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ABSTRACT

Many state-of-the-art numerical ocean models calculate pressure using the hydrostatic balance, or an equation
derived from it. The proper form of this deceptively simple-looking equation, ]p/]z 5 2gr(S, T, p) (where
notation is standard), is nonlinear in the pressure p. In contrast, most numerical models solve the linear equation
]p/]z 5 2gr(S, T, z). This modification essentially replaces the total pressure, which includes a time-dependent
signal, with an approximate time-independent pressure associated with the depth of a model grid point. In this
paper, the authors argue that the inclusion of the total pressure when solving the hydrostatic equation can generate
a depth-dependent baroclinic pressure gradient equivalent to a geostrophic velocity of several centimeters per
second. Further, this effective velocity can increase with depth and is largest in dynamically important areas
like western boundary currents. These points suggest that the full feedback of pressure on density should be
included in numerical models. Examples of the effect using oceanic data and output from a typical primitive
equation model run are discussed. Finally, algorithms for both rigid-lid and free surface models that explicitly
include full pressure are derived, and some related numerical issues are discussed.

1. Introduction

Numerical modeling of the ocean is often performed
using the so-called primitive equations, consisting of
horizontal momentum equations, the continuity equa-
tion, conservation equations for salt and potential tem-
perature, the hydrostatic equation

]p
5 2gr(S, T, p), (1.1)

]z

and an equation of state.1 The commonly accepted stan-
dard for the latter is the UNESCO state equation, which

1 A slight inconsistency appears in the above discussion, in that a
conservation equation for potential temperature is mentioned, but an
equation of state depending on in situ temperature is listed. This can
be remedied by using the Jackett and McDougall (1995) equation of
state, but as the distinction between potential and in situ temperature
is not central to our message, we will refer simply to a temperature
variable T in what follows.

Corresponding author address: Dr. William K. Dewar, Department
of Oceanography, The Florida State University, Tallahassee, FL
32306.
E-mail: bill@ocean.ocean.fsu.edu

expresses density (r) as a function of temperature (T),
salinity (S), and pressure (p) (Millero et al. 1980). Other
choices for the equation of state have appeared recently
(Jackett and McDougall 1995; Feistel 1993; Feistel and
Hagen 1995), all of which employ pressure as an in-
dependent variable. The form of the equation of state
renders (1.1) a nonlinear differential equation for pres-
sure. In contrast, numerical models often solve a mod-
ified form of (1.1), that is,

]p
5 2gr(S, T, z), (1.2)

]z

which is a linear equation. As numerical models strive
for accuracy in the simulation of modern-day climate,
it is essential that classical approximations be reassessed
for their accuracy. The objectives of this paper are to
consider the impacts of the above approximation and to
outline procedures for improving models by employing
(1.1).

Background

The rationale for the use of (1.2) instead of (1.1) is
that total pressure and static pressure differ by a rela-
tively small amount, so depth may be substituted for
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pressure using a routine like that proposed by Fofonoff
and Millard (1983).2 Thus, for example, in Cartesian
and bottom following (sigma) coordinate models, where
grid points are fixed in space, the depth of a grid point
is equated to a pressure, which is subsequently time
independent. This ‘‘pressure’’ is then fed through the
model equation of state along with current T and S val-
ues to arrive at a density. Equation (1.2) is then inte-
grated from the surface into the interior. The resulting
pressure field, when differenced, provides a ‘‘baro-
clinic’’ acceleration to the momentum equations.

Calculation of the remaining model external, or surface,
pressure is done either by explicit calculation of the free
surface or the diagnosis of surface pressure via a rigid-lid
assumption. Relative to the former method, Killworth et
al. (1991) solve an explicit equation for free surface ele-
vation using small time steps relative to those used for the
baroclinic fields. In contrast, Dukowicz and Smith (1994)
use an implicit scheme in which the external and internal
equations use the same time step. Relative to the latter
method, the vertically integrated momentum equations are
manipulated to yield an equation either for a barotropic
streamfunction or for surface pressure. In the streamfunc-
tion case, ‘‘baroclinic’’ velocities are predicted from the
momentum equations and adjusted to yield a net transport
consistent with the streamfunction. In the surface pressure
case, an acceleration term proportional to the surface pres-
sure gradient is added to the momentum equations, and
full velocity is predicted. Total horizontal velocities, T,
and S fields are then known and the model is prepared to
advance in time.

Implicit in these integration schemes is the assump-
tion that the difference between the total pressure and
an approximate fixed pressure at a given depth has a
negligible impact on density, and can be ignored. This
appears in the use of a depth-based equation of state
and in the diagnosis of surface pressure, which assumes
a priori knowledge of the density field. The disparity
between the small dynamically generated pressure sig-
nals characteristic of the open ocean [O(1 dbar)] and
the enormous nearly static pressures in the ocean interior
(thousands of dbars) supports this as a rational and ac-
curate approximation. Indeed, we do not take exception
to this point. The correction density induced by total
pressure variability is tiny and comparable to the un-
certainty in density currently introduced by measure-
ment error in temperature and salinity. However, where-
as the measurement errors are random, the replacement
of pressure by depth in the equation of state can intro-
duce a systematic bias in the calculation of density.
Further, to calculate pressure, the small and often mono-

2 The inclusion of pressure in the equation of state does not violate
the usual Boussinesq filtering of sound waves. This is assured by the
neglect of a time derivative in the continuity equation. What is re-
tained here is the slow time and space scale density variability caused
by pressure.

tonic, density corrections are multiplied by gravity and
integrated over large depths.

