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ABSTRACT

Gent et al. have emphasized the role of the eddy-induced transport (or bolus) velocity as a mechanism for
redistributing tracers in the ocean. By writing the momentum equations in terms of the isopycnal flux of potential
vorticity, the author shows that any parameterization of the eddy-induced transport velocity must be consistent
with the conservation equation for potential vorticity. This places a constraint on possible parameterizations, a
constraint that is satisfied by the Gent and McWilliams parameterization only if restrictions are placed on the
diffusivity coefficient. A new parameterization is suggested that is the simplest extension of Gent and McWilliams
based on the potential vorticity formulation. The new parameterization parameterizes part of the time-mean flow
driven by the Reynolds stress terms in addition to the eddy-induced transport velocity. It is also shown that the
eddy-induced transport velocity can always be written as the Ekman velocity associated with the vertical de-
rivative of a horizontally directed eddy stress. The author shows how the eddy stress is related to the ‘‘inviscid
pressure drag’’ or ‘‘form drag’’ associated with the eddies, although the correspondence is not exact.

1. Introduction

Gent and McWilliams (1990, hereafter GM90) have
suggested a parameterization for mesoscale eddies for
use in coarse-resolution ocean models. The parameter-
ization is an almost Fickian diffusion of thickness along
isopycnal surfaces. Recently, Gent et al. (1995) have
pointed out that the GM90 parameterization can be in-
terpreted as an eddy-induced transport velocity (some-
times referred to as the ‘‘bolus’’ velocity). The eddy-
induced transport velocity is analogous to the Stokes
drift in the theory of surface gravity waves and can play
an important role in redistributing tracers even though
it is not part of the time-mean flow. For example, Dan-
abasoglu and McWilliams (1995) and Hirst and Mc-
Dougall (1996) demonstrate that incorporating GM90
in a coarse-resolution global model leads to a dramatic
improvement in the ability of the model to represent the
distribution of water masses. Gent et al. (1995) point
out that when the momentum equations are cast in terms
of the tracer transport velocity (the tracer transport ve-
locity is the sum of the time-mean velocity and the eddy-
induced transport velocity), the GM90 parameterization
is equivalent to a vertical transfer of (geostrophic) mo-
mentum. Given that GM90 is designed to mimic the
removal of geostrophic shear by baroclinic instability,
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the correspondence between GM90 and a vertical flux
of momentum is not surprising. An approach based on
the vertical mixing of momentum was adopted inde-
pendently by Greatbatch and Lamb (1990, hereafter
GL90). GL90 show that at small Ekman number their
parameterization is equivalent to GM90.

At the time of writing their paper, GL90 did not ap-
preciate the significance of the eddy-induced transport
velocity, or that their momentum equations are really
the equations for the tracer transport velocity, as distinct
from the time-mean velocity. GL90 were motivated by
the correspondence in quasigeostrophic theory between
vertical mixing of momentum and horizontal mixing of
potential vorticity (Rhines and Young 1982). To show
the correspondence, it is necessary to assume that hor-
izontal length scales are large compared to the internal
Rossby radius of deformation. GL90 added a vertical
eddy viscosity term to the planetary geostrophic mo-
mentum equations with the vertical eddy viscosity co-
efficient assumed to be of the form Af 2/N 2, where f is
the Coriolis parameter and N is the local value of the
buoyancy frequency. They show that for small Ekman
number, and when A satisfies certain conditions, poten-
tial vorticity q is homogenized within closed q contours.
GL90 show that the GM90 parameterization also leads
to homogenization of potential vorticity under analo-
gous conditions.

Homogenization of potential vorticity is a striking
feature of the time-mean fields on the subsurface levels
of quasigeostrophic models of the wind-driven ocean
circulation (see, e.g., Holland et al. 1984). Potential vor-
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ticity homogenization on subsurface isopycnals is also
a feature of maps of potential vorticity derived from
observations (e.g., McDowell et al. 1982; Keffer 1985;
Talley 1988; O’Dywer and Williams 1997), and recent
numerical computations using a primitive equation
model (Greatbatch et al., in preparation). Indeed, the
evidence from both eddy-resolving models and obser-
vations suggests that isopycnal mixing of potential vor-
ticity should be a fundamental feature of any parame-
terization, a point that has also been made by Treguier
et al. (1997) and Killworth (1997, submitted to J. Phys.
Oceanogr., hereafter K97), and supported by the chan-
nel model experiments of Lee et al. (1997). Indeed, the
parameterizations suggested by Treguier et al. (1997)
and K97 are actually quite similar to that suggested in
section 5 of this paper, although the analysis given here
is somewhat different and also more general.

