noted in the in-
troduction of this paper, key indistinguishability is not generally preserved once
the key is used. While [13] provides for a specific composition, their theorem
would not apply, for example, to IEEE 802.11i, where the key exchange protocol
(TLS [2]) is composed with a protocol that uses the exchanged key to set up
other fresh keys for securing data transmission.

Bellare, Canetti, Krawzyck [11] and Shoup [12] provide simulation-based al-
ternatives. This line of research is grounded in foundational work on secure
multi-party computation. Here, security of a real protocol is asserted by com-
paring it with an ideal protocol, which is secure by construction. As usual with
this approach, while the resulting definitions are quite appealing to intuition,
security proofs may be quite involved. Moreover, the basic framework of secure
multi-party computation does not have built-in compositionality guarantees, and
neither of these two models offers improvements with respect to this important
aspect.

18

Finally, the universal composability framework of Canetti [40] has the ex-
plicit goal of providing a framework where demonstrated security is preserved
under arbitrary composition. Working in this setting Canetti and Krawczyk [42]
prove an equivalence between single-session UC-security of key exchange pro-
tocols and the indistinguishability-based notion introduced in [13], and their
result apparently implies that indistinguishability-based notion may be compos-
able. Unfortunately, the general compositionality properties offered by the UC
framework only apply to the case when the composition is applied to primitives
that do not share state, and this limitation also applies to the results of [42].
While a partial solution is offered in [43] (which allows multiple sessions of a
protocol which use signatures in a specific way to share the signing keys), there
appear to be no general composition theorems about protocols which share state
that are applicable to common practical protocols of interest.

8 Conclusions

We propose a new definition for secure key exchange. The idea is to require
that the key output after the exchange should be adequate for the application
in which it is used. For example, if it is used as an encryption key, we ask that
an attacker interacting with the protocol cannot use the auxiliary information
thus obtained to break an IND-CPA (or IND-CCA) game with that key used in
encryption (and decryption) oracles. One important feature of this definition is
that, unlike key indistinguishability, this property is preserved under composition
with protocols which use the key.

The security definitions are formalized in a symbolic protocol logic. We ex-
tend an existing computational logic [14] with axioms capturing properties of
signatures, symmetric encryption, and message authentication codes, as well as
with the Decisional Diffie-Hellman assumption. Protocol proofs in this logic are
compositional—proofs of compound protocols can be constructed from proofs of
their parts. Specifically, we show how to compose the proof of ISO-9798-3 with
the proof of a secure sessions protocol. Our security definition for key exchange
was crucial for this compositional proof; it could not have been carried out with
the key indistinguishability-based definition. The axioms used in a proof iden-
tify specific properties of cryptographic primitives that are sufficient to guarantee
the desired protocol properties. Specifically, we note that for the secure sessions
protocol presented in this paper, an IND-CPA secure encryption scheme is suf-
ficient. This is an important point of difference between our approach and the
emulation theorems of [26, 27], since those theorems work only under stronger
cryptographic assumptions (e.g., IND-CCA2 for encryption).

Since commonly used reasoning principles are codified in the proof system,
protocol security proofs can be carried out at a high-level of abstraction with-
out worrying about probability and complexity. All such details are buried in
the proof of the soundness theorem, which is a one-time mathematical effort.
The soundness proofs for the various axioms involve standard cryptographic
proof techniques. For example, the soundness proof of the signature axiom, SIG

19

involves a reduction to the security of CMA-signatures. Among the axioms in-
troduced in this paper, the soundness of the DH axiom was the most difficult
to establish since it relied on two cryptographic security conditions: Decisional
Diffie-Hellman and IND-CPA secure encryption.

We believe that the methods developed in this paper provide a viable al-
ternative to existing methods for carrying out cryptographically-sound security
proofs of practical key exchange protocols. In the future, we believe that these
methods could be used to prove security properties of protocols like IKEv2 [3],
IEEE 802.11i [4], and Kerberos [5].

References

1. Freier, A., Karlton, P., Kocher, P.: The SSL protocol version 3.0. IETF Internet
draft (1996)

2. Dierks, T., Allen, C.: The TLS Protocol — Version 1.0. IETF RFC 2246 (1999)
3. Kauffman, C.: Internet key exchange (IKEv2) protocol. IETF Internet draft (1994)
4. : IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements,

amendment 6 to IEEE Standard for local and metropolitan area networks part 11:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications.
(2004)

5. Kohl, J., Neuman, B.: The Kerberos network authentication service (version 5).
IETF RFC 1510 (1993)

6. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11i and TLS. In: CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security. (2005)

7. Meadows, C.: A model of computation for the NRL protocol analyzer. In: Pro-
ceedings of 7th IEEE Computer Security Foundations Workshop, IEEE (1994)
84–89

8. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, A.: Modelling and
Analysis of Security Protocols. Addison-Wesley Publishing Co. (2000)

9. Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security
protocol correct? In: Proceedings of the 1998 IEEE Symposium on Security and
Privacy, Oakland, CA, IEEE Computer Society Press (1998) 160–171

10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), Springer-Verlag (1994) 232–249

11. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authenticationand key exchange protocols. In: Proc. of the 30th Annual
Symposium on the Theory of Computing, ACM (1998) 419–428

12. Shoup, V.: On formal models for secure key exchange (version 4). Technical Report
RZ 3120, IBM Research (1999)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Proc. of EUROCRYPT 2001. Volume 2045 of LNCS.
(2001) 453–474

14. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilis-
tic polynomial-time semantics for a protocol security logic. In: Proceedings of
the 32nd International Colloquium on Automata, Languages and Programming
(ICALP ’05). Lecture Notes in Computer Science, Springer-Verlag (2005)

20

15. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for protocol cor-
rectness. In: Proceedings of 14th IEEE Computer Security Foundations Workshop,
IEEE (2001) 241–255

16. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for proving security
properties of protocols. Journal of Computer Security 11 (2003) 677–721

17. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for security
protocols and its logical formalization. In: Proceedings of 16th IEEE Computer
Security Foundations Workshop, IEEE (2003) 109–125

18. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. Journal of Computer Security (2005)

19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (1996)

20. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press (2004)

21. Alur, R., Henzinger, T.A.: Computer-aided verification. an introduction to model
building and model checking for concurrent systems. Draft (1998)

22. Ehmety, S.O., Paulson, L.C.: Program composition in isabelle/unity. In: 16th
International Parallel and Distributed Processing Symposium (IPDPS 2002), Pro-
ceedings, IEEE Computer Society (2002)

23. Ehmety, S.O., Paulson, L.C.: Mechanizing compositional reasoning for concurrent
systems: some lessons. Formal Aspects of Computing 17(1) (2005) 58–68

24. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Using probabilistic i/o automata to analyze an oblivious transfer protocol.
Technical Report MIT-LCS-TR-1001, MIT CSAIL (2005)

25. Backes, M., Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Compositional
analysis of contract signing protocols. In: Proceedings of 18th IEEE Computer
Security Foundations Workshop, IEEE (2005) To appear.

26. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Theory of Cryptography Conference - Proceedings of TCC
2004. Volume 2951 of Lecture Notes in Computer Science., Springer-Verlag (2004)
133–151

27. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library. Cryptology ePrint Archive, Report 2003/015 (2003)

28. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2) (2002) 103–127

29. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions
on Information Theory 2(29) (1983) 198–208

30. Baudet, M., Cortier, V., Kremer, S.: Computationally Sound Implementations
of Equational Theories against Passive Adversaries. In: Proceedings of the 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05).
Volume 3580 of Lecture Notes in Computer Science., Lisboa, Portugal, Springer
(2005) 652–663

31. Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security 12(1) (2004) 99–129
Preliminary version in WITS 2002.

32. Gligor, V., Horvitz, D.O.: Weak Key Authenticity and the Computational Com-
pleteness of Formal Encryption. In Boneh, D., ed.: Advances in cryptology -
CRYPTO 2003, proceedings of the 23rd annual international cryptology confer-
ence. Volume 2729 of Lecture Notes in Computer Science., Santa Barbara, Cali-
fornia, USA, Springer-Verlag (2003) 530–547

21

33. Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic sound-
ness and completeness of formal encryption. In: Proc. of the 18th IEEE Computer
Security Foudnations Workshop. (2005) 170–184

34. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for secu-
rity protocols. In: Proceedings of 14th European Symposium on Programming
(ESOP’05). Lecture Notes in Computer Science, Springer-Verlag (2005) 157–171

35. Janvier, R., Mazare, L., Lakhnech, Y.: Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In: Proceedings of 14th
European Symposium on Programming (ESOP’05). Lecture Notes in Computer
Science, Springer-Verlag (2005) 172–185

36. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic secrecy. In: Proc.
IEEE Symposium on Security and Privacy, IEEE (2005) 171–182

37. Backes, M., Pfitzmann, B.: Limits of the cryptographic realization of XOR.
In: Proc. of the 10th European Symposium on Research in Computer Security,
Springer-Verlag (2005)

38. Impagliazzo, R., Kapron, B.: Logics for reasoning about cryptographic construc-
tions. In: Prof of 44th IEEE Symposium on Foundations of Computer Science
(FOCS). (2003) 372–383

39. Gupta, P., Shmatikov, V.: Towards computationally sound symbolic analysis of
key exchange protocols. In: Proceedings of ACM Workshop on Formal Methods in
Security Engineering. (2005) to appear.

40. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of FOCS’01. (2001) 136–145

41. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, Washington (2001) 184–200

42. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: EUROCRYPT ’02: Proceedings of the International Confer-
ence on the Theory and Applications of Cryptographic Techniques, London, UK,
Springer-Verlag (2002) 337–351

43. Canetti, R., Rabin, T.: Universal composition with joint state. In: Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Proceedings. Volume 2729 of Lecture Notes in Computer Science., Springer-Verlag
(2003) 265–281

44. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Advances in Cryptology - EUROCRYPT
2000, Proceedings. (2000) 259–274

A Modelling Protocols

A.1 Protocol Language

We use a simple “protocol programming language” based on [16–18] to represent
a protocol by a set of roles, such as “Initiator”, “Responder” or “Server”, each
specifying a sequence of actions to be executed by a honest participant. The
syntax of terms and actions is given in Table 3.

22

Terms:

N ::= X̂ (name)
S ::= s (session)
T ::= (N, S) (thread)
K ::= X (asymmetric key)
k ::= x (symmetric key)
n ::= r (nonce)
V ::= x (term variable)
tB ::= V |K |T |N |n|(tB , tB) (basic term)
E ::= ENCk{|t|}n (symmetric encryption)
Z ::= SIGK{|t|}n (signature)
G ::= tn (exponentiation)
t ::= tB |E |Z |G | (t, t) (term)

Actions:
a ::=
| new T, n
| V := sign T, tB , K
| verify T, tB , tB , K
| V := enc T, tB , k
| V := dec T, tB , k
| V := expg T, n
| k := dhkeyken T, tB , n
| V, V := pick t, t
| match T, tB/tB

| send T, tB

| receive T, V

Table 3. Syntax of protocol terms and actions

Names, sessions and threads: We use X̂, Ŷ , . . . as names for protocol partici-
pants. Since a particular participant might be involved in more than one session
at a time, we will give unique names to sessions and use (X̂, s) to designate a
particular thread being executed by X̂. All threads of a participant X̂ share the
same signature verification key denoted vk(X). As a notational convenience we
will usually write X̃ for an arbitrary thread of X̂.

Terms, actions, and action lists: Terms label messages and their parts. In this
paper we extend previously developed language for writing protocols [14]. In
particular, we are able to deal with digital signatures and Diffie-Hellman expo-
nentials. For simplicity we do not include public key encryption in our treatment;
using the previous work of [14], the results of this paper should easily extend to
the more involved setting. For technical reasons, we distinguish basic terms from
terms that may contain signatures, encryptions and other constructs explicitly.
We write m ⊆ m′ when m is a subterm of m′ ∈ t.

Actions include nonce generation, signature creation and verification, pat-
tern matching, and communication steps (sending and receiving). An ActionList
consists of a sequence of actions that contain only basic terms. This means that
signing cannot be used implicitly; explicit sign actions, written as assignment,
must be used instead. Actions expg and dhkeyken are used to create a public
Diffie-Hellman key (v := gx), and to create a key based on a Diffie-Hellman
public/private key pair (v := KeyGen(PRF (yx))), respectively.

Strands, roles, protocols and execution: A strand is an ActionList, containing
actions of only one thread. Typically we use write [ActionList]X̃ for a strand
executed by thread X̃ and drop the thread identifier from the actions themselves.
A role is a strand together with a basic term representing the initial knowledge
of the thread. A protocol is a finite set of Roles.

23

We consider programs where each variable will be assigned at most once,
at its first occurrence. For any s ∈ ActionList, we write s|X to denote the
subsequence of s containing only actions of a participant (or a thread) X. We
also assume that all variables that have been assigned keys via dhkeyken actions
are only used as keys, and not, for example, in payloads.

An execution strand is a pair ExecStrand ::= Start(InitV alues); ActionList
where InitV alues is a data structure representing the initial state of the pro-
tocol, as produced by the initialization phase from Section A.2. In particular,
this includes the list of agents and threads, the public/private keys and hon-
esty/dishonesty tokens of each agent, and the roles played by each thread.

A.2 Protocol Execution

As usual, we consider a two-phase execution model. In the initialization phase
of protocol execution, we assign a set of roles to each principal, identify a subset
which is honest, and provide all entities with keys for digital signature cre-
ation/verification, a public group generator for the Diffie-Hellman key exchange,
and random coins. In the execution phase, the adversary executes the protocol
by interacting with honest principals, as in the accepted cryptographic model of
[10].

Initialization: We analyze protocols implemented with a fixed digital signature
scheme Σ = (K,S,V), and a fixed symmetric encryption scheme Π = (K, E ,D).
We assume that for each security parameter η the key generation algorithm
outputs a random element in {0, 1}η. In addition, protocols use a sequence of
groups G = (Gη)η for which the decisional version of the Diffie-Hellman as-
sumption holds. We abuse notation and write g for a generator of the groups,
thus ignoring the dependence on the security parameter. Finally, we use a deter-
ministic randomness extractor R that, for each security parameter η, maps the
uniform distribution on Gη to the uniform distribution on {0, 1}η.