Here we argue by means of a simple scale analysis
that the above contribution to the baroclinic pressure is
sizeable. When converted to an equivalent geostrophic
velocity, it can be several centimeters per second in size.
Further, we present some explicit examples, using data
from the Gulf Stream region and from numerical mod-
els, of the types and magnitudes of the pressure cor-
rections. Thus, we suggest that models should include
the implicit dependence of density on pressure, that is,
use (1.1) instead of (1.2). Finally, we outline procedures
by which this may be accomplished.

2. Scale arguments

The simplest example of the importance of total pres-
sure in the equation of state involves surface pressure.
Consider an ocean stratified in temperature and salinity,
but assume the T and S fields are perfectly flat (see Fig.
1a). This assumption, while not oceanically realistic,
allows us to focus solely on the baroclinic effect of
external pressure gradients.

Pressure will be calculated at the two hydrocasts de-
noted A and B in Fig. 1a, which are assumed to be 50
km apart, that is, at a spacing characteristic of many
open ocean sections and coarse resolution numerical
models. Equation (1.1) must be integrated to obtain
pressure, and this may be accomplished by a number of
techniques (e.g., a Runge–Kutta method). The result,
shown implicitly, is

o

p(z) 5 p 1 g r dz , (2.1)s E
z

where we have employed a rigid-lid approximation and
ps denotes surface pressure (at z 5 0).3 The dynamically
important pressure gradient may be calculated from
(2.1); namely,

o]p ]p ]rs5 1 g dz . (2.2)E]x ]x ]xz

Thus, the internal pressure gradient is due to the familiar
surface contribution and to what is normally termed the
baroclinic contribution. The T, S structure described
above and shown in Fig. 1a suggests that the latter van-
ishes, or at least rx is vanishingly small. However, upon
using the equation of state, the integrand in (2.2) is

]r px5 r(2au 1 bS ) 1 r p 5 , (2.3)x x p x 2]x cs

where a and b are the thermal expansion and saline

3 We neglect the atmospheric contribution to surface pressure in
this paper. Since gradients of pressure are what matters, this is equiv-
alent to assuming a spatially uniform atmospheric pressure.
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FIG. 1. Scale argument schematics. In (a), it is assumed the T and
S fields are perfectly flat between two stations, A and B, situated 50
km apart. A rigid lid is employed but the surface pressure at station
A is assumed to differ from that at B by 1 dbar, that is, roughly the
surface pressure difference across the Gulf Stream. In (b), the surface
pressure gradient is assumed to vanish, but the interior T and S sur-
faces are not flat. In (c), gradients of surface pressure, T, and S exist.

contraction coefficients of seawater; subscripts p and x
denote differentiation; the p derivative of r, rp, is taken
at constant T and S; and cs denotes sound speed. Also,
we have employed the assumed tracer structure of Fig.
1a to arrive at the final formula in (2.3). Thus, it is seen

that even in the case of perfectly flat tracer fields, a
‘‘baroclinic’’ contribution to the pressure gradient still
can exist. This contribution comes from the pressure
dependence of density and, in the present case, finds its
origins in surface pressure gradients. In contrast, the
density gradient in (2.3) would vanish if the depth-based
equation of state in (1.2) were used.

A difficulty of using (2.3) in (2.2) is the appearance
of the pressure gradient on both sides of the equation.
However, (2.3) may be employed on the right-hand side
of (2.2) to estimate the size of the baroclinic contribution
to the left-hand side. The pressure gradient on the right-
hand side of (2.3) is at least as large as the surface
pressure gradient. Surface pressure differences across
the Gulf Stream can be as great as 1 dbar for a 50 km
separation; thus we approximate px by

 kg
4 10

2m s kg 
p ø ø 0.2 . (2.4) x 4 2 25 3 10 m m s 

Using a sound speed of 1500 m s21 and a gravitational
acceleration of 10 m s22, the baroclinic contribution to
(2.2) at a depth of H 5 1 km is roughly

22gp H 10 m kg msx 3p ø ø 0.2 (10 m) 1500x 2 2 2 21 2 1 2c s m s ss

kg
23ø 10 . (2.5)

