
Scalar Multiplication on Koblitz Curves using

Double Bases

Roberto Avanzi1 and Francesco Sica2 ?

1 Institute for Cryptology and IT-Security
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Abstract. The paper is an examination of double-base decompositions
of integers n, namely expansions loosely of the form

n =
X

i,j

AiBj

for some base {A, B}. This was examined in previous works [3, 4], in the
case when A, B lie in N.

On the positive side, we show how to extend the results of [3] to Koblitz
curves over binary fields. Namely, we obtain a sublinear scalar algorithm
to compute, given a generic positive integer n and an elliptic curve point

P , the point nP in time O
“

log n
log log n

”

elliptic curve operations with es-

sentially no storage, thus making the method asymptotically faster than
any know scalar multiplication algorithm on Koblitz curves.

On the negative side, we analyze scalar multiplication using double base
numbers and show that on a generic elliptic curve over a finite field, we
cannot expect a sublinear algorithm. Finally, we show that all algorithms
used hitherto need at least log n

log log n
curve operations.

1 Introduction

In cryptographic algorithms making use of elliptic curves, the costliest
part is the scalar multiplication nP , where P lies on the curve. In order to
speed up this computation, it was proposed already at the very beginning
of their use to adopt special kinds of elliptic curves where a large multiple
of P can be computed very quickly. This is the case of endomorphism

? This work was partially supported by a NSERC Discovery Grant



curves [6] or Koblitz curves Ea (also called ABC-curves or anomalous
curves) [8].

We will examine more closely this latter class of curves, defined over
F2p . There exists a map (an endomorphism of the group of points Ea(F2p)
of the curve), called the Frobenius endomorphism and denoted by τ , such
that τP is a large multiple of P which can be computed in time O(1) using
normal bases or O(p) using polynomial bases. Using τ , one can achieve
good scalar multiplication algorithms, see Section 3. However, all these
algorithms compute nP with3 Ω(log n) costly curve operations (such as a
doubling or an addition). We call these algorithms linear (in the number
of curve operations with respect to the bit size of the field), since also the
number of curve operations is O(log n).

The novelty of our approach is to combine the use of τ with double
bases, which were introduced in elliptic curve cryptography in [5]. We
show how to find a decomposition

n =
∑̀

i=1

(−1)eiτ si3ti

with si, ti nonnegative integers and ei ∈ {0, 1}. The length ` of this ex-
pansion is O(log n/ log log n). We then proceed similarly to [3] to reveal
a scalar multiplication algorithm whose cost is O(log n/ log log n) curve
operations. We call such an algorithm sublinear, where the number of
curve operations over the bit size of the field goes to zero.

This is a first instance of a sublinear scalar multiplication algorithm
with very little precomputations (which depend only on p, not the curve
or the point P ) or storage requirements (O(log p) bits).

2 Preliminaries

2.1 Koblitz Curves

A Koblitz curve Ea is an elliptic curve defined over F2p , with Weierstrass
equation

Ea : y2 + xy = x3 + ax2 + 1. (1)

Here a = 0 or 1, and p is a prime chosen so to make the order of the
group of points Ea(F2p) equal to twice if a = 1 (resp. four times if a = 0)
a prime number, for at least one choice of a. A point P ∈ Ea(F2p) is then
randomly chosen with order equal to that large prime. Note that in view

3 We use the notation Ω(x) to mean > cx for some positive c.



of Hasse’s theorem, which states that |#Ea(F2p) − 2p − 1| < 2
p

2
+1, ordP

is very close to 2p−1 if a = 1 and to 2p−2 if a = 0.
Since Ea has coefficients in F2, the Frobenius map τ(x, y) = (x2, y2)

is an endomorphism of Ea(F2p). Since squaring is a linear operation in
characteristic two, computing τP is also linear and takes time at most
O(p). If normal bases are used to represent elements of F2p , then comput-
ing τP is much faster, since it amounts to making two rotations, which
is essentially free.

We can view τ as a complex number of norm 2 satisfying the quadratic
equation τ 2−(−1)1−aτ+2 = 0, since for any P on the curve, τ 2P +2P =
(−1)1−aτP . Explicitly,

τ =
(−1)1−a +

√
−7

2
.