The execution of protocol Q in the presence of adversary A, for security pa-
rameter η proceeds as follows. Each principal and each thread (i.e., an instance of
a protocol role executed by the principal) is assigned a unique bitstring identifier.
We choose a sufficiently large polynomial number of bitstrings i ∈ I ⊆ {0, 1}η

to represent the names of principals and threads. We generate a large enough
(polynomial-size) random string R and split it parts ri, one for each honest i ∈ I
(referred to as “coin tosses of honest party i”) and RA (referred to as “adversarial
randomness”).

The adversary designates some of the principals as honest and the rest of the
principals as dishonest. Intuitively, honest principles will follow one or more roles
of the protocol faithfully. The adversary chooses a set of threads, and to each
thread it assigns a strand (a program to be executed by that thread), under the
restriction that all threads of honest principals are assigned roles of protocol Q.
Next, for each participant a, we execute the key generation algorithm K on secu-
rity parameter η to obtain a new pair of keys for signature creation/verification.

24

We write (ska, vka) for the keys of party a. The public key vka is given to all par-
ticipants and to the adversary A; the private key is given to all threads belonging
to this principal and to the adversary if the principal is dishonest.

Execution: Following [10], we view an agent i trying to communicate with agent j
in protocol session s as a (stateful) oracle Πs

i,j . The state of each oracle is defined
by a mapping λ from atomic symbols to bitstrings (with variables and nonces
renamed to be unique for each role) and a counter c. Mapping λ is initialized
to include bitstring values of symbols corresponding to agent names, verification
keys, and other public information generated in the initialization phase. Also,
we assume that λ is automatically extended to map pairs of terms to bitstrings
using an arbitrary coding scheme.

Each oracle proceeds to execute a step of the protocol as defined by actions
in the corresponding role’s action list, when activated by the adversary. We omit
the details of communication between the adversary and the oracles (which are
rather standard), and focus on computational interpretation of symbolic protocol
actions. Let ac be the current action in the ActionList defining some role of
participant i in session s, i.e., Thread = (i′, s′) where i = λ(i′), s = λ(s′).

– If ac = (new (i′, s′), v), then update λ to λ(v) = NonceGen(ri), where
NonceGen is a nonce generation function (e.g.NonceGen simply extracts
a fresh piece of ri).

– If ac = ((m, b) := pick (i′, s′), m0,m1), then update λ to λ(b) = NonceGen1(ri),
and λm = λ(mλ(b)), where NonceGen1 extracts one fresh bit of randomness.

– If ac = (v := sign (i′, s′), u, j), then update λ so that λ(v) = S(λ(u), skj , ri),
i.e. to a concrete digital signature on message λ(u) under the secret key of
party j with fresh coins drawn from the randomness of party ri.

– If ac = (verify (i′, s′), s, u, j), then execute the signature verification al-
gorithm on the bitstring representations of terms, i.e. V(λ(s), λ(u), skj , ri),
using the public key of party j with fresh coins drawn from the randomness
of party ri. If the verification fails, corresponding thread halts and does not
execute any more actions.

– If ac = (v := expg (i′, s′), n) then update λ(v) to λ(g)λ(n), where the ex-
ponentiation operation is carried out in the group Gη, and λg is the public
group generator fixed in the initialization phase.

– If ac = (v := dhkeyken (i′, s′), y, n) then update λ(v) to R(λ(y)λ(n)), where
the exponentiation operation is carried out in the group Gη, R is the ran-
domness extractor fixed at the beginning of this section.

– Sending a message send (i′, s′),m is executed by sending λ(m) to the adver-
sary.

– Receiving a message receive (i′, s′), v is executed by updating λ so that
λ(v) = m where m is the bitstring received from the adversary.

For brevity, we omit computational interpretation of symmetric encryption,
decryption, keyed hash and matching (pairing, unpairing, and equality-test) ac-
tions.

25

A.3 Computational Traces

Informally, a run is a record of all actions executed by honest principals and
the attacker during protocol execution. Since honest principals execute symbolic
programs, a run will contain symbolic description of actions executed by honest
parties as well as the mapping of bitstrings to variables. A run will also include
arbitrary bitstrings that attacker decides to save for the distinguishing phase.
Since different coin tosses of the attacker can yield same behavior, we will include
the attacker randomness R explicitly in the run. Computational trace contains
two additional elements: randomness RT used for testing indistinguishability
and mapping σ which keeps track of values assigned to quantified variables in
the formula.

During the protocol execution, the adversary A may record any internal,
private message on a special knowledge tape. This tape is not read by any par-
ticipant of the protocol. Its content is used to decide if a given security formula
is valid or not. We write K for the list [(i1,m1), .., (in,mn)] of messages mk that
A writes on its knowledge tape. The messages are indexed by the number ik of
actions already executed when mk is written. This index is useful to remember
a previous state of the knowledge tape.