2 2m s

If we now assume that the basic momentum balance is
geostrophic, the above can be converted to an equivalent
velocity; that is,

gHp msxy ø ø 0.01 . (2.6)
2c r f ss

Thus, we see that the effect on density of a Gulf
Stream–like surface pressure integrates roughly to a cur-
rent of 1 cm s21 at a depth of 1 km. Several further
points about this should also be made. First, this effect
is roughly proportional to depth. Thus, we may expect
at depths of 5 km (typical of those under the Gulf Stream
at 638W), the equivalent velocity will be more like 5
cm s21. Second, this baroclinic contribution to pressure
augments the surface pressure gradient, a result due to
the positive feedback between high pressures and high
densities in the equation of state. A result of this is that
the neglect of surface pressure in the equation of state
underestimates downstream transport. Third, assuming
a scale velocity of 2 cm s21 throughout the lower 4 km
of a Gulf Stream–like current, the transport due to the
above effect is 4 Sv (Sv [ 106 m3 s21). For comparison,
this is roughly 1% of the transport implied by the struc-
ture in Fig. 1a. On the other hand, 4 Sv represents ap-
proximately 25% of the estimated 15 Sv thermohaline
transport of the North Atlantic (Dickson et al. 1990).
Finally, this extra velocity is missed if (1.2) is used
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because a depth-based equation of state cannot react to
a dynamically generated pressure signal.

a. Internal pressure effects

Now consider the opposite case of no surface pressure
gradients, but large horizontal gradients in T and S (see
Fig. 1b). In this case, all the terms in (2.3) must be
retained, while the surface gradient in (2.2) can be ig-
nored. We again appeal to a Gulf Stream–like case to
estimate the impact of the compressibility in (2.2). Here,
temperature differences of 58C can occur over 50 km
(Rossby 1984). Characterizing the upper 1000 m by this
value, using a 5 2 3 1024 K21 and neglecting any
salinity contributions, yields an estimate of the net pres-
sure change at a depth of 1000 m of

o

Dp 5 g r(2aDu) dzE
z

2410 m 1000 kg 2 3 10
ø 1000 m 5 K ø 1 dbar.

2 3s m K

(2.7)

The contribution to the pressure gradient due to the
compressibility [i.e., the last term in (2.3)] results from
an integral of the pressure gradient over the upper ki-
lometer, which itself has been accruing due to the tem-
perature structure. The effect of the last term in (2.3)
is thus estimated using the average of the vanishing
surface pressure gradient and the 1 dbar difference at 1
km; that is,

og pxy 5 dzE 2r f csz

10 m 1000 m
ø

2 23 24 21s 1000 kg m 10 s
410 kg

22 m s m
3 ø .005 ,

4 6 2 225 3 10 m 2.25 3 10 m s s

(2.8)

that is, 5 mm (s21). A velocity of this size over a water
column 50 km wide by 5 km deep yields a 1-Sv transport.

b. Combined surface and internal pressure gradients

It is often the case that surface pressure gradients and
internal T and S fields conspire against each other so as
to reduce the magnitude of the deep pressure gradients
(see Fig. 1c). Such is the case in all subtropical western
boundary currents, where the presence of a relatively
light water mass in the offshore gyre offsets the rela-
tively high offshore surface pressure head. It is worth
pointing out explicitly that the estimate (2.8) applies
also to this situation. To see this, we note that the above

baroclinic pressure gradient contribution in the presence
of the Gulf Stream surface pressure is just sufficient to
cancel the surface pressure at a depth of 1 km. Again,
to estimate the contribution to the pressure gradient from
the compressibility term, an average of the surface and
1-km pressure gradients should be used. The result is
thus identical to (2.8).

c. Comparisons with other density errors

To provide context and to offer an explanation of this
effect, the contribution to density caused by surface
pressure is here compared to those caused by measure-
ment errors. We will assume a thermal expansion co-
efficient of 2 3 1024 K21 and a saline contraction co-
efficient of 8 3 1024/psu (Gill 1982).

The typical uncertainty associated with modern CTDs
is roughly 60.002 psu for salinity, and 60.002 K for
temperature (WOCE Operations Manual 1994). These
translate into a relative density error of 64(16) 3 1027

for temperature (salinity), or roughly 64(16) 3 1024 kg
m23. In comparison, an error of 1 dbar in pressure yields
a slightly larger error in density, that is, 4 3 1023 kg m23.
So it is seen that the correction to density caused by surface
pressure is tiny and comparable to the unavoidable un-
certainty in density due to measurement error. However,
in contrast to measurement error, the pressure contribution
is systematic. While salinity and temperature measurement
errors can be expected to average themselves out, the pres-
sure contribution is persistent. It is principally for this
reason that pressure feedback ultimately yields a sizeable
extra velocity. Also, this effect occurs in numerical models,
where perfect accuracy in the measurement of T and S
can be claimed.

3. Some oceanic examples

We now explore the impact of total pressure on ve-
locity using oceanic data. We have selected profiles of
temperature and salinity from the Levitus North Atlantic
dataset (Levitus 1982). A standard fourth-order Runge–
Kutta integration method was then used to solve the
hydrostatic equation (1.1), subject to a surface pressure
condition and the UNESCO equation of state.