In the present paper, we explore the relationship be-
tween eddy-induced transport velocity, the vertical
transfer of momentum, and isopycnal mixing of poten-
tial vorticity. We attempt to link the work of Gent et al.
(1995) to the earlier quasigeostrophic theories of Rhines
and Holland (1979) and Rhines and Young (1982). In
so doing, we show how the potential vorticity equation
places a constraint on possible parameterizations for the
eddy-induced transport velocity. The key is the link be-
tween potential vorticity conservation and the momen-
tum equations, a link that is missing in parameterizations
such as GM90 that are derived independently of the
momentum equations. We then suggest a new param-
eterization that is an extension of GM90 but has the
potential vorticity equation at its core. We also show
how the eddy-induced transport velocity can be related
to an ‘‘eddy stress,’’ once the momentum equations are
cast in terms of the tracer transport velocity, and show
the connection between the eddy stress and the eddy
‘‘form drag,’’ generalizing a result of Rhines and Hol-
land (1979).

The plan of the paper is as follows. In section 2, we
show that the eddy-induced transport velocity can be
written as an Ekman velocity associated with the vertical
derivative of a horizontally directed eddy stress. In the
case of the GM90 parameterization, the horizontal stress
is the vertical flux of geostrophic momentum. Section
3 discusses the relationship between the eddy stress and
the form drag, while section 4 explores the relationship
between the eddy stress and the isopycnal flux of po-
tential vorticity. In section 5 we illustrate the potential
vorticity formulation for the particular example of the
GM90 parameterization and show how the potential vor-
ticity equation places a constraint on possible parame-
terizations for the eddy-induced transport velocity. The
discussion leads naturally to the suggestion of a new
parameterization. A feature of the potential vorticity ap-
proach is that the new parameterization parameterizes
part of the mean flow driven by the Reynolds stress
terms in addition to the eddy-induced transport velocity.
Section 6 provides a summary and discussion.

2. The eddy-induced transport velocity and the
eddy stress

We develop the formalism within the context of a
Boussinesq, hydrostatic, incompressible fluid and use
plane Cartesian geometry. We take as our starting point
the equation for a tracer t . We assume that the effect
of turbulent mixing, be this by mesoscale eddies or any
other process, can be parameterized in terms of the local
gradients of the large-scale, averaged tracer field, t , as
follows:

Dt ] ]t
5 A , (1)i, j5 6Dt ]x ]xj i

where D/Dt is the time derivative following the time-
mean flow and Ai,j is a general second-order tensor. It
should be noted that although the analysis in this section
is carried out in Cartesian (x, y, z) coordinates, the av-
eraged large-scale variable need not be the result of
averaging at fixed z. In the interpretation given by Gent
et al. (1995), the large-scale tracer and velocity fields
are unweighted averages on an isopycnal surface. For
a detailed analysis of isopycnal averaging (both weight-
ed and unweighted), readers are referred to the paper
by de Szoeke and Bennett (1993) where discussion can
also be found on how equations averaged in isopycnal
coordinates can be transformed to equations in (x, y, z)
coordinates.

We now split Ai,j into a symmetric and an antisym-
metric part. Gent et al. (1995) argue that for mesoscale
eddies, the symmetric part corresponds to isopycnal dif-
fusion of tracer. Andrews et al. (1987) note that an anal-
ysis based on linearized displacements shows that, in
general, the symmetric part of Ai,j is tracer dependent,
whereas the antisymmetric part is independent of the
tracer (see also Plumb 1979). In the following, we shall
concentrate on the antisymmetric part, since this is as-
sociated with the eddy-induced transport velocity, or
Stokes drift (Plumb and Mahlman 1987; Andrews et al.
1987; Middleton and Loder 1989). The general form of
the antisymmetric part is