It does not matter which “determination” of the square root we use,
since it is the algebraic properties of τ that we need, hence we will fix
Im

√
−7 > 0.

2.2 Continued Fractions

Continued fractions are a way to find very good rational approximations
ps/qs (in terms of the maximum of the absolute values of ps and qs) to
arbitrary real numbers, by an algorithmic process which generalizes the
computation of the greatest common divisor (gcd) of two integers.

We list the properties of ps/qs, called the s-th convergent to α, relevant
to this paper. There exists a sequence of positive integers (as)s≥1 with

ps = asps−1 + ps−2 and qs = asqs−1 + qs−2 for all s ≥ 1.

Therefore qs ≥ qs−1 +qs−2 and similarly for ps. These two sequences have
at least a Fibonacci-like (exponential) growth. If α /∈ Q, we have the
following inequalities for all s ≥ 1

0 < α− p2s

q2s
<

1

q22s

and − 1

q22s−1

< α− p2s−1

q2s−1
< 0 .

In particular, note that lims→∞ ps/qs = α.

2.3 Measure of Irrationality

We begin with a famous result (usually proved with the “pigeon-hole” or
box principle).



Theorem 1 (Dirichlet-Legendre). Let Q > 1 and α ∈ R. There exist

integers 0 < q < Q and p ∈ Z such that

|qα− p| < 1

Q

The irrationality measure µ(α) of α ∈ R − Q is defined as

µ(α) = sup

{

r ∈ R : ∃∞ (p, q) ∈ Z2 with

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

qr

}

.

Notice that the convergents
p

q
of the continued fraction expansion of α

satisfy
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

q2
,

hence µ(α) ≥ 2. It is known that the set of reals with irrationality measure
greater than 2 has Lebesgue measure zero. Therefore, given α, we should
conjecture that µ(α) = 2.

In the rest of the paper, we will then assume that the irrational num-
bers log2 3 and θ/π (see below for definition) have measure 2.

2.4 Double Bases

Following [4] we will call a {A,B}-integer a number which can be written
as AiBj for some nonnegative integers i, j. We will extend the definition
to algebraic integers, more precisely, integers in Z[τ ]. We will also allow
A,B ∈ Z[τ ]. We define a {A,B}-integer expansion of n as a decomposition
of n into a sum of (possibly signed) {A,B}-integers.

3 Scalar Multiplication on Koblitz Curves

In this Section we are chiefly concerned with scalar multiplication tech-
niques that do not make use of point precomputations or storage for
on-the-fly computed tables of point multiples. Variants of these methods
than can take advantage of such devices exist and in many cases have
been extensively treated in the literature.

3.1 The τ -NAF

All facts here are stated without proofs: These are found in [12, 13].



Let us consider the Koblitz curve Ea defined over F2p by equation (1),
with base point P , and let τ denote the Frobenius endomorphism. We have
seen that we can view τ(P ) as multiplication by τ and let Z[τ ] operate on
P , but in fact there exists an integer λ such that τ(P ) = λP , and thus τ
operates on the whole subgroup generated by P like multiplication by λ.

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ ]
is a decomposition z =

∑

i ziτ
i where zi ∈ {0,±1} with the non-adjacency

property zjzj+1 = 0, similarly to the classical NAF [10]. The average
density (that is the average ratio of non-zero bits related to the total
number of bits) of a τ -NAF is 1/3. Each integer z admits a unique τ -
NAF.

The length of the τ -NAF expansion of a randomly chosen scalar n
is ≈ 2p, whereas the bit length of n is ≈ p. But, for any point P ∈
Ea(F2p) rEa(F2), τ

pP = P and τP 6= P .
Since Z[τ ] is an Euclidian ring we can take the remainder ζ of n mod

(τp − 1)/(τ − 1) and use it in place of n. This remainder will have smaller
norm than that of (τp − 1)/(τ − 1), and thus it will have length at most
p. Its τ -NAF is called the reduced τ -NAF of n.