A plot of difference in pressure versus depth gener-
ated by two such integrations appears in Fig. 2. Here
we have used a Levitus cast from the Sargasso Sea,
specifically at (33.58N, 69.58W). The integrations differ
only in their respective surface pressures; one assumes
a surface pressure of 0 dbars, and the other a surface
pressure of 1 dbar. Equivalently, the pressure fields gen-
erated here would be like those generated from the casts
in Fig. 1a. Also in Fig. 2, a vertical profile of the equiv-
alent geostrophic velocity associated with the pressure
differences appears. Here, we have assumed a horizontal
separation of 50 km and used the Coriolis parameter
relevant to 33.58N. The results quantify and support the
scaling argument that appeared in section 1. Velocities
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FIG. 2. Hydrostatic pressure difference versus depth from a station
in the Sargasso Sea. The temperature and salinity structure is identical
for the two integrations of the hydrostatic equation. The displayed
difference is due to an initial surface pressure difference of 1 dbar.
Also shown is the equivalent geostrophic velocity implied by the
pressure difference.

FIG. 3. Gulf Stream velocities. The T and S data were obtained
from hydrocasts located within the climatological Gulf Stream path
and pressure was calculated using the hydrostatic equation. In one
case, labeled ‘‘0 dbars’’ in (a), (b), and (c), surface pressure was
neglected as an effect on density. In the other case, labeled ‘‘1 dbar’’
in (a) ‘‘0.6 dbar’’ in (b), and ‘‘0.4 dbar’’ in (c), surface pressure was
included in the calculation of density. The two traces in each plot
are of the implied geostrophic velocity profiles. Total transport for
each profile appears in the legend.

of several centimeters per second are seen as one pro-
ceeds down the water column.

Perhaps of more interest are the comparisons shown
in Fig. 3. Here, we have again selected T and S profiles
from the Levitus North Atlantic dataset. However, in
this case, the profiles come from the climatological path
of the Gulf Stream. Specifically, the locations of the
casts are (42.58N, 59.58W) and (39.58N, 59.58W). Thus,
in this comparison, the lateral T and S structure of the
Gulf Stream generates the major portion of the internal
baroclinic pressure gradient. We compare the equivalent
geostrophic velocities generated by two sets of calcu-
lations. In both sets, the offshore profile was assigned
higher surface pressures characteristic of the Gulf
Stream, while the inshore profile was assigned a van-
ishing surface pressure value. The calculations differ in
that in the first set, surface pressure was neglected as
an effect on subsurface density, while it was included
as an effect in the second set. The section-averaged
Coriolis parameter (at 418N) and section-averaged den-
sity were then used to convert the pressure gradient to
a geostrophic velocity. The data from the northern lo-
cation went only to a depth of 3.5 km, while the southern
cast extended to 5 km. The northern cast was therefore
artificially deepened to 5 km by filling in the bottom
1.5 km with the data from the southern cast.

First a word about the resulting ‘‘Gulf Stream’’ pro-
files is in order. A typical surface pressure change across
the Gulf Stream is 1 dbar, and the surface velocities
associated with this are roughly 0.33 m s21. Indeed,
these seem reasonable for a climatological Gulf Stream.
In contrast, the diagnosed bottom velocities for this sur-
face pressure difference are large, roughly 0.19 m s21.
The corresponding transport (roughly 330 Sv) is there-
fore too large by a factor between 2 and 3 when com-
pared to the real Gulf Stream. We have therefore also
calculated velocity profiles with smaller surface pres-
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FIG. 4. The Gulf of Mexico domain and bottom topography used in the Bryan–Cox model.
The arrows indicate the sections on which transports have been calculated. Contours of depth in
meters, contour interval 600 m.

sures in order to achieve a more representative Gulf
Stream transport. For example, we have experimented
with Dps 5 0.6 dbars and Dps 5 0.4 dbars. The former
value, although small for the Gulf Stream, yields a rea-
sonable transport of 125 Sv. Associated with this are
surface velocities of 0.20 and 0.06 m s21 bottom ve-
locities. The latter value results in a weak total transport
of 25 Sv, surface velocities of 0.13 m s21, and a reversal
in sign of the bottom flow (;20.004 m s21). We have
computed velocity profiles with and without compress-
ibility for both of these net surface pressure changes,
with the idea that the results give upper and lower
bounds on the magnitude of the effect.

The velocity differential for Dps 5 1 dbar is shown
in Fig. 3a; note at a depth of 5000 m the value is roughly
0.8 cm s21. This relatively small value is due mostly to
the large spacing between the hydrocasts (300 km).
Nonetheless, the calculation recognizing the contribu-
tion of surface pressure possesses the larger deep ve-
locities. Although the velocity difference is rather mod-
est, net transport depends only on the pressure differ-
ential. We have also compared the section transports
from these two calculations, and find an increased trans-
port of 5.4 Sv for the section in which surface pressure
was used to compute density. In view of the anoma-
lously large total transport of this section, we consider
this to be a upper bound. Velocities for the case of Dps

5 0.6 dbar appear in Fig. 3b. Computing section trans-
ports from the profiles yields a difference of 3.3 Sv with
the calculation involving surface pressure possessing the
larger transport. The transport differential in the limit
of small Gulf Stream transports is not very sensitive to
the surface pressure. For example, the experiment with
Dps 5 0.4 dbar shown in Fig. 3c yields a transport

difference in excess of 2 Sv. (Note, the reversal in ve-
locity mentioned above characterizes the lower 1500 m
of the velocity profile.) Therefore, we suggest 3 Sv as
a rough lower bound on the size of the feedback effect
for the Gulf Stream.