 0 a b 
2a 0 c . (2) 

 
2b 2c 0 

Substituting the antisymmetric part of A into Eq. (1),
we see that the contribution from the antisymmetric part
can be written as an advection term with eddy-induced
transport velocity uI 5 (uI, y I, wI) given by

u 5 a 1 b (3)I y z

y 5 2a 1 c (4)I x z

w 5 2b 1 c . (5)I x y

Here uI, y I, and wI satisfy the continuity equation

1 1 5 0.u y wI I Ix y z
(6)
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At the surface, z 5 0, we have

wI 5 0, (7)

while at the bottom z 5 2H(x, y) we have

wI 5 2(uIHx 1 y IHy). (8)

Equations (7) and (8) state that there is no eddy flux of
tracer normal to the top and bottom boundaries (the
same is also true at any side boundaries). For the GM90
parameterization, a 5 0, and (b, c) 5 2kL where L 5
2=r/rz.

We now define
0

c 5 2 a dz9 1 c (x, y). (9)E o

z

Then

u 5 (b 1 c ) (10)I y z

y 5 (c 2 c ) (11)I x z

w 5 2(b 1 c ) 2 (c 2 c ) . (12)I y x x y

Since it is only uI, y I, wI that matter, a comparison of
(10)–(12) with (3)–(5) shows that we can always take
a 5 0 by redefining b and c. Also, because wI 5 0 at
the surface, bx 1 cy is zero there, allowing us to choose
co so that at the surface

cy 1 b 5 0 (13)

and

2cx 1 c 5 0. (14)

It follows that not only can we assume a 5 0, we can
also assume b 5 c 5 0 at z 5 0. It should be noted
that for the GM90 parameterization, a 5 0 everywhere
and k 5 0 at z 5 0, showing that GM90 already satisfies
these conditions.

We now define the tracer transport velocity (U, V, W)
to be the sum of the large-scale (time mean) velocity u
and the eddy-induced transport velocity uI 5 (uI, y I,
wI), that is, (U, V, W) 5 (u 1 uI, y 1 y I, w 1 wI).
The tracer equation (1) can then be written as

]t ]t ]t ]t ] ]t
S1 U 1 V 1 W 5 A , (15)i, j5 6]t ]x ]y ]z ]x ]xj i

where is the symmetric part of A.SAi,j

We now turn to the momentum equations. We shall
assume horizontal scales are large compared to the in-
ternal radius of deformation, enabling us to make the
planetary geostrophic approximation. For convenience,
we shall assume the momentum equations reduce to the
geostrophic balance

1 ]p
2 f y 5 2 (16)

r ]xo

1 ]p
f u 5 2 , (17)

r ]yo

where p is the pressure, overbar denotes averaged val-
ues, and ro is a representative density for seawater. We
now rewrite these equations in terms of the tracer trans-
port velocity (U, V, W) 5 (u 1 uI, y 1 y I, w 1 wI).
We then get

1 ]p 1 ]X
2 fV 5 2 1 (18)

r ]x r ]zo o

1 ]p 1 ]Y
fU 5 2 1 , (19)

r ]y r ]zo o

where

X 5 2ro fc (20)

and

Y 5 ro fb. (21)

It follows that the eddy-induced transport velocities uI,
y I appear as Ekman velocities given by

1 ]X
2 f y 5 (22)I r ]zo

1 ]Y
fu 5 . (23)I r ]zo

The vector (X, Y) appears as a horizontally directed
stress acting on the fluid. We shall refer to (X, Y) as the
eddy stress. The physical significance of the eddy stress
is discussed in section 3 for the case of geostrophic
eddies. Equation (23) in Gent et al. (1995) corresponds
directly to our Eqs. (18) and (19) for the particular case
of the GM90 parameterization. In fact, for the GM90
parameterization

(X, Y) 5 2rofkk 3 L, (24)

where k is a unit vector in the upward vertical direction.
Use of the thermal wind relation then shows that (X, Y)
is actually the vertical flux of geostrophic momentum
given by