The double-and-add scalar multiplication algorithm is just a Horner
scheme for the evaluation of nP using the binary expansion of n =
∑`

i=0 ni2
i as

∑`
i=0 ni2

iP . In a similar way we can evaluate zP =
∑

i ziτ
i(P )

by a Horner scheme, and the the corresponding algorithm is called a τ -
and-add algorithm. It is much faster than the double-and-add scheme
on Koblitz curves because Frobenius evaluations are much faster than
doublings.

3.2 Inserting a Doubling

Point halving [7, 11] is the inverse operation to point doubling and applies
to all elliptic curves over binary fields, not only to Koblitz curves. Its
evaluation is 2 to 3 times faster than that of a doubling and it is possible
to rewrite the scalar multiplication algorithm using halving instead of
doubling. The resulting method is very fast, but on Koblitz curves it is
slower than the τ -and-add method.

In [1] it is proposed to insert a halving in the “τ -and-add” method
to further speed up scalar multiplication. This approach brings a non-
negligible speedup (on average 14% with suitable representations of the
fields) with respect to the use of the τ -NAF, but it is not optimal. In [2]
the method was refined in order to bring the speed-up to 25%, and the
resulting method was proved to be optimal among the methods that do
not require any precomputation.



The fundamental idea in these methods is that in order to perform
∑

i eiτ
i(P ) +

∑

i fiτ
i(Q) (with ei, fi ∈ {0,±1}) where a linear relation

Q = f(P ) exists, one can first compute R =
∑

i fiτ
i(P ), apply f to

the result, and “resume” the τ -and-add loop corresponding to
∑

i eiτ
i(P )

starting however with f(R) instead of setting the intermediate value to
the zero point at the beginning.

In all these techniques the number of Frobenius applications is doubled
with respect to the standard τ -and-add method, which is not a problem
if the ground field is represented by a normal basis. In both papers it
is shown that the performance is still improved if a polynomial basis is
used: the expected speed-ups are around 12% and 21% for the methods
in [1] and [2] respectively.

3.3 Other Development

Vuillaume, Okeya and Takagi in [9] generalize the approach of the pre-
vious Subsection applying it to expressions of the form

∑

i e1,iτ
i(P ) +

∑

i e3,iτ
i(f3(P )) +

∑

i e5,iτ
i(f5(P )) + . . . where f3(1), f5(1), etc... form a

complete set of residues modulo a suitable power of τ in the ring Z[τ ],
and the ej,i ∈ {0,±1}. Such an expression can be easily obtained from
a modified τ -adic windowing method, and if a window width w is used,
then the τ -and-add loop must be resumed 2w−1 times. The method be-
comes then quickly impractical if a polynomial basis is used, because then
Frobenius operations quickly become the dominant part of the compu-
tation, but the method has its merits if a normal basis is used. Some
questions remain open: the relations fj and their inverses must be de-
scribed in an easy way, and the approch used in the paper works only
for a few window sizes. Hence the authors cannot present the results in a
completely general way. In the cases that have been described the reduc-
tion in memory consumption (or, equivalently, the speed-up with respect
to other methods with no precomputations) are noteworthy.

4 Scalar Multiplication using Double Bases: Previous

Work

Let ps/qs be the s-th convergent to log3 2/2 (this is a slight departure
from [3]). Let m = p2/5. Fix s as the first odd index such that ps > m.
Then

0 <
2

m1+ε log 2
< ps

2 log 3

log 2
− qs <

1

m
<

2

m log 2
.

This shows the following lemma.



Lemma 1. Using the above notations we have, as p → ∞

exp

(

1

m1+ε

)

<
3ps

2
qs
2

< exp

(

1

m

)

. (2)

The authors of [3] then use this lemma to prove the following “reduc-
tion” theorem (which we cite after fixing the value of m).

Theorem 2. Let n be a large integer. There exists a {2, 3}-integer N
satisfying

|n−N | < n

log
1
3 n

Repeated use of this theorem leads to an effective construction of a
{2, 3}-integer decomposition of n as in the following.

Theorem 3. Every sufficiently large number n can be written as a sum

n =
k

∑

i=1

2si3ti , si, ti ∈ N ∪ {0}

with (si, ti) 6= (sj, tj) for i 6= j and

k ≤ 3
log n

log log n
+ o

(

log n

log log n

)

.