4. An example from a numerical model

Next, we consider output from a numerical model in
order to examine the impact of compressibility on pres-
sure. Specifically, we use a version of the Bryan–Cox
model customized to the Gulf of Mexico. The domain
and bottom topography appears in plan view in Fig. 4.

The model has a horizontal resolution of 1/6 degree
in both latitude and longitude and 25 levels in the ver-
tical. The southern (at 188N) and eastern (at azimuth
angle 2808E, i.e., 808W) boundaries are ‘‘open’’ in that
flow is permitted to cross them.

Net transport in the Bryan–Cox model is governed by
a barotropic streamfunction. This was initialized by ad-
justing the streamfunction boundary conditions over a pe-
riod of two model months from a state of no inflow to
one in which an inflow of 30 Sv occurred in a 100-km
strip against the Yucatan Peninsula. This flow was con-
ducted out of the domain through the model boundary
north of Cuba. The model was run in a purely barotropic
mode for this purpose (this reduces to solving an elliptic
equation for the streamfunction). The subsurface T and S
fields were then initialized using the annual mean cli-
matology of Levitus et al. (1994a, b), and the velocity was
determined geostrophically using the thermal wind rela-
tionship in conjunction with the streamfunction.

We will discuss here the results of a 90-day integra-
tion. Surface T and S were relaxed during the model
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FIG. 5. Sea surface height in centimeters, diagnosed from our Bryan–Cox Gulf of Mexico
model, after 90 days of integration. Contours from 227 to 117 cm, contour interval of 9 cm.

run toward Levitus Gulf of Mexico climatology with a
relaxation timescale of 50 days. At inflow points at the
domain boundary, the subsurface T and S fields were
relaxed toward Levitus climatology. The five grid points
neighboring the boundary accomplished this by means
of a buffer zone. The relaxation timescales in this zone
increase from a minimum of a few hours at the boundary
to a maximum of roughly 1/2 day at the outer edge of
the buffer. Further, at the 30-Sv inflow point, the sub-
surface velocities are relaxed toward the thermal wind
profile consistent with the Levitus climatology. A ra-
diation condition on T and S is used on the boundary
at points of outflow. This procedure is essentially that
used in several recent regional modeling studies of the
western Pacific marginal seas (Schultz 1994; Hsueh
1997, manuscript submitted to J. Mar. Syst.; Hsueh et
al. 1997, manuscript submitted Progr. Oceanogr.). Fi-
nally, no wind stress forcing has been used to generate
the results discussed here.

The Bryan–Cox model predicts ‘‘baroclinic’’ veloc-
ities by time stepping the momentum equations with the
pressures obtained by integrating (1.2). These baroclinic
velocities are subsequently adjusted to produce a net
transport consistent with the streamfunction.

The difference between the baroclinic and total veloc-
ities is due to acceleration in the momentum equations
caused by the surface pressure gradient. Thus, this gradient
is easily diagnosed given model velocity, temperature, and
salinity output from two adjacent time levels. As we need
surface pressure to compute the effects of compressibility,
we chose a point within the model Gulf of Mexico and
used our diagnosed surface pressure gradients to compute
surface pressure everywhere.

The effective sea surface height field at 90 days as
diagnosed by the above procedure is shown in Fig. 5.

The major feature seen in this field is, not surprisingly,
the Loop Current entering in the Yucatan and exiting at
the Florida Straits. In this particular run, the Loop Cur-
rent and the remainder of the Gulf of Mexico are devoid
of Loop Current rings. The model temperature and sa-
linity fields at this point in the integration were analyzed.

We next computed two sets of subsurface pressures
in a manner analogous to that described in the previous
section. Namely, a Runge–Kutta method was used to
solve (1.1) subject to an initial condition of 0 dbar at z
5 0 m. The Jackett and McDougall (1995) equation of
state, depending on potential temperature, salinity, and
pressure, was used. When the results are added to the
surface pressure, a total pressure versus depth curve at
each grid point is obtained. This field was then finite
differenced and converted to a geostrophic velocity in
the standard way. This procedure was then repeated ex-
cept surface pressure was used to initialize the Runge–
Kutta integration. The second geostrophic velocity es-
timate was then subtracted from the first, and the results
plotted on the model depth levels.

Velocity difference on model level 20 (depth 1787
m) appears in Fig. 6. Vectors representing fluid speed
and direction are plotted at every second model grid
point. The maximum vector in this diagram occurs in
the area of the Loop Current and is 0.95 cm s21, which
agrees well with the scale estimate obtained in section
2. In fact, this characterizes the size of the velocity
differential throughout the area of the Loop Current.
Away from this energetic feature, the magnitudes drop
considerably, so that in the western Gulf of Mexico the
vectors represent differencences more like 0.01 cm s21.