At the end of the protocol execution, the adversary A outputs a pair of
integers (p1, p2) on an output tape. When the security formula is a modal formula
θ[P]Xϕ, these two integers represents two positions in the protocol execution
where the adversary claims that the formula is violated, i.e. that θ is true in p1

but ϕ is false in p2, with P between p1 and p2. Let O be this pair (p1, p2) of
integers written on the output tape.

The symbolic trace of the protocol is the execution strand e ∈ ExecStrand
which lists, in the order of execution, all honest participant actions and the
dishonest participant’s send and receive actions. This strand contains two
parts: Start(...) stores the initialization data, and the rest is an ordered list of
all exchanged messages and honest participants’ internal actions.

Definition 2. (Computational Traces) Given a protocol Q, an adversary A,
a security parameter η, and a sequence of random bits R ∈ {0, 1}p(η) used
by the honest principals and the adversary, a run of the protocol is the tuple
〈e, λ,O,K, R〉 where e is the symbolic execution strand, λ : V ar(e) → {0, 1}p(η)

maps the symbolic terms in e to bitstrings, O is the pair of integers written on
the output tape, and K is the indexed list of messages written on the knowledge
tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: RT ∈ {0, 1}p(η),
a sequence of random bits used for testing indistinguishability, and σ : V ar(ϕ) →
{0, 1}p(η), a substitution that maps formula variables to bitstrings. The set of
computational traces is

TQ(A, η) = {〈e, λ,O, K,R, RT , σ〉 |R, RT chosen uniformly}.

Definition 3. (Participant’s View) Given a protocol Q, an adversary A, a se-
curity parameter η, a participant X̃ and a trace t = 〈e, λ,O,K, R, RT , σ〉 ∈

26

TQ(A, η), V iewt(X̃) represents X̃ ′s view of the trace. It is defined precisely as
follows:

If X̂ is honest, then V iewt(X̃) is the initial knowledge of X̃, a representation
of e|X̃ and λ(x) for any variable x in e|X̃ . If X̂ is dishonest, then V iewt(X̃) is the
union of the knowledge of all dishonest participants X̃ ′ after the trace t (where
V iewt(X̃ ′) is defined as above for honest participants) plus K, the messages
written on the knowledge tape by the adversary.

The following three definitions are a prelude to setting up a semantics of
the predicate Indist(). Informally, based on some trace knowledge K, the distin-
guisher D is trying to determine which of the two bitstrings corresponds to the
symbolic term. One of the bitstrings is going to be an actual bitstring represen-
tation of the term in the current run, while the other is going to be a random
bitstring of the same structure. The order of the two bitstrings when presented
to the distinguisher is the output of an LR Oracle using a random selector bit.

Definition 4. (LR Oracle) The LR Oracle [44] is used to determine the order
in which two bitstrings are presented depending on the value of the selector bit,
i.e. LR(s0, s1, b) = 〈sb, s1−b〉.

Definition 5. (Distinguishing test input) Let u be a symbolic term and σ be a
substitution that maps variables of u to bitstrings. We construct another bitstring
f(u, σ, r), whose symbolic representation is the same as that of u. Here, r is
a sequence of bits chosen uniformly at random. The function f is defined by
induction over the structure of the term u.

– Nonce u : f(u, σ, r) = r
– Name/Key u : f(u, σ, r) = σ(u)
– Pair u = 〈u1, u2〉 : f(〈u1, u2〉, σ, r1; r2) = 〈f(u1, σ, r1), f(u2, σ, r2)〉
– Encryption u = {v}n

K : f({v}n
K , σ, r1; r2) = E(f(v, σ, r1), σ(K), r2)

Definition 6. (Distinguisher) A distinguisher D is an polynomial algorithm
which takes as input a tuple 〈K, t, 〈s0, s1〉, R, η〉, consisting of knowledge K, sym-
bolic term t, two bitstrings s0 and s1, randomness R and the security parameter
η, and outputs a bit b′.

In order to define the semantics of the modal operator, we introduce operators
Pre and Post on sets of traces. Informally, for a strand P of a thread X̃ and the
set of traces T , Post(TP) is going to correspond to runs from T in which P is a
terminating segment of the sequence of actions executed by X̃, while Pre(TP)
is corresponds to runs from T , where X̃ is about to start executing actions in P .

Definition 7. (Splitting computational traces) Let T be a set of computational
traces and t = 〈e, λ,O, K,R, RT , σ〉 ∈ T . O = 〈p1, p2〉, e = InitialState(I); s,
and s = s1; s2; s3 with p1, p2 the start and end positions of s2 in s. Given a
strand P executed by participant X̃, we denote by TP the set of traces in T for
which there exists a substitution σ′ which extends σ to variables in P such that

27

σ′(P) = λ(s2 |X̃). The complement of this set is denoted by T¬P and contains
all traces which do not have any occurrence of the strand P . We define the set
of traces Pre(TP) = {t[s ← s1,K ← K≤p1 , σ ← σ′] | t ∈ TP }, where K≤p is the
restriction of the knowledge tape K to messages written before the position p. We
define the set of traces Post(TP) = {t[s ← s1; s2,K ← K≤p2 , σ ← σ′] | t ∈ TP }.