2f
(X, Y ) 5 r k u , (25)o gz2N

where N is the local value of the buoyancy frequency.
In terms of the eddy stress (X, Y), the boundary con-

ditions (7) and (8) take the form

] Y ] X
2 5 0 (26)5 6 5 6]x f ]y f

at z 5 0 and

] Y ] Xb b2 5 0, (27)5 6 5 6]x f ]y f

where (Xb, Yb) is the stress (X, Y) evaluated at z 5
2H(x, y) [the equivalence of (27) and (8) can be seen
by applying the chain rule for differentiation to (27)].
Since we have chosen b 5 0 and c 5 0 at z 5 0, we
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actually have zero eddy stress (X, Y) at z 5 0 (the
surface), as is quite reasonable. On the other hand, there
is no guarantee that the bottom eddy stress (Xb, Yb) is
zero. For example, the ‘‘Neptune’’ effect described by
Holloway (1992) is associated with eddy–topography
interaction, for which the associated bottom stress need
not be zero, an issue to be explored in a later paper.

GL90 applied their parameterization directly to the
momentum equations by suggesting a particular form
for the eddy stress (X, Y) in (18) and (19). As noted in
the introduction, their momentum equations should be
thought of as the equations for the tracer transport ve-
locity, not the large-scale, time-mean velocity, a point
that was not appreciated by GL90. It is straightforward,
however, to show that the Ekman velocity associated
with their parameterization has the properties of an
eddy-induced transport velocity. We can see this by put-
ting a 5 0, b 5 Y/( fro), and c 5 X/( fro) in (3)–(5).
Although GL90 do not explicitly discuss the surface
and bottom boundary conditions for their parameteriza-
tion, a reasonable choice would be to require (26) and
(27) to be satisfied, therefore ensuring that wI satisfies
(7) and (8). In a similar way, instead of writing the tracer
equation as in Eq. (15), as implied in GL90, it can be
written in terms of the large-scale, time-mean flow and
an antisymmetric tensor, as in Eq. (1).

3. Connecting the eddy stress and the form drag

We have shown that the horizontal component of the
eddy-induced transport velocity can be expressed in the
same form as the Ekman velocity associated the vertical
derivative of a horizontally directed stress, as in Eqs.
(22) and (23). We next explore the relationship between
the eddy stress (X, Y) and the eddy form drag.

We begin by turning to section 1 of Gent et al. (1995).
We assume adiabatic flow of a Boussinesq, incompress-
ible fluid and work in isopycnal coordinates. The con-
tinuity and density equations can then be combined to
give the following equation expressing the conservation
of volume

]zr
1 = · (z u) 5 0, (28)r r]t

where z(x, y, r, t) is the physical height of a density
surface, zr can be interpreted as the thickness, and =r

is the horizontal gradient operator applied at constant
r. It should be noted that in (28) (and also in what
follows), u is the horizontal component of the velocity
(the vertical component is obtained by integrating the
continuity equation in z-coordinates with w 5 0 at the
surface). The equation for the conservation of a tracer
t is

](z t)r
1 = · (z ut) 5 0. (29)r r]t

Following Gent et al. (1995) the variables are decom-

posed into large-scale components denoted by an over-
bar and eddy components denoted by primes. The large-
scale components can be regarded as a time average at
fixed (x, y, r) (although slow time variations associated
with the large-scale flow will be retained). We then ob-
tain

]z ]zr r
1 = · (z û) 5 1 = · (z u) 1 = · (z u*) 5 0r r r r r r]t ]t

(30)

and

]t 1 ]z9t9 1r1 1 û ·= t 5 2 = · [(z u)9t9], (31)r r r]t z ]t zr r

where û is the thickness-weighted, isopycnal-averaged
velocity given by

û 5 z u /z 5 u 1 z9u9 /z 5 u 1 u*, (32)r r r r

u* 5 z9u9 /z , (33)r r

and u is the large-scale (time averaged) velocity. Gent
et al. (1995) assume that the eddy components of thick-
ness and tracer are uncorrelated so that the second term
in Eq. (31) can be neglected. They also assume that the
right-hand side of Eq. (31) can be parameterized as a
Fickian diffusion along mean isopycnals with coeffi-
cient m so that (31) can be written

]t 1
1 û ·= t 5 = · [mz = t ]. (34)r r r r]t zr

Gent et al. (1995) identify û with the tracer transport
velocity and u* with the eddy-induced transport veloc-
ity, an identification that may not be appropriate, as
discussed later in this section [Smith and Dukowicz
(1997)]. Despite this word of caution, we shall begin
by assuming that the identification made by Gent et al.
(1995) is correct and then discuss how the identification
might be modified.