Deeper levels are not shown because there is not much
area in the Gulf of Mexico at depths greater than about
2000 m. In addition, the Loop Current largely disappears
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FIG. 6. Velocity difference vectors at model level 20 (depth 1787 m). The difference here is
due to the inclusion of surface pressure in the calculation of density.

TABLE 1. Transport anomalies across various sections in the Gulf
of Mexico model. Positive geostrophic velocity differences were
summed on the indicated meridional and zonal transects to given the
anomalous tranports. The locations of the transects are indicated by
the arrows in Fig. 4.

Orientation Location Transport (Sv)

Zonal 228N .35
Zonal 258N 1.8
Meridional 2678E (938W) 1.8
Meridional 2758E (858W) 3.0

at greater depth levels, due to its path lying over the
shallower parts of the model. Therefore, in the small
areas present at deep levels, the velocity differences are
usually no larger than 0.1 cm s21.

We have also computed transports across various Gulf
of Mexico sections. These sections are indicated by the
arrows in Fig. 4. As the Gulf of Mexico is almost a
closed body of water, the net transport across several of
these sections must vanish. We therefore segregated the
transport calculation by sign, and quote here only the
positive transports (i.e., either the northward or eastward
transports). These results appear in Table 1, from which
it can be seen that the transport differences range from
3 Sv for sections involving the Loop Current to roughly
0.3 Sv away from the Loop Current.

We hasten to add that we are computing a difference
here between the ‘‘correct’’ pressure and an ‘‘approxi-
mate’’ pressure, which is more accurate than the pres-
sure normally computed by the model. The reason for
this is that we solve (1.1) to obtain both pressure fields,
while the Bryan–Cox model uses (1.2), that is, the mod-

el neglects all pressure feedbacks in computing density.
The difference in the pressure fields (expressed in terms
of geostrophic velocity) appearing in Fig. 6 is caused
only by the neglect of surface pressure in one of our
integrations. The pressure field as normally computed
by the Bryan–Cox model neglects not only this effect
on density, but also that due to the effects of a dynam-
ically depth-varying pressure on density.

5. Recommendations

We feel these results show that it is adviseable to
allow for dynamic pressure effects in the calculation of
interior pressure gradients in ocean models. On the other
hand, to do so requires a reworking of the integration
procedures. At the heart of the problem is the use of a
depth-based equation of state. Such a procedure im-
plicitly assumes that pressure is well approximated by
a static field; however, we have argued that differences
of O(3 Sv) in transport can occur when variable total
pressure is accounted for.

We now outline procedures for both rigid lid and free
surface models that explicitly include the real equation
of state and its dependence on total pressure. The salient
equations in both cases are

(x)r u 5 2p 1 f (5.1a)o t x

(y)r y 5 2p 1 f (5.1b)o t y

p 5 2gr(S, T, p) (5.1c)z

u 1 y 1 w 5 0, (5.1d)x y z
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where f (x) and f (y) denote the nonlinear, Coriolis, and
viscous terms of the zonal and meridional momentum
equations, respectively, and other notation is standard.

One issue common to both model types is the solution
of (5.1c). For this we recommend the use of a Runge–
Kutta (RK) method. The main computational cost here,
normally due to the several evaluations of the equation
of state inherent in the RK method, can be controlled
through the use of a polynomial equation of state like
those recently proposed by Feistel (1993) and Feistel
and Hagan (1993, 1995).

Specifically, the problem reduces to the prediction of
pressure at the next deeper depth grid point, given pressure
and depth at the present grid point. The model T and S
data at levels intermediate to the depth grid points are
obtained by averaging neighboring T and S values. The
Feistel equation of state is a polynomial in S1/2, T, and p.
The model T and S values can be used to evaluate much
of this function, leaving a local state equation depending
on p only (the current Feistel formula results in a fourth-
order polynomial). Calculating the coefficients of this
fourth-order polynomial in p represents the most signifi-
cant computational load of the procedure, as the subse-
quent Runge–Kutta integration of the lower-order poly-
nomial to the next depth level is straightforward.

a. Rigid-lid models

We assume that at a given time step, full horizontal
velocities, surface pressure, potential temperature, and
salinity are known. Classical methods are then employed
to predict full velocity, potential temperature, and sa-
linity at the next time step. What remains is to compute
the updated pressure. For this, we propose a variant of
the procedure that diagnoses surface pressure, rather
than barotropic streamfunction. In this case, the usual
manipulations of (5.1a,b), and application of the rigid-
lid boundary conditions, eventually yields

02 2] ]
0 5 1 p dz 1 (p(2H )H )E x x2 2[ ]]x ]y

2H

(x) (y)1 (p(2H )H ) 1 F 1 F , (5.2)y y x y

where H is the total fluid depth and

0

(x),(y) (x),(y)F 5 f dz .E
2H

For the purposes of illustration, we have used the con-
tinuous equations to obtain (5.2). We consider various
discretization issues below.

If (2.1) is differentiated with respect to surface pres-
sure, the result is

0 p]p ps5 1 1 g dz . (5.3)E 2]p cs sz

An approximate solution to this integral equation for
ispps

p 5 1.ps

The leading order correction to the above can therefore
be found by employing it in the integral in (5.3), leading
to

0 1 gz
p ø 1 1 g dz 5 1 2p Es 2 21 2c (1500 m s )sz

5 1 1 gG(z), (5.4)

where we have used a fixed value of 1500 m s21 for
sound speed.

