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ABSTRACT

An assimilation of routine sea surface temperature observations is conducted to estimate the sea surface heat
flux in the Yellow Sea during the winter of 1986. Ten-day mean SST compilations, published by the Japan
Meteorological Agency, are used. The time window is from 0000 Japan Local Time (JLT) 21 January to 0000
JLT 21 February 1986. Because there are only three frames of the observed temperature available for the time
window, only a steady-state distribution of the heat flux is determined. A tonguelike feature of the optimized
heat flux distribution is consistent with the warm SST anomaly at the center of the Yellow Sea trough. The
optimized heat flux generates improved simulation of the cooling trend of the temperature time series.

The variational method is the assimilation procedure employed. The developed scheme is able to optimize
simultaneously the initial temperature condition and the sea surface heat flux without a priori knowledge of
either. A coarse-resolution Hessian is used to evaluate errors of the assimilation.

1. Introduction

The Yellow Sea is a shallow embayment between
northern China and the Korean Peninsula. In winter, it
is vertically well mixed and loses a large amount of heat
to the atmosphere. Also, there are strong horizontal con-
trasts in temperature. A simple numerical model that
incorporates wind stress and heat flux forcing has been
constructed to hindcast the temperature evolution
(Hsueh and Yuan 1997, hereafter referred to as HAY).
The uncertainty in the specification of the sea surface
heat flux is one of the primary reasons for the poor
simulation of the mean cooling trend. The forward mod-
el, with its simplicity, lends itself readily to data assim-
ilation, which provides a means for optimizing the sea
surface heat flux. The procedure is further facilitated by
the fact that the velocity field can be determined nearly
independently of the temperature. Thus, it appears that
there is the possibility that the cooling trend calculation
might be improved through surface heat flux optimi-
zation. The purpose of this note is to formulate an in-
verse calculation of the surface heat flux through the
use of data assimilation, in the vertically integrated heat
equation, of regularly published sea surface temperature
(SST) observations and to compare the mean cooling
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trend calculated from the optimized surface heat flux
with that obtained in HAY.

The concept of estimating the sea surface heat flux
based on the thermodynamic evolution of SST appeared
in Kelly and Qiu (1995) and Yu and O’Brien (1995,
hereafter referred to as YO). Kelly and Qiu, used a
Kalman filter to assimilate the SST data, whereas YO
used an adjoint method similar to that used in this study.
However, the manner of implementation in the present
study is sufficiently different from that in YO to warrant
a brief report. This point can be exemplified in the fol-
lowing three aspects. First, YO optimize 12 frames of
monthly mean heat flux and one frame of the initial
temperature condition based on the mean 12-monthly
SST data, making the optimization problem underde-
termined because the number of data exceeds the num-
ber of unknown variables. Second, YO include addi-
tional terms in their costfunction that penalize the dif-
ferences between the unknown variables and the a priori
information. In contrast, the present study does not need
these terms and represents a pure inverse calculation.
Third, the present adjoint code is numerically consistent
with the forward code, which is not assured in YO.

2. The forward model

The governing equations for the wintertime Yellow
Sea circulation are contained in HAY. Based on HAY,
the dynamic and thermal dynamic equations are decou-
pled. In addition, the open boundaries are replaced with
solid walls for simplicity. In HAY, it has been shown
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that the currents in the Yellow Sea are mostly driven
by local winds; hence, closure of the open boundaries
is not expected to effect a significant change in the
calculated currents. Indeed, from comparisons (not
shown) of current velocities to those observed at the
mooring sites described in HAY there is no significant
change. Also, the sea surface heat flux in the Yellow
Sea and that in the East China Sea are independent of
each other in this study since no coupled ocean–at-
mosphere model is involved. Therefore, in addressing
the heat distribution in the Yellow Sea, there is little
loss of realism in closing the open boundaries. The ve-
locity fields required for calculating the advective terms
in the heat equation are generated by integrating the
heat and momentum equations as in HAY but with open
boundaries replaced with solid walls.

The vertically integrated heat equation is finite dif-
ferenced with an alternating direction semi-implicit
scheme. In matrix form, the finite differencing leads to

An11/2Tn11/2 5 BnTn 1 fn,

n 5 0, 1, 2, · · · , N 2 1 (1)

for the first half–time step, and

Cn11Tn11 5 Dn11/2Tn11/2 1 gn11/2,

n 5 0, 1, 2, · · · , N 2 1 (2)

for the second half–time step.
Here Bn, An11/2, Dn11/2, and Cn11 are M 3 M matrices

that represent temperature-independent operators with
coefficients at time levels indicated by the subscripts;
M is the total number of computational grid points at a
given time level and N is the total number of time steps
of integration; Tn is an M-dimensional vector repre-
senting the model SST values at the computational grid
points at time level n; fn and gn11/2 are M-dimensional
forcing vectors at time levels n and n 1 1/2, respec-
tively.