Moreover, one can insure that maxi si ≤ log2/3+ε n.

This last theorem allows to build a sublinear scalar multiplication
algorithm, very similar to our Algorithm 3. That work forms the blueprint
of our sublinear scalar multiplication algorithm for Koblitz curves.

5 Double Base {τ, 3} Expansions

The aim of the following sections is to produce an efficient decomposition
of a scalar n as a signed sum of {τ, 3}-integers

n =
∑̀

i=1

(−1)eiτ si3ti

with si, ti nonnegative integers, (si, ti) 6= (sj , tj) for i 6= j and ei ∈ {0, 1}.
Here ` = O(log n/ log log n).



As a first simplification we replace n its reduced τ -NAF, ζ, as defined
in Section 3. This allows to cut by half the representation of n, since
nP = ζP on the curve.

Using a lexicographic order on powers of 3 and τ one can rewrite such
a {τ, 3} expansion as

ζ =
I

∑

i=1

3ti

Ji
∑

j=1

(−1)ei,j τ si,j (3)

where ei,j ∈ {0, 1},
I

∑

i=1

Ji
∑

j=1

1 = ` , ti > ti+1 and si,j > si,j+1 .

6 A New Scalar Multiplication

In this section we generalize the algorithms of [3] to ordinary Koblitz
curves defined over F2p . The main difference is that we have to view
τ as a complex number, which requires controlling the argument of the
numbers thus involved if we want to find “close” {τ, 3}-numbers.

Let τ be the Frobenius endomorphism of Ea. Call θ = arg(τ). We first
prove the following easy result.

Lemma 2.
θ

π
/∈ Q.

Proof. We want to show that τ a /∈ R for any a ∈ Z. Let there otherwise
be some such a. Let M = τ a. Taking norms, we get M = ±2a/2 and a
is even. But then τ a/2τ̄a/2 = ±τa or τ̄a/2 = ±τa/2 which is impossible,
since Z[τ ] is a unique factorization domain (it is Euclidean) and τ and τ̄
are two non-associated irreducibles. ut
Theorem 4. Let ζ ∈ Z[τ ] be large. There exists a {τ, 3}-number N sat-

isfying either

|ζ −N | ≤ |ζ|
log

2
25 |ζ|

or |ζ +N | ≤ |ζ|
log

2
25 |ζ|

Proof. In view of (2) we have4

∣

∣

∣

∣

3ps

τ qs

∣

∣

∣

∣

≈ e
1
m

4 We write something is ≈ f(m) for some function f to mean that it lies between
f(m1−ε) and f(m1+ε). Similarly with m instead of m. This will avoid notation
cluttering, while giving enough indications for a complete technical proof.



We then take the largest power 2ν less than or equal to |ζ|. Define t as
the largest integer such that

∣

∣

∣

∣

3ps

τ qs

∣

∣

∣

∣

t

≤ |ζ|
2ν

(4)

and
qst < 2ν (5)

Then Ñ = τ2ν−tqs3tps satisfies

1 ≤
∣

∣

∣

∣

ζ

Ñ

∣

∣

∣

∣

≤ e
1
m

Unlike in the supersingular case we cannot conclude that |ζ− Ñ | is small,
because we need to adjust the argument of Ñ . We will rely on the following
result.

Lemma 3. Let ξ1, ξ2 be two nonzero complex numbers and m ≥ 3 such

that 1 ≤ |ξ1/ξ2| ≤ e
1
m and cos arg(ξ1/ξ2) ≥ e−

1
m . Then

|ξ1 − ξ2| ≤
2|ξ2|√

m

Proof. See Appendix A.

We now find an integer u ≥ 0 such that there exists an integer v with

|uqsθ − 2vπ| < 1√
m

.

We can do this by looking at the continued fraction expansion of qsθ/2π
which is irrational by Lemma 2. The previous inequality becomes

∣

∣

∣

∣

u
qsθ

2π
− v

∣

∣

∣

∣

<
1

2π
√

m

.