Pressure variations caused by the surface pressure are
small, so density may be approximated by a Taylor ex-
pansion; that is,

r 5 r(S, u, p(p 5 0) 1 p p )s p ss

(1 1 gG(z))
5 r(S, u, p(p 5 0)) 1 p , (5.5)s s2cs

where G(z) 5 2z/(1500 m s21)2 and the first term on
the right-hand side can be obtained using the above
Runge–Kutta methods subject to a vanishing surface
pressure. Substituting (5.5) into (2.1) and writing r(S,
u, p(ps 5 0)) as r , we obtain

0 2 2g H psp 5 p (1 1 gG(z)) 1 g r̄ dz 1 O , (5.6)s E 41 2csz

which may be used to get an expression for the vertically
integrated pressure in terms of r and surface pressure.
Then, substituting (5.6) in (5.2) and simplifying leads
to a diagnostic equation for surface pressure:

0 0 0 0 0 0] ] ] ] ] ]
0 5 2 p H 1 g G dz 2 p H 1 g G dz 2 g r dz9 dz 2 r dz9 dzs E s E E E E Ex y1 2 1 2 [ ] [ ][ ] [ ] [ ]]x ]y ]x ]x ]y ]y

2H 2H 2H 2z 2H 2z

(x) (y)1 F 1 F .x y (5.7a)
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(Although represented symbolically, the term
0 2H

G dz 5E 21 22(1500 m s )
2H

in the above.) It should be recognized that the surface
pressure effect on density appears in the above terms
containing G. Also, it is worth noting explicitly that the
calculation of r in (5.7) departs from standard practice
in that r 5 r(S, T, p) is used. Solving the above elliptic
equation for ps completes the numerical calculation at
a given time step.

b. A numerical example with an implicit time step

Dukowicz et al. (1993) discuss an implementation of
the Bryan–Cox–Semtner ocean model for parallel com-
puter architectures. This version uses a semi-implicit
scheme for computing the Coriolis accelerations. Other
time stepping techniques are standard; leapfrog time
stepping is used for the advection parts of the problem
and diffusive and viscous terms are lagged. Employing
their approach here, the discrete (in time) form of (5.2)
is

2 21 ] f dt ] gH 1 ] f dt ] gH
0 5 2 2 H 1 p 2 1 H 1 cosupsf su2 2[ ] [ ][ ][ ] [ ][ ]a cosu ]f a ]u 2c a ]u a cosu ]f 2cs s

0 z9g ] f dtg ]
2f 21 f [V 2 (U cosu) ] 2 2 r dz dz9u E E f[ ][ ]a cosu ]f a ]u

2H 0

0 z9g ] f dtg ] ] ] ] ]
f u2 2 cosu r dz dz9 1 2 f dt cosu HA 1 cosu 1 f dt HA ,E E u[ ][ ] [ ] [ ]a ]u a cosu ]f ]f ]u ]u ]f

2H 0

(5.7b)

where A(f,u) represents the known advection and diffusion
terms, U2 (V2) the vertically integrated zonal (merid-
ional) velocity evaluated at the previous time step, dt
the model time increment, and spherical coordinates
have been used. The above is a generalization of Eq.
(22) in Dukowicz et al. (1993) and, since the Coriolis
accelerations remain unaffected by this change, is ame-
nable to the operator splitting methods described there-
in.

c. Energetics consistency

An important constraint on the discretization em-
ployed in numerical models designed for long-term in-
tegrations is that they obey analytically based conser-
vation principles. Among other things, this ensures that
the models remain bounded in their behavior. One con-
servation principle, which experience has demonstrated
as useful, involves the conversion between pressure
work and gravitational potential energy. This is ex-
pressed analytically as

2 u ·=p dV 1 rgw dV 5 0, (5.8)E E
and past models have employed discretizations in space,
which insure that above integral constraint is met to
machine precision (Bryan 1969; Semtner 1986; Dukow-
icz et al. 1993).

Here we emphasize that our proposed method for

solving the hydrostatic equation and employing the real
equation of state satisfies (5.8) for the specific spatial
discretization (employing the nine-point stencil for the
surface pressure equation) described in Dukowicz et al.
(1993). Our arguments for this proceed identically to
those presented in appendix A of Dukowicz et al., which
demonstrates that the discrete representation of the pres-
sure work done over all u, y cells can be written as

u fW 5 2a h (u d p 1 y cosud p )D D D ,O i jk ijk f i jk u u f z

(5.9)

where a denotes the earth radius; i, j, k indices for the
east, north, and vertical directions; df,u discrete deriv-
ative operators; Df,u,z grid spacings in the zonal, merid-
ional, and vertical directions; hijk a domain boundary
marker; an overbar ( · ) an averaging in the indicated
direction; and the summation is over all model velocity
cells. Straightforward manipulation of the finite-differ-
ence operators shows (5.9) can be rewritten as