The 10-day mean SST data, published by the Japan
Meteorological Agency (JMA), are assimilated. Because
of the small number of data frames within the 30-day
time window, only the return of an average heat flux is
sought from the inverse calculation in order to make the
problem overdetermined. Therefore, except during the
initial ramping period,

fn 5 gn11/2 5 22DtQ, (3)

where Dt is the time step and Q is an M-dimensional
vector representing a steady-state sea surface heat flux.
The coefficient 2Dt comes from finite differencing (see
Yuan 1995). The heat flux from ocean to air is defined
to be positive; hence the negative sign in (3).

For numerical stability, a 6-h ramping period is used
to gradually increase the sea surface heat flux from zero
to its steady-state value. Thus, during the first 6 hours
of the forward integration,

2n 1 1
f 5 22Dt Q (3a)n 2Np

2n
g 5 22Dt Q, (3b)n11/2 2Np

where Np is the number of time steps within a 6-h period.
The time window of data assimilation is from 0000
Japan Local Time (JLT) 21 January to 0000 JLT 21
February 1986. Thus, the total integration time of the
forward model is 31 days, including the ramping period.

3. The costfunction

The costfunction in the data assimilation procedure
is defined as

3
i i i iT˚ ˚J 5 0.5(T 2 T ) K(T 2 T ), (4)O

i51

where K is an M 3 M weighting matrix and T i and T̊ i

are M-dimensional vectors representing, respectively,
the model and the JMA-reported 10-day mean SST. The
summation is over three time periods: 21 to 31 January,
1 to 10 February, and 11 to 20 February 1986. The
model ten-day mean temperature fields are obtained by
averaging 6-hourly outputs from the forward model. The
independent variables in the costfunction are the initial
temperature condition and the sea surface heat flux forc-
ing and are called the control variables. The costfunction
(4) does not include the control variables explicitly, nor
does it contain any terms that penalize the differences
between the control variables and the so-called a priori
information, which is one of the fundamental differ-
ences between this study and that of YO. The convexity
of the shape of the costfunction in phase space of the
control variables is not obvious. Therefore, convergence
of the variational procedure is not known a priori. The
number of control variables is 2M in (4), whereas the
number of temperature data is 3M. In fact, it can be
shown, both from identical-twin experiments and from
a coarse-resolution Hessian calculation (see Yuan 1995),
that the problem is over-determined [see Daley (1991)
for the definition of an over-determined problem].

There is a statistical explanation for the construction
of the costfunction (4). In order that the T i represent
their maximum likelihood estimates at the minimum
point of the costfunction, K needs to be the inverse of
the error covariance matrices of the observations (Daley
1991). With the assumption that all the observational
errors are random, unbiased, isotropic, homogeneous,
normally distributed, and uncorrelated in space and in
time, the k matrix here is actually an identity matrix.
The model itself is assumed to be perfect. Hence the
variables of the costfunction are subjected to the strong
constraints of (1) and (2) (Sasaki 1970). Because the
model counterparts of the observed data are all linear
functions of the control variables, the least squares fit
to the SST observations guarantees that the optimized
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control variables represent their maximum likelihood
estimates as well (Draper and Smith 1966; Thacker
1989).

The costfunction (4) is quadratic, indicating that there
can be no multiple stationary points of the costfunction
in phase space of the control variables. Therefore, the
solution is unique provided that the problem is well
posed (Gill et al. 1981).

The assimilated data are the 10-day mean SST values,
published by JMA. Three frames of the 10-day mean
SST fields are used to determine the model SST initial
condition and the steady-state distribution of the sea
surface heat flux. The JMA data are given on a 18 lat
by 18 long mesh and cover all of the East China Sea

and the Yellow Sea south of 388N. To simplify the prob-
lem, a constant temperature of 38C is assigned to the
data void north of 388N. The SST data are then inter-
polated onto the computational grid, using a bi-cubic
spline fit. Because of the artificiality noted, the assim-
ilation results north of 388N are discarded.