We now examine u* 5 u9/zr in detail. If u* isz9r
indeed the eddy-induced transport velocity, then it is
possible to associate u* with an eddy stress, (X, Y), as
in Eqs. (22) and (23). The question arises as to what
form is taken by (X, Y)? We shall assume the eddies
are geostrophic; that is,

1 1
2 f y9 5 2 p9 ; fu9 5 2 p9, (35)x yr ro o

where p is the Montgomery potential. Using the hy-
drostatic equation 5 gz9, it can be shown, after somep9r
manipulation, that

1 ]
u* 5 k 3 2 (p9= z9) 1 = (p9z9 ) . (36)r r r5 6f r z ]ro r

The first term on the right-hand side corresponds to a
vertical flux of momentum. In fact, Rhines and Holland
(1979) refer to p9=rz9 as the ‘‘inviscid pressure drag’’
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or ‘‘form drag.’’ Conversion to (x, y, z) coordinates then
shows that the form drag can be naturally associated
with an eddy stress (X, Y), as in Eqs. (22) and (23), by
putting

(X, Y) 5 p9=rz9. (37)

The question remains as to the role played by the second
term on the right-hand side of equation (36). The second
term is a eddy-pressure term that is similar to the form
drag and corresponds to a lateral flux of momentum
along isopycnals, rather than a vertical flux of momen-
tum. When the horizontal scale of the large-scale flow
is large compared to the eddy-scale, the isopycnal flux
term can be neglected in comparison with the form drag
term, and the assumption expressed by Eq. (37) is valid.
Since the eddy-scale is typically the same as the internal
radius of deformation (at least for eddies generated by
a baroclinic instability process), the isopycnal flux term
should also be negligible when the planetary geostroph-
ic approximation is valid for the large-scale flow. Since
the GM90 parameterization can be written as a vertical
flux of (geostrophic) momentum, the GM90 parame-
terization can then be regarded as a parameterization
for the form drag, enabling us to write

p9=rz9 5 2rofkk 3 L. (38)

We now return to the question of whether or not it
is appropriate to identify u* with the eddy-induced
transport velocity uI. Smith and Dukowicz have shown
that, in general, the eddy-induced transport velocity
need only be a part of u*, the remaining part being
associated with a purely rotational eddy thickness flux.
To see this, we apply a Helmholtz decomposition to the
thickness flux zru*, enabling us to write u* as

u* 5 1 ,u* u*D R (39)

where

=r · (zr ) 5 0.u*R (40)

(It should be noted that the Helmholtz decomposition
is applied to the thickness flux zru*, not to u* itself.)
Equation (40) says that uR makes no contribution to the
divergence of the thickness flux, and therefore makes
no contribution in Eq. (30). Smith and Dukowicz argue
that as a consequence, the eddy-induced transport ve-
locity uI may differ from u* by a component uR, as in
(39) and (40), since then (30) is satisfied by the tracer
transport velocity U 5 u 1 uI, with û replaced by U;
that is,

]zr 1 = · (z U) 5 0, (41)r r]t

and the volume between mean isopycnals is preserved,
as would be the case if U 5 û. [In fact, Eq. (41) is a
consequence of applying Eq. (15) with t replaced by r
and using Ux 1 Vy 1 Wz 5 0 in (x, y, z) coordinates].
In fact, in a theoretical justificiation for the GM90 pa-
rameterization given by Smith and Dukowicz, the uI

that emerges from the analysis differs from u* by a
nonzero uR.