B Computational Semantics

The semantics of a formula ϕ on a set T of computational traces is a subset T ′ ⊆
T that respects ϕ in some specific way. For many predicates and connectives, the
semantics is essentially straightforward. For example, an action predicate such
as Send selects a set of traces in which a send occurs. However, the semantics of
predicates Indist and GoodKeyAgainst is inherently more complex.

Intuitively, an agent has partial information about the value of some expres-
sion if the agent can distinguish that value, when presented, from a random
value generated according to the same distribution. More specifically, an agent
has partial information about a nonce u if, when presented with two bitstrings
of the appropriate length, one the value of u and the other chosen randomly,
the agent has a good chance of telling which is which. There are technical issues
associated with positive and negative occurrences of the predicate. For positive
occurrences of Indist, we should say that no probabilistic polynomial-time algo-
rithm has more than a negligible chance, where as for ¬Indist(. . .) we want to
say that there exists a probabilistic polynomial-time distinguisher. In order to
deal with these issued, semantics of a particular formula will be defined with
respect to two distinguishers: one for occurrences with positive polarity, and one
for occurrences with negative polarity. In the final definition of formula valid-
ity we will universally quantify over all positive distinguishers and existentially
quantify over all negative distinguishers.

Conditional implication θ ⇒ ϕ is interpreted using the negation of θ and
the conditional probability of ϕ given θ. This non-classical interpretation of
implication seems to be essential for relating provable formulas to cryptographic-
style reductions involving conditional probabilities.

We inductively define the semantics |[ϕ]| (T, D, ε) of a formula ϕ on the set T
of traces, with a pair of distinguishers D and tolerance ε. In predicates appearing
with positive (resp. negative) polarity D stands for the positive (resp. negative)
distinguisher. The distinguishers and tolerance are not used in any of the clauses
except for Indist, where they are used to determine whether the distinguisher has
more than a negligible chance of distinguishing the given value from a random
value. In definition 8 below, the tolerance is set to a negligible function of the
security parameter and T = TQ(A, η) is the set of traces of a protocol Q with
adversary A.

–
∣∣∣
[
Send(X̃, u)

]∣∣∣ (T, D, ε) is the collection of all 〈e, λ, O, K, R, RT , σ〉 ∈ T such

that some action in the symbolic execution strand e has the form send Ỹ , v

28

with λ(Ỹ) = σ(X̃) and λ(v) = σ(u). Recall that σ maps formula variables to
bitstrings and represents the environment in which the formula is evaluated.

– |[a(· , ·)]| (T,D, ε) for other action predicates a is similar to Send(X̃, u).
–

∣∣∣
[
Honest(X̂)

]∣∣∣ (T,D, ε) is the collection of all 〈e, λ,O, K,R, RT , σ〉 ∈ T where

e = InitialState(I); s and σ(X) is designated honest in the initial config-
uration I. Since we are only dealing with static corruptions in this paper,
the resulting set is either the whole set T or the empty set φ depending on
whether a principal is honest or not.

–
∣∣∣
[
Start(X̃)

]∣∣∣ (T, D, ε) includes all traces 〈e, λ, O,K, R,RT , σ〉 ∈ T where e =

InitialState(I); s and λ(s)|σ(X̃) = ε. Intuitively, this set contains traces in
which X̃ has executed no actions.

– |[Contains(u, v)]| (T, D, ε) includes all traces 〈e, λ, O, K,R, RT , σ〉 ∈ T such
that there exists a series of decryptions with {λ(k) | k ∈ Key} and projections
(π1,π2) constructing σ(v) from σ(u). This definition guarantees that the
result is the whole set T if v is a symbolic subterm of u.

– |[θ ∧ ϕ]| (T, D, ε) = |[θ]| (T, D, ε) ∩ |[ϕ]| (T, D, ε).
– |[θ ∨ ϕ]| (T, D, ε) = |[θ]| (T, D, ε) ∪ |[ϕ]| (T, D, ε).
– |[¬ϕ]| (T, D, ε) = T \ |[ϕ]| (T, D, ε) .
– |[∃x. ϕ]| (T, D, ε) =

⋃
β(|[ϕ]| (T [x ← β], D, ε)[x ← σ(x)])

with T [x ← β] = {t[σ[x ← β]] | t = 〈e, λ, O,K, R,RT , σ〉 ∈ T}, and β any
bitstring of polynomial size.

– |[θ ⇒ ϕ]| (T,D, ε) = |[¬θ]| (T,D, ε)∪ |[ϕ]| (T ′, D, ε), where T ′ = |[θ]| (T, D, ε).
Note that the semantics of ϕ is taken over the set T ′ given by the semantics
of θ, as discussed earlier in this section.

– |[u = v]| (T, D, ε) includes all traces 〈e, λ, O, K,R, RT , σ〉 ∈ T such that
σ(u) = σ(v).