4. The adjoint model

The objective is to minimize the costfunction (4) sub-
ject to the constraints of (1) and (2). Following Thacker
and Long (1988), the M-dimensional vectors of the un-
determined Lagrangian multipliers, the l, are intro-
duced. Define the Lagrangian function

N 21 N 21p p2n 1 1 2n 1 2
T TI 5 J 1 l A T 2 B T 1 2Dt Q 1 l C T 2 D T 1 2Dt QO On11/2 n11/2 n11/2 n n n11 n11 n11 n11/2 n11/21 2 1 22N 2Nn50 n50p p

N21 N21

T T1 l (A T 2 B T 1 2DtQ) 1 l (C T 2 D T 1 2DtQ), (5)O On11/2 n11/2 n11/2 n n n11 n11 n11 n11/2 n11/2
n5N n5Np p

where the superscript T represents matrix transpose.
Because (1) and (2) are satisfied, it is obvious that

I [ J. (6)

Therefore, the minimization of the costfunction J in
(6), which is a constrained optimization problem, has
been transformed into the minimization of the Lagran-
gian function I, an unconstrained optimization problem.
The stationary point of I is determined by the Euler–
Lagrange equations:

]I
5 0, n 5 0, 1, · · · , N 2 1 (7a)

]ln11/2

]I
5 0, n 5 0, 1, · · · , N 2 1 (7b)

]ln11

]I
5 0 (7c)

]TN

]I
5 0, n 5 0, 1, · · · , N 2 1 (7d)

]Tn11/2

]I
5 0, n 5 1, 2, · · · , N 2 1 (7e)

]Tn

]I
5 0 (7f)

]T0

]I
5 0. (7g)

]Q

Equations (7a) and (7b) are, in fact, just (1) and (2).

Equations (7c–f ) are equations of the forced adjoint
model. In an explicit form, they are

]I ]J
T5 1 C l 5 0 (8a)N N]T ]TN N

]I ]J
T T5 1 A l 2 D l 5 0 (8b)n11/2 n11/2 n11/2 n11]T ]Tn11/2 n11/2

]I ]J
T T5 1 C l 2 B l 5 0 (8c)n n n n11/2]T ]Tn n

]I ]J
T5 2 B l 5 0. (8d)0 1/2]T ]T0 0

Equation (7g) yields

N 21p]I 2n 1 1 2n 1 2
5 2Dt l 1 lO n11/2 n111 2]Q 2N 2Nn50 p p

N21

1 2Dt (l 1 l ) 5 0. (9)O n11/2 n11
n5Np

Usually, (8a–d) and (9) cannot be solved directly for
the initial condition and the sea surface heat flux. An
iteration strategy is used in the variational procedure to
approach the solution sequentially. First, the forward
model with a ‘‘guess’’ SST initial condition and sea sur-
face heat flux, is integrated forward to produce the model-
minus-data misfit fields so that (]J/]Tn11/2, ]J/]Tn) in
(8a–d) are known. Then, the forced adjoint model (8a–
c) is integrated backward in time to yield the gradients
of the Lagrangian function with respect to the initial con-
dition and the sea surface heat-flux fields; namely,
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FIG. 1. Plot of w(u) in (11) showing consistency of the forward
and adjoint model pair.

]I ]J
T5 2 B l (10a)0 1/2]T ]T0 0

N 21p]I 2n 1 1 2n 1 2
5 2Dt l 1 lO n11/2 n111 2]Q 2N 2Nn50 p p

N21

1 2Dt (l 1 l ). (10b)O n11/2 n11
n5Np

If the guess SST initial condition and sea surface heat
flux are not the optimal solution, (7f ) and (7g) are not
satisfied. Once the gradient in (10a,b) is known, certain
descent algorithms [e.g., the LBFGS subroutine (Zen et
al. 1993)] can be employed to adjust the guess SST
initial condition and sea surface heat flux fields. The
forward model is then integrated again with the cor-
rected SST initial condition and sea surface heat flux
to update the data misfit fields. The iteration continues
until the norm of the gradient (10a,b) is less than a small
number. (The norm of a vector in this study is defined
to be the inner product of the vector with itself.) By
that time, the SST initial condition and the sea surface
heat flux are considered optimized, because (7a–g) are
all satisfied, and the least squares fit is accomplished.
The descent algorithm used is the limited-memory qua-
si-Newton method of Liu and Nocedal (1989).