By the Dirichlet-Legendre theorem, v/u can be chosen as the convergent
to qsθ/2π with u < 2π

√
m closest to this bound. By our assumption on

irrationality measures, actually

u ≈
√

m

and

|uqsθ − 2vπ| ≈ 1√
m

. (6)



This u can actually be precomputed, as it will depend only on the size
2p of the finite field (see below), not even on the curve. Define then

−k =

⌊

argπ ζ − (2ν − tqs)θ

uqsθ − 2vπ

⌉

≤ 0,

where −π < argπ ζ − (2ν − tqs)θ < π is defined modulo π to make k
non-negative. Then k = O(

√
m) and

|kuqsθ + argπ ζ − (2ν − tqs)θ − 2kvπ| < 1√
m

.

Define now

N = Ñ

(

3ps

τ qs

)ku

= τ2ν−(t+ku)qs3(t+ku)ps . (7)

Note that, if m is small enough, N is a {τ, 3}-integer. Also, either
| arg(N/ζ)| < 1√

m
or | arg(−N/ζ)| < 1√

m
and thus we get | cos arg(N/ζ)| >

e−
1
m . Also,

1 ≤
∣

∣

∣

∣

N

ζ

∣

∣

∣

∣

≤
∣

∣

∣

∣

N

Ñ

∣

∣

∣

∣

≤ e
O(m)

m = eO( m

m)

Thus choosing m ≤ m1/2−ε, we can apply Lemma 3 to ξ1 = N or
ξ1 = −N and ξ2 = ζ to conclude that

|ζ −N | ≤ 2|ζ|
m1/4−ε

or |ζ +N | ≤ 2|ζ|
m1/4−ε

hence Theorem 4, with m = m2/5 = p4/25.
Repeated applications of this theorem will give the next result, whose

proof follows, mutatis mutandis, that of Theorem 3.

Theorem 5. Every ζ ∈ Z[τ ] with ζ ζ̄ < #Ea(F2p) can be written as a

sum

ζ =
∑̀

i=1

(−1)eiτ si3ti

with si, ti nonnegative integers, (si, ti) 6= (sj , tj) for i 6= j and ei ∈ {0, 1}.
Furthermore the length of the expansion is

` ≤ 12.5
p

log2 p
+ o

(

p

log p

)

and one can insure that maxi ti ≤ p4/5.



Input: An integer p, the bit size of the ground field F2p .

Output: Three integers P CONV, Q CONV and U CONV, and two floating point

numbers MODULUS RATIO and ANGLE RATIO.

1. m← p2/5

2. s← min{2j + 1: p2j+1 > m}
3. P CONV← ps

4. Q CONV← qs

5. MODULUS RATIO← 2ps log2 3− qs

6. MODULUS RATIO← 1/MODULUS RATIO

7. ANGLE RATIO← uqsθ − 2vπ, as per (6)
8. ANGLE RATIO← 1/ANGLE RATIO

9. U CONV← u

Algorithm1. Precomputations (depending on p)

In view of the fact that, by Hasse’s theorem,

p = log2 #Ea(F2p) +O
(

#Ea(F2p)−1/2
)

= log2 n+O(1)

on average for n, this is the analogue of Theorem 3 in our context. It is
this constructive theorem which is responsible for the sublinear running
time of Algorithm 3, with the same analysis as for Algorithm 2 in [3]. See
also the next section for details.

Remark 1. We should note that Theorem 5 also holds for unsigned ex-
pansions, with the same constant. Hence we expect in practice a smaller
value for the signed expansion, as suggested by practical examination.
although at the moment is seems difficult to produce one. The reason
to describe a signed expansion rather than an unsigned one is to have
a significant speedup for even the smallest elliptic curves, such as K-163
and K-233.

7 Practical Estimates

Algorithms 1, 2 and 3 describe respectively the initial precomputation,
the scalar recoding and the actual scalar multiplication. We draw some
remarks concerning their application.



Input: An integer ζ ∈ Z[τ ] with 2p/4 < |ζ| < 2p, and constants

P CONV, Q CONV, U CONV and MODULUS RATIO, ANGLE RATIO.