–
∣∣∣
[
Indist(X̃, u)

]∣∣∣ (T, ε, D) = T if

|{D(V iewt(σ(X̃)), u, LR(σ(u), f(u, σ, r), b), RD, η) = b | t ∈ T}|
|T | ≤ 1

2
+ ε

and the empty set φ otherwise. Here, the random sequence b; r; RD = RT ,
the testing randomness for the trace t.

– |[θ[P]X̃ϕ]| (T,D, ε) = T¬P ∪ |[¬θ]| (Pre(TP), D, ε) ∪ |[ϕ]| (Post(TP), D, ε)
with T¬P , Pre(TP), and Post(TP) as given by Definition 7.

Definition 8. A protocol Q satisfies a formula ϕ, written Q |= ϕ, if ∀A provid-
ing an active protocol adversary, ∀DP providing a positive probabilistic-polynomial-
time distinguisher, ∃DN providing a negative probabilistic-polynomial-time dis-
tinguisher, ∃ν giving a negligible function, ∃N, ∀η ≥ N ,

| |[ϕ]| (T,D, ν(η)) | / |T | ≥ 1− ν(η)

where D = (DP , DN) and |[ϕ]| (T,D, ν(η)) is the subset of T given by the se-
mantics of ϕ and T = TQ(A, η) is the set of computational traces of protocol Q
generated using adversary A and security parameter η, according to Definition 2.

29

Axioms:

AA1 : >[a]Xa

P : Persist(X, t)[a]XPersist(X, t) with Persist ∈ {Send, Receive, Verify, Sign, Encrypt, . . . }
AN2 : >[new x]X̃ Ỹ 6= X̃ ⇒ Indist(Ỹ , x)

Proof rules:

θ[P]Xϕ θ′ ⊃ θ ϕ ⊃ ϕ′

θ′[P]Xϕ′
G3

θ[P1]Xϕ ϕ[P2]Xψ
θ[P1P2]Xψ

SEQ

ϕ ϕ ⇒ ψ
ψ

MP
ϕ
∀x.ϕ

GEN

Q |= Start []X ϕ ∀P ∈ S(Q), Q |= ϕ [P]X ϕ
Honest(X) ⊃ ϕ

HON

Table 4. Fragment of the proof system

C Proof System

The proof system used in this paper is based on the proof system developed
in [17, 18, 25]. Some example axioms and rules are given in Table 4. These ax-
ioms express reasoning principles that can be justified using complexity-theoretic
reductions, information-theoretic arguments, and asymptotic calculations. How-
ever, the advantage of the proof system is that its justification using cryptographic-
style arguments is a one-time mathematical effort; protocol proofs can be car-
ried out symbolically using the proof system without explicitly reasoning about
probability and complexity. Another advantage of the axiomatic approach is that
different axioms and rules rest on different cryptographic assumptions. There-
fore, by examining the axioms and rules used in a specific proof, we can identify
specific properties of the cryptographic primitives that are needed to guarantee
protocol correctness. This provides useful information in protocol design because
primitives that provide weaker properties often have more efficient constructions.

Axioms: Axiom AN2 and captures a property of nonce generation. Informally,
AN2 states that if a thread X̃ generates a fresh nonce x and does not per-
form any additional actions, then x is indistinguishable from a random value
for all other threads. The soundness of this axiom is established by a simple
information-theoretic argument.

Inference rules: Inference rules include generic rules from modal logics (e.g.
G3), sequencing rule SEQ used for reasoning about sequential composition of
protocol actions and a rule (called the honesty rule) for proving protocol invari-
ants using induction. These rules are analogous to proof rules from [17, 18].

30

First-order axioms and rules: We use two implications: a conditional impli-
cation ⇒, discussed and defined precisely in section 6, and a classical implication
⊃ with A ⊃ B ≡ ¬A ∨B. While standard classical tautologies hold for classical
implication, some familiar propositional or first-order tautologies may not hold
when written using ⇒ instead of ⊃. However, modus ponens and the gener-
alization rule above are sound. The soundness of modus ponens relies on the
simple asymptotic fact that the sum of two negligible functions is a negligible
function. In future work, we hope to develop a more complete proof system for
the first-order fragment of this logic.

Theorem 2. Proof system is sound with respect to semantics extended, in other
words Q ` φ implies Q |= φ.

Proof. For every newly introduced axiom φ we show that for all protocols Q,
formula φ is satisfied by Q. In the following let Q be any protocol and A any
adversary.