After the numerical codes for (8a–d) are constructed,
it is very important to examine whether the codes yield
the correct gradient information. Here use is made of
the test suggested by Navon et al. (1992). Suppose Y
is a 2M dimensional random vector; it follows that

J(X 1 uY) 2 J(X)
w(u) 5 5 1 1 o(u). (11)

TuY ·=J(X)

Here

T0X 5 1 2Q

represents the 2M-dimensional control variable vector,

]J 

]T 0=J(X) 5  
]J 
]Q 

is the 2M-dimensional gradient vector, and u is a small
scalar parameter.

For values of u that are small, but not too close to
the machine zero, one should expect w(u) to be close
to 1. Equation (11) represents a very strict test because
both the numerator and the denominator must go to zero
at exactly the same rate. The numerator is calculated by
the forward model integration, whereas the gradient of
the costfunction in the denominator is obtained through
integration of the forced adjoint model. Figure 1 shows
the variations of w with u for the present calculation.
For values of u less than 1025 and larger than 10212,

the value of w is very close to 1.0, suggesting numerical
consistency between the forward and adjoint models. A
similar consistency test was not shown in the YO paper,
probably because they derive the adjoint equation an-
alytically from the heat equation and then finite differ-
ence the adjoint equation independent of the forward
model scheme. An indication of pitfalls in their treat-
ment is that they report the existence of multiple sta-
tionary points of the costfunction, which should not
exist. The importance of numerical consistency in the
variational procedure has been reported in the literature
(see, e.g., Zou and Navon 1993).

5. Results from using real SST data

The inverse calculation of both the temperature initial
condition and surface heat flux from the 10-day mean
SST compilations of the JMA will now be discussed.
The assimilation is conducted in double precision, and
the results are shown in Figs. 2–4.

Figures 2a and 2b show the variation of the cost-
function and of the norm of the gradient with iteration
steps. At the end of the optimization, the costfunction
is reduced by one order of magnitude and the norm of
the gradient has decreased more than three orders of
magnitude. The consistent decrease of both the cost-
function and the norm of the gradient indicates that the
inverse calculation is successful.

Also examined are the optimized temperature initial
condition and sea surface heat flux (Figs. 2c,d). The
optimized initial condition has a similar spatial structure
as that of the 10-day mean SST data. Because of the
optimization of the initial temperature condition, the
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FIG. 2. Results from using the JMA 10-day mean SST data: (a) costfunction (solid) and norm
of its gradient (dash) vs iteration steps; (b) norms of the gradient of the costfunction with respect
to initial condition (solid) and with respect to sea surface heat flux (dash). In (a) and (b) the
curves have been normalized by their values at the fifth iteration. (c) Optimized initial condition,
ranging from 38C to 248C, contoured at intervals of 18C. (d) Optimized sea surface heat flux,
ranging from 21.6 3 103 to 2.0 3 103 cal cm22 day21, contoured at intervals of 2 3 102 cal
cm22 day21. Negative values are drawn with dash contours. The first solid contour represents the
value of 88.0 cal cm22 day21.

simulated temperatures are closer to the observed tem-
peratures than in HAY in absolute values. The inversely
calculated sea surface heat flux in the Yellow Sea reveals
a rich spatial structure. Starting from a region of large
heat loss west of Cheju Island, there is a ‘‘tongue’’ of
upward sea surface heat flux extending into the northern
reaches of the Yellow Sea along the central trough. This
tonguelike structure is thought to be associated with the
northward intrusion of Kuroshio water and is consistent
with the observed SST warm tongue structure (see
HAY). At the northern tip of the structure in the center

of the Yellow Sea, the tongue is flanked by two centers
of negative heat flux, one to the west and the other to
the east. Farther to the north, two centers of weakly
upward heat flux are produced by the calculation. A
local maximum of heat loss is produced off the China
coast at about the same latitude as Cheju. The distri-
bution of the steady-state sea surface heat flux seems
to have a north–south structure of high–low–high values
along both flanks of the Yellow Sea trough. The exis-
tence of this structure is yet to be explained.

With the optimized initial condition and steady-state



MAY 1998 989N O T E S A N D C O R R E S P O N D E N C E

FIG. 3. Data misfit fields after the optimization for (a) 21–31 January, (b) 1–10 February, and (c) 11–20
February. Contour intervals are 18C. The magnitudes of the misfit are around 618C.