Output: A set S = {(e1, s1, t1), . . . , (e`, s`, t`)} with the property that ζ =
P`

i=1(−1)eiτ si3ti with si, ti nonnegative integers, ei ∈ {0, 1} and ` =
O(log n/ log log n)

1. S = ∅
2. While |ζ| > 2p

4/5

do

3. ε← 0
4. ν ← blog2 |ζ|c
5. t← b2MODULUS RATIO(log2 |ζ| − ν)c
6. k0 ← Arg(ζ/τ 2ν−tQ CONV)
7. If k0ANGLE RATIO > 0
8. k0 ← k0 − sign(ANGLE RATIO)π
9. ε← 1

10. k ← −bk0ANGLE RATIOe
11. c← t + kU CONV

12. N ← τ 2ν−cQ CONV3cP CONV

13. S ← S ∪ {(ε, 2ν − cQ CONV, cP CONV)}
14. ζ ← ζ − (−1)εN
15. Find the τ -NAF of ζ, appending exponents and signs to S.

16. Return S

Algorithm 2. Binumber Scalar Decomposition

Algorithm 2 differs somewhat from its counterpart, Algorithm 1 in [3],
in that we are always using the same MODULUS RATIO, until we reach
a sufficiently low stage, and then give up and use a τ -NAF. In fact, while
|ζ| > 2p

4/5
, on applying Theorem 4 we keep dividing moduli by a quantity

at least

log
2
25
2 2p

4/5
= p

8
125 .

Therefore we need less than

p

log2

(

p
8

125

) = 15.625
p

log2 p

iterations to get down to 2p
4/5

. Below this threshold, a τ -NAF will have
length ≤ p4/5. Altogether, this gives a new bound for ` similar to the
bound of Theorem 5 with 15.625 replacing 12.5.

There are indications, although at this point we cannot be more pre-
cise, that this algorithm is giving expansions shorter than the τ -NAF also



Input: A point P on the Koblitz curve Ea and a sequence of triplets of exponents

(ei,j , si,j , ti) as in (3).
Output: The point Q on the elliptic curve such that Q = ζP .

1. Q← O
2. For i = 1 to I− 1
3. R← (−1)ei,1P
4. For j = 1 to Ji

5. R← τ si,j−si,j+1R + (−1)ei,j+1P
6. Q← Q + R
7. Q← 3ti−ti+1Q
8. R← (−1)eI,1P
9. For j = 1 to JI

10. R← τ sI,j−sI,j+1R + (−1)eI,j+1P
11. Q← Q + R
12. Return Q

Algorithm 3. Sublinear Multiplication

for cryptographically relevant curves, such as NIST curves K-163, K-233
etc. Indeed there is also a greedy algorithm for the τ -NAF expansion
where at each step the intermediate variable is halved, whereas we divide
it by a power of log |ζ| (a small one, true, but for small values of p we use
ad-hoc look-up which should at least find the smallest power of τ close to
ζ). The constant in the bound of the expansion in practice seems much
smaller than 15 (in [3], this is about 1, using only unsigned expansions,
which means that the corresponding algorithm is 60% faster than the
τ -and-add).

8 Impossibility Results

In this last part we want to show some limitations of the present method
(which is not to say that double bases cannot be used more effectively in
another way).

8.1 Why Double-Base Algorithms Are Sublinear Exclusively
on Curves with Fast Endomorphisms

We now prove that the maximum of the exponents in any {2, 3}-integer
expansion of n must be of order log n. As a corollary we have that no such



expansion can give rise to a sublinear scalar multiplication algorithm on
a generic elliptic curve, where we can only hope to improve the scalar
multiplication timings by a bounded factor.

Theorem 6. Let

n =

k
∑

i=1

2si3ti , si, ti ∈ N ∪ {0}

with (si, ti) 6= (sj, tj) for i 6= j. Then, as n goes to infinity,

max
i

(si, ti) ≥ log6 n+O(log log n) .

Proof. Let s = maxi(si, ti). We have

n =
k

∑

i=1

2si3ti ≤ k6s .

Since k ≤ log2 n/(log 2 log 3) we must have from log2 n
log 2 log 36s ≥ n that

s ≥ log n

log 6
− 2 log log n

log 2 log 3 log 6
.

ut

Corollary 1. A double base expansion of a generic scalar n cannot be

converted into a sublinear scalar multiplication algorithm on a generic

elliptic curve.