2W 5 a h d p cosuD D D . (5.10)O i jk z ijk u f z

We recommend a Runge–Kutta integration of the hy-
drostatic equation, thus (5.8) is satisfied provided that
we interpret the density in the hydrostatic equation as
the RK averaged density; that is,

r r r r1 2 3 4r 5 1 1 1 ,
6 3 3 6

where
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r 5 r(T , S , p ),1 n n n

z zr 5 r(T , S , p 1 gr D /2),2 n n n 1 z

z zr 5 r(T , S , p 1 gr D /2),3 n n n 2 z

and

r 5 r(T , S , p 1 gr D ).4 n11 n11 n 3 z

Subscripts n and n 1 1 denote the vertical levels bound-
ing the interval over which the vertical pressure gradient
is to be estimated.

The native variables of a primitive equation model
include T and S, from which P and r are diagnosed via
the hydrostatic equation and the equation of state. Since
it can be demonstrated that the advective terms do not
contribute to the total kinetic energy (HKE), changes
in HKE are thus governed by the net change in potential
energy as measured in (5.9), and energy consistency in
the sense of Bryan (1969) is demonstrated.

d. Free surface models

We now consider the modifications of a free surface
model necessary to include the effects of total pressure
in the equation of state. Following Killworth et al.
(1991), (5.1d) is vertically integrated to yield

h h

h 1 u dz 1 y dz 5 h 1 U 1 V 5 0,t E E t x y[ ] [ ]x y2H 2H

(5.11)

where h denotes the free surface, and U (V) are the
vertically integrated zonal and meridional velocities.
[Note (5.11) neglects evaporation and precipitation. The
inclusion of these effects in the free surface equation is
discussed by Huang (1993).] Vertically integrating
(5.1a,b) then returns

h]
(x)r U 5 2 p dz 1 p(2H )H 1 F (5.12)0 t E x]x

2H

h]
(y)r V 5 2 p dz 1 p(2H )H 1 F , (5.13)0 t E y]y

2H

where r0 is an average fluid density, and the quantities
F (x),(y) represent inertial, Coriolis, and frictional effects;
for example,

h h] ]
(x)F 5 2 uu dz 2 uy dzE E]x ]y

2H 2H

h

1 (frictional terms) dz 1 f V .E
2H

Equations (5.11)–(5.13) form a set from which h can
be predicted. The Killworth et al. (1991) procedure con-
sists of breaking the model time steps into a sequence
of short, barotropic intervals embedded in a longer bar-
oclinic step. The quantities T and S are fixed over the

barotropic steps, and (5.11)–(5.13) are used to predict
a new free surface and barotropic velocity at the next
baroclinic time level.

To include the effects of surface pressure on density
in the above procedure, (5.6) is used in (5.12), (5.13)
to evaluate both vertically integrated pressure and bot-
tom pressure. After some algebra, these equations be-
come

0 ]
r U 5 2 H 1 g G dz p0 t E s[ ]]x

2H

0 0

(x)2 g r dz9 dz 1 F (5.14)E E x

2H 2z

0 ]
r V 5 2 H 1 g G dz p0 t E s[ ]]y

2H

0 0

(y)2 g r dz9 dz 1 F , (5.15)E E y

2H 2z

where, again, the compressibility effect appears in the
terms containing G and the calculation of r . Equating
ps to gr0h, as recommended by Killworth et al. (1991)
closes the problem.

A natural question arises as to whether the G factors
seriously affect the free surface evolution. Equivalently,
one wonders if h may be predicted in the absence of
the G factors in (5.14)–(5.15), and the resulting h used
in the calculation of density at the next baroclinic time
step. The size of these terms is

0 2gH
g G dz ø . (5.16)E 22cs2H

Thus, the ratio of (5.13) to total fluid depth is

0

g G dzE
2H gH

ø ø 0.01, (5.17)
2H 2cs

and their inclusion results in a modest few percent
change in the outcome.

6. Conclusions

Considerations of the equation of state and hydro-
statics leads us to conclude that the dynamical variations
of pressure play a measurable role in the determination
of density, and thus of baroclinic pressure gradients.
Surface pressure gradients enhance internal pressure
gradients in the same sense as those of the surface, and
the enhancement grows in magnitude with depth. The
transport associated with this baroclinic effect of dy-
namically varying pressure can be several Sverdrups
and the associated velocities can be several cm s21 for
Gulf Stream–like conditions. Further, we have outlined
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procedures by which rigid lid and free surface models
can account for this effect.

It is worth emphasizing that our estimates indicate
net transport is affected by the present feedback between
total pressure and density. The impact this may have on
model results is not currently known, but because trans-
ports are of particular importance to climate, we rec-
ommend that such models include the real equation of
state when solving the hydrostatic equation. On the other
hand, global heat and salt transports reflect surface ex-
changes of buoyancy between the ocean and atmo-
sphere, and these are likely to be unaffected by the
enhanced transports suggested herein. Hence, the above
feedback might well be confined to local modifications
of model output. Comparisons of models with and with-
out the proper form of the hydrostatic equation will
serve to clarify this point.
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