Returning to Eq. (36), we note that the thickness flux
associated with geostrophic eddies can be written as

1 ]
z u* 5 k 3 2 (p z ) 1 (p z ) . (42)9= 9 = 9 9r r r r5 6fr ]ro

On an f plane, the isopycnal eddy-pressure term
=r(p9 ) makes no contribution to the divergence ofz9r
thickness flux, even if the horizontal scale of the large-
scale flow is comparable to the eddy scale. It follows
from Smith and Dukowicz’s argument that the isopycnal
eddy-pressure term need not contribute to uI in this case.
In general, however, when f varies with latitude, this
term will contribute to uI because the associated thick-
ness flux then has nonzero divergence. Also, because
eddies are not strictly geostrophic, there will be other
contributions to zru* in addition to those in Eq. (42),
although like the isopycnal eddy pressure term, these
contibutions are likely to be small compared to the form
drag term. It follows that, in general, it is not possible
to completely identify the eddy stress with the form
drag, or even with a term that physically corresponds
to a vertical flux of momentum, as assumed in the pa-
rameterizations of GM90 and GL90. As we shall see in
the next section, a more fruitful approach is to consider
the link between eddy-induced transport velocity and
the isopycnal flux of potential vorticity.

Finally, in this section we note that if the eddy-in-
duced transport velocity uI is not the same as u* as
defined by (33), then, correspondingly, the tracer trans-
port velocity U 5 (U, V) is not the same as û. It follows
that the simple interpretation presented in Eq. (34) is
an oversimplification. In particular, the parameterization
for the right-hand side of Eq. (31) needs to be in terms
of a mixing tensor, as in Eq. (1) but for isopycnal co-
ordinates. The antisymmetric part of the tensor is as-
sociated with an advection by a velocity that is the dif-
ference between the tracer transport velocity, (U, V) and
û. Detailed analysis of output from eddy-resolving mod-
els is required for further investigation of the relation-
ship between u* and uI.

4. The isopycnal flux of potential vorticity
We now explore the relationship between the eddy-

induced transport velocity and the isopycnal flux of po-
tential vorticity. We do this by generalizing the argument
leading to Eq. (16) of Rhines and Holland (1979).

As in section 3, we assume adiabatic flow of a Bous-
sinesq, incompressible fluid and work in isopycnal co-
ordinates. The momentum equations can be written as

Du 1
2 f y 5 2 p 1 D(u) (43)xDt ro

Dy 1
1 fu 5 2 p 1 D(y), (44)yDt ro

where
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D ] ] ]
5 1 u 1 y (45)

Dt ]t ]x ]y

is the material derivative, p is the Montgomery poten-
tial, and D(u), D(y) includes all terms arising from tur-
bulent microstructure fluxes [the reader is referred to de
Szoeke and Bennett (1993) for a detailed derivation—
see their equations (12) and (13)]. For simplicity, we
put D(u) 5 D(y) 5 0 in the subsequent analysis. Equa-
tions (43) and (44) can be written as

]u 1
2 ( f 1 z)y 5 2 B (46)x]t ro

and

]y 1
1 ( f 1 z)u 5 2 B , (47)y]t ro

where z 5 y x 2 uy is the relative vorticity and B is the
Bernoulli function. In terms of the potential vorticity,
q 5 ( f 1 z)/zr, (46) and (47) can be written as

]u 1
2 q(z y) 5 2 B (48)r x]t ro

and

]y 1
2 q(z u) 5 2 B . (49)r y]t ro

Averaging these equations now gives

]u 1
2 q z ŷ 5 2 B 1 q9(z y)9 (50)r x r]t ro

and

]y 1
1 q z û 5 2 B 2 q9(z u)9 . (51)r y r]t ro

Comparison with Eq. (5) of Gent et al. (1995), or Eqs.
(31) and (34) in section 3, shows that Gent et al. (1995)
identify (q9(zru)9, q9(zry)9) with the isopycnal flux of
potential vorticity; û 5 is the same as defined by(û, ŷ)
Eq. (32).