FIG. 4. Comparisons of demeaned temperature time series at the
six mooring stations described in HAY. Solid curves are from the
moorings, short-dashed are the optimized model simulations, and
long-dashed with the A’s are from HAY where no assimilation was
involved. The solid circles represent the JMA 10-day mean SST data.
In panels C and E, the coordinate scale is 38C, whereas in panels B,
D, F, and I, the scale is 28C.

sea surface heat flux (Figs. 2c and 2d), the forward
model generates a set of model solutions. A character-
istic of all these model-minus-data misfit fields is that
the misfits display random spatial distributions, which
confirms that the model represents the correct dynamic
link between the frames of the 10-day mean SST com-
pilations and that the assimilation scheme has extracted
the maximum amount of dynamical information from
the data.

The optimized cooling trends at the mooring stations
are compared with in situ observations in (Fig. 4). None
of the moored observations have been used by the min-
imization procedure, and the consistency of the 10-day
mean SST compilations with the moored observations
is subject to observational errors. All of the simulated
cooling trends except at station B are closer to the ob-
served trends than in HAY (see Table 1). (At station B,
the HAY simulation, was already very good; thus, the
assimilation could not make further improvement be-
cause neither the JMA data nor the model are perfect.)
The optimized cooling trends at mooring stations C and
E still have large discrepancies compared with the in
situ observations. However, one can easily identify,
from the SST data (see the circles in Fig. 4), that the
optimization procedure has done its best to reduce the
errors of the least squares fit. The remaining discrep-
ancies are apparently due to biases in the 10-day mean
SST compilations.

An uncertainty analysis of the optimization has been
carried out on the basis of a coarse-resolution Hessian
matrix (Yuan 1995). It is found that the uncertainties
amount to about 618C in the initial temperature condition
and 381 W m22 in sea surface heat flux at the 90%
confidence level. Thus, both the two negative (air-to-
ocean) sea surface heat flux centers straddling the Yellow
Sea trough and the positive (ocean-to-air) sea surface heat
flux center west of Cheju are statistically significant. The
relative position of the three centers frames well the
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TABLE 1. Comparison of the linear regression slopes at the mooring stations (unit in 0.018C/day).

B D F I C E

Mooring
Assimilation
HAY

21.92
20.08
20.9

22.17
21.74
26.76

23.21
25.78
27.44

26.17
27.15
29.42

23.60
214.0
216.0

24.09
214.0
224.0

tongue of positive sea surface heat flux that extends from
west of Cheju into the Yellow Sea along the trough.

The error covariance estimate from the Hessian cal-
culation is an underestimate of the full error covariances,
because no account has been made of the errors in the
heat advection simulation. The two negative centers in
the central Yellow Sea are counterintuitive because in
winter the Yellow Sea should lose heat to the atmosphere
above. These errors are probably caused by the errors
in the heat advection simulation. (In HAY, it has been
shown that the simulated velocity in the nearshore re-
gion is still far from the observations.) An inspection
(not shown) of the balance of the terms of the heat
equation inside the negative centers indeed indicates that
the temporal change of temperature and the heat flux
terms are both negative and are balanced by the positive
heat advection. This result suggests that further im-
provement of the temperature simulation in the near-
shore region has to rely primarily on an improvement
of the velocity simulation near the coast.

6. Discussion and conclusions

An example of inversely calculating the sea surface
heat flux from routinely compiled SST data has been
presented. The variational procedure used is distin-
guished from a previous study in that it can successfully
handle an overdetermined problem. The construction of
the costfunction does not require any a priori infor-
mation about the control variables. A numerical con-
sistency test is conducted to verify the correctness of
the adjoint code.

A mean sea surface heat flux over the Yellow Sea in
1986 winter for the period of 21 January–20 February
is determined from assimilating the 10-day mean SST
compilations published by JMA. The calculated sea sur-
face heat flux is rich in spatial structure with a tongue
of upward flux extending from west of Cheju Island into
the northern reaches of the Yellow Sea, consistent with
the existence of the warm tongue along the center of the
Yellow Sea trough. On both flanks of the Yellow Sea
trough, the sea surface heat flux has a north–south spatial
distribution of high–low–high values. The reason for this
structure is not yet known. The existence of two negative
centers of the sea surface heat flux on both flanks of the
Yellow Sea trough is counterintuitive, and they are prob-
ably caused by errors in the heat advection simulation
off the center of the Yellow Sea trough. All cooling trends
at the mooring stations except at station B are closer to
those in the in situ observations after the assimilation.

The results of an uncertainty analysis, based on a
coarse-resolution Hessian calculation, suggests that the
spatial structure of the sea surface heat flux resolved by
the inverse calculation is statistically significant.
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