Proof. Indeed, there are at least Ω(log n) powers of 2 or 3, and on a
generic elliptic curve these two operations are costly, hence Algorithm 3
computing nP on the elliptic curve will have to compute Ω(log n) elliptic
curve operations. ut

Remark 2. The same goes of course for the {τ, 3}-number algorithm de-
scribed in this paper.

8.2 Limitations of Greedy-Type Algorithms

In this section, we take all logs to the base 2. We want to show the
following theorem.



Theorem 7. If we use a greedy algorithm to find a {τ, 3} expansion, then

we must have

` ≥ p

log p
+ o

(

p

log p

)

Remark 3. In particular, this shows that we cannot achieve a constant
better than 1 in Theorem 5, at least with our method.

Proof. Since we are using a greedy algorithm to find all our {τ, 3}-integers,
we are restricting our pool of {τ, 3}-integers to τ s3t with s ≤ 2p and
t ≤ p, hence at most 2p2 numbers. We know that the number of integers
of norm less than 2p which can be represented by at most ` {τ, 3}-numbers
is upper bounded by

∑̀

i=1

2i

(

2p2

i

)

≤ ` 2`

(

2p2

`

)

=
Γ(2p2 + 1)

Γ(`+ 1)Γ(2p2 − `)
` 2` .

This is due to the fact that for any weight i, we can represent an integer by
choosing i {τ, 3}-integers among at most 2p2 and each of them can have a
positive or negative sign. The inequality follows from the ascertained fact
that ` < p. Using Stirling’s formula for Γ(z), we arrive at the following
asymptotic formula

(

1 +
`

2p2 − `

)2p2−`

· 2` · p2` · `
3/2

``
≤ (2e)` p2` `3/2

``
.

With ` = c
p

log p
we transform the previous expression into

(2e)
(c−c log c) p

log p · 2cp · 2cp log log p

log p

(

cp

log p

)3/2

< 2p−3

when p → ∞, as soon as c < 1. This contradicts the fact that we must find
a representation of all the integers of norm less than 2p, which are at least
2p−2 (at least all remainders ζ of all possible n mod (τ p − 1)/(τ − 1)).

ut

Remark 4. The same theorem also holds for any unsigned {2, 3} expan-
sion as in [3, 4], or for those signed {2, 3} expansion obtained with a greedy
algorithm, since the only ingredient we need to make this cardinality-type
argument work is an upper bound on the double exponents (a, b) in 2a3b,
which we automatically have in theses cases.

It is not clear that the same holds in general (actually, it seems more
plausible to have o(p/ log p) in signed expansions).



9 Conclusion

We have analyzed double-base expansions to the extent that we could
generalize them to complex-valued bases {A,B}. We have then seen that
since all present algorithms to compute them are greedy, they cannot
achieve a better asymptotic bound than p/ log p.

This leaves many open questions, the first one being the existence of
other non-greedy decomposition procedures. For instance, binary signed
and unsigned expansions can be retrieved by a greedy (analytic) algorithm
but also by a right-to-left “algebraic” algorithm. That the two algorithms
yield the same result is assured by the uniqueness of such decompositions
(NAF for the signed one). However, high redundancy in the case of double
bases renders it more probable to achieve shorter expansions by non-
analytic methods. In particular, it would be of utmost interest to find
an algebraic “right-to-left” algorithm, since it could give rise to double-
base chains as defined in [4], hence only one loop instead of the two in
Algorithm 3.
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A Proof of Lemma 3

After rescaling, we may suppose that ξ2 = e−1/m and ξ1 = ξ has modulus
e−1/m ≤ |ξ| ≤ 1, with cos arg(ξ) ≥ e−1/m. This means that ξ is in the
grayed out sector in the figure. Let 0 < ψ < π/2 be the angle such that
cosψ = e−1/m, as shown in the figure. Then the maximum of the distance
between ξ and e−1/m is the dotted length. Analytically,

|ξ1 − ξ2| =
∣

∣

∣
ξ − e−

1
m

∣

∣

∣
≤ sinψ =

√

1 − e−2/m ≤
√

2√
m

=

√
2 e1/m

√
m

|ξ2| .

Since
√

2 e1/m < 2 for m ≥ 3 this concludes the proof.
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