Although Eqs. (50) and (51) already demonstrate a
link between the û and the isopycnal flux of potential
vorticity, a more insightful approach is to use thickness-
weighted, isopycnal-averaged variables. Putting q̂ 5
qzr/zr, q 5 q̂ 1 q0 and u 5 û 1 u0, averaging of (48)
and (49) gives

]u 1
2 q̂z ŷ 5 2 B 1 z q0y0 (52)r x r]t ro

and

]y 1
2 q̂z û 5 2 B 2 z q0u0 . (53)r y r]t ro

Noting that q̂zr 5 z 1 f gives

]u 1
2 (z 1 f )ŷ 5 2 B 1 z q0y0 (54)x r]t ro

and

]y 1
2 (z 1 f )û 5 2 B 2 z q0u0 . (55)y r]t ro

Taking ](55)/]x 2 ](54)/]y and using (30) leads to the
potential vorticity equation

]q̂ 1
1 û ·= q̂ 5 2 = · (z q0u0). (56)r r r]t zr

It should be noted that the equation corresponding to
(56) for the variable q is complicated by the fact that
q ± (z 1 f )/zr, and it is for this reason that Eqs. (52)–
(55) are more useful than Eqs. (50)–(51). In Eqs. (52)–
(55), the isopycnal flux of potential vorticity is given
by zrq0u0. An analysis similar to the above, also using
the thickness-weighted average of potential vorticity,
but for the case of zonal averaging, can be found in
section 3.9 of Andrews et al. (1987); in particular, com-
pare Eqs. (54) and (55) with Eq. (3.9.9) in Andrews et
al. (1987) (see also Tung 1986).

Before proceeding further, we note that the potential
vorticity (q-)flux terms on the right-hand side of Eqs.
(54) and (55) act as forcing terms in the averaged mo-
mentum equations that are analogous to the eddy stress
terms in Eqs. (18) and (19). It should be noted, however,
that since Eqs. (54) and (55) have been derived by av-
eraging the primitive equations, the q-flux terms include
Reynolds stress terms that drive time-mean flow, in ad-
dition to the eddy stress terms associated with the eddy-
induced transport velocity. The remaining part of the
Reynolds stress terms is included in the average of the
Bernoulli function B through the (u2 1 y 2)/2 term. It
follows that a parameterization for the q-flux terms is
not simply a parameterization for the eddy-induced
transport velocity, but also for part of the time-mean
flow driven by the Reynolds stresses, an important point
we shall return to in section 5.

In order to concentrate attention on the eddy-induced
transport velocity, we now simplify the analysis and
approximate (46) and (47) by the geostrophic balance

1 1
2 f y 5 2 p ; fu 5 2 p , (57)x yr ro o

for which q 5 f /zr, q̂ 5 f /zr, and B is replaced by p.
Averaging (57) as before gives

1
2 fŷ 5 2 p 1 z q0y0 (58)x rro

and

1
fû 5 2 p 2 z q0u0. (59)y rro

Since the nonlinear momentum advection terms are not
included in (57), there are no Reynolds stress terms
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contained in the q-flux terms on the right-hand side of
(58) and (59). In fact, since averaging the geostrophic
balance gives

1 1
2 f y 5 2 p ; f u 5 2 p (60)x yr ro o

and since û 5 u 1 u*, it follows that for geostrophic
flow

2f y* 5 zrq0y0; fu* 5 2zrq0u0. (61)

Equation (61) shows that for geostrophic flow, u* can
be expressed directly in terms of the isopycnal flux of
potential vorticity. We noted at the end of section 3 that
the eddy-induced transport velocity uI may differ from
u* by a component uR as in Eq. (40) associated with a
rotational component of the eddy thickness flux. To take
account of this possibility, we write

2 fy I 5 (zrq0y0)D; fuI 5 2(zrq0u0)D, (62)

where the q-flux has been decomposed as

(zrq0u0) 5 (zrq0u0)D 1 (zrq0u0)R (63)

in the sense that

(z q0u0)r R
= · 5 0. (64)r 5 6q̂

Equation (64) is required by Eq. (40) (note that we have
used q̂ 5 f /zr). The tracer transport velocity can then
be expressed in terms of the q-flux as

1
2 fV 5 2 p 1 (z q0y0) (65)x r Dro

and

1
fU 5 2 p 1 (z q0u0) . (66)y r Dro

Equations (65) and (66), together with Eq. (41), then
give the potential vorticity equation

1
U= · q̂ 5 2 = · {(z q0u0) }. (67)r r r Dzr

Equation (67) corresponds to (56), with û replaced by
the tracer transport velocity U and the local time deriv-
ative dropped because we have assumed geostrophic
flow.