S0 Intuitively, if this axiom is not satisfied, it has to be that in a non-negligible
fraction of traces there is a symbolic term y different from x such that λ(y) =
σ(x), and thread X̃ has performed some symbolic action on y. However, since
x was just created fresh by X̃ and X̃ did not perform any further actions,
probability that λ(y) = σ(x) will be negligible for all terms y.
Formally, a protocol Q satisfies a formula ϕ, if ∀A providing an active pro-
tocol adversary, ∀D providing a probabilistic-polynomial-time distinguisher,
∀ν giving a negligible function, ∃N, ∀η ≥ N ,

| |[ϕ]| (T, D, ν(η)) | / |T | ≥ 1− ν(η)

where |[ϕ]| (T, D, ν(η)) is the subset of T given by the semantics of ϕ and
T = TQ(A, η) is the set of computational traces of protocol Q generated
using adversary A and security parameter η, according to Definition 2.
Assume that ϕ is equal to S0 and that the protocol Q, adversary A, distin-
guisher D, and the security parameter have been fixed. Let T be the resultant
set of all possible execution traces. Since this formula does not depend on
the distinguisher we will drop D and ν(η) from the notation.
First of all, ϕ contains a free variable X̃. Since free variables are implicitly
universally quantified, semantics of ϕ is the intersection of |[ϕ]| T [X̃ → bX]
for all bitstrings bX representing session names. Since there are a polynomial
number of sessions, it is sufficient to show that the size of each of these sets
divided by |T | is asymptotically close to 1. This follows from the fact that
the sum of a polynomial number of negligible functions is also a negligible
function.
For a particular bX we write T ′ for the set T [X̃ → bX]. We use the semantics
of modal formulas to evaluate |[ϕ]| (T [X̃ → bX]) (see Appendix B).

|[ϕ]| (T ′) = T ′¬P ∪ |[¬>]| (Pre(T ′P)) ∪ |[DHSource(X, x)]| (Post(T ′P))

with T ′¬P , Pre(T ′P), and Post(T ′P) as given by Definition 7, and P = (new x).
According to the Definition 7, the substitution σ in the set Post(T ′P) is

31

extended to map x to the result of the corresponding new action in the
computational trace.
Now we show that |[DHSource(X, x)]| (Post(T ′P) is an overwhelming fraction
of T ′P . Since T ′ = T ′P ∪ T ′¬P , this completes the proof.
Let t be an arbitrary trace in Post(T ′P), and let y be any basic term in the
trace. If y = x then DHSource(X,x) is trivially satisfied, since the new action
must be the first appearance of term x in the symbolic trace. If y 6= x than,
with overwhelming probability λ(y) 6= σ(x), since x is a freshly generated
random number. Hence proved.

SIG Intuitively, if this axiom is not satisfied, there is a protocol and an adversary
such that in a non-negligible fraction of traces where participant Ŷ success-
fully verifies a signature on some message m by honest participant X̂, yet
this signature has not been produced by X̂. This contradicts the security of
the signature scheme.
Assume that there exists some adversary A such that for any ν:

| |[ϕ]| (T, D, ν(η)) | / |T | ≤ 1− ν(η) (12)

for infinitely many security parameters η. We construct an adversary B
against the digital signature scheme Σ = (K,S,V). Recall that since B is
against Σ, it has access to a signing oracle under some honestly generated
key sk and takes as input the corresponding verification key vk. Adversary
B works as follows. First, it selects two random identities a and b and then it
emulates the execution of A against possible protocol participants. Adversary
B plays the roles of all parties involved in the protocol, and in particular it
generates their signing/verification keys. The only exception is party b for
which the associated public key is set to pk. Notice that B can faithfully
carry out the simulation. Signatures of b are produced using the signing
oracle to which B has access; signatures of all other parties are calculated
using the corresponding signing keys.
During the execution, whenever party a needs to verify a signature σ on
some message m, allegedly created by b, it verifies if it has queried m to its
oracle. If this is not the case, then B outputs an attempted forgery (m,σ).
It remains to show that the success probability of B is non-negligible. From
Equation 12 we conclude that A is such that

||[¬ϕ]| (T, D, ν(η))| ≥ ν(η)

for infinitely many security parameter η. For any pair of session identifier
names bX and bY we write TbX ,bY

for the set T [X̃ → bX][Ỹ → bY].
Since |[¬ϕ]| (T,D, ν(η)) is the intersection of the sets |[¬ϕ]| T [X → bX][Y →
bY] for all possible pairs of identifiers (bX , bY) and there are polynomially
many such identifiers, we deduce that there exists one such pair (a, b) for
which the set |[¬ϕ]| T(a,b) has non-negligible size (in rapport with |T |).
Spelling out the above, we obtain that adversary A satisfies the following:
with non-negligible probability it has an execution where X̃ is mapped to
a, Ỹ is mapped to b, both parties a and b are honest and party b verifies

32

some signature σ on some message m which was not signed by a. Since the
view of A, when executed as a subroutine by B, is precisely as in its normal
execution against the protocol, with non-negligible probability at some point
party a would need to verify a signature σ on some message m which was
not produced by b. When B selects bX = a and bY = b (event which happens
with non-negligible probability), B outputs a successful forgery since (m,σ)
since B does not query m to its oracle.

33