To see the connection between the isopycnal flux of
q and the form drag, we now apply thickness-weighted,
isopycnal averaging to the geostrophic balance. Follow-
ing de Szoeke and Bennett (1993) we obtain

1 1
z 2 f ŷ 1 p 5 2 z9p9 (68)r x r x1 2r ro o

and

1 1
z f û 1 p 5 2 z9p9 . (69)r y r y1 2r ro o

The term on the right-hand side of (68) and (69) is the
thickness-pressure gradient covariance term. Using (60)
and since û 5 u 1 u*, we immediately obtain

1 1 1 1
2 f y* 5 2 z9p9 ; fu* 5 2 z9p9 . (70)r x r yz r z rr o r o

It is then straightforward to decompose the thickness-
pressure gradient covariance term to obtain

1 1 ]
f k 3 u* 5 2 2 (p9= z9) 1 = (p9z9 ) . (71)r r r5 6r z ]ro r

Equation (71) is equivalent to Eq. (36). We now equate
(71) and (61) to obtain

1 1 ]
2k 3 (z q0u0) 5 2 2 (p9= z9) 1 = (p9z9 ) .r r r r5 6r z ]ro r

(72)

Equation (72) shows the connection between isopycnal
mixing of q and the form drag. In fact, (72) formally
generalizes the correspondence in quasigeostrophic the-
ory between vertical mixing of momentum and hori-
zontal mixing of potential vorticity. As in section 3,
where we found that the eddy-induced transport velocity
cannot, in general, be identified exactly with the form
drag, then so here, there is not an exact correspondence
between the isopycnal flux of potential vorticity and the
form drag. Also because zr, in general, varies along an
isopycnal, the =r(p9 ) term in general contributes toz9r
the divergence of the q-fluxes in Eq. (56).

Finally in this section we note that (68) and (69) can
be written

1 1 ] ] ]
z (2 f ŷ 1 p ) 5 2 2 p9 z9 1 (p9z9 )r x r5 1 2 6r r ]r ]x ]xo o

(73)

and

1 1 ] ] ]
z ( fû 1 p ) 5 2 2 p9 z9 1 (p9z9 ) .r y r5 1 2 6r r ]r ]y ]yo o

(74)

In this form, the terms on the right-hand side of (71)
appear as the divergence of the Eliassen–Palm flux [see,
in particular, Lee and Leach (1996), who use time av-
eraging, as in this paper, but also Andrews et al. (1987)
and Tung (1986) for the more traditional form of the
Eliassen–Palm flux using zonal averaging]. Viewed in
this way, the failure to obtain an exact identification
between the eddy stress and the form drag can be un-
derstood by noting that the Eliassen–Palm flux involves
a component along isopycnals as well as a vertical com-
ponent. Equation (72) can be viewed as a version of the
correspondence between the Eliassen–Palm pseudodi-
vergence and the isopycnal flux of Ertel potential vor-
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ticity noted by Tung (1986). Another version of (72)
using an approximation to the Ertel potential vorticity
is discussed by Lee and Leach (1996).

5. The potential vorticity constraint and
parameterization of the tracer transport
velocity

We now illustrate how the potential vorticity equation
[that is, Eq. (56) or (67)] places a constraint on param-
eterizations for the tracer transport velocity (and hence
the eddy-induced transport velocity). We begin by show-
ing how the GM90 parameterization can be written in
terms of the isopycnal flux of potential vorticity. Com-
bining Eqs. (18), (19), and (25) from section 2, we know
that for the planetary geostrophic system, the GM90
parameterization can be written as

1 ]p 1 ]X
2 fV 5 2 1 (75)

r ]x r ]zo o

1 ]p 1 ]Y
fU 5 2 1 , (76)

r ]y r ]zo o

with
2f

(X, Y ) 5 r k u , (77)o gz2N

where N is the local value of the buoyancy frequency,
and (U, V, W) is the tracer transport velocity. In iso-
pycnal coordinates, these equations become

2 ]u1 ]p 1 ] f g
2 fV 5 2 2 kr (78)o5 6r ]x z ]r g ]ro r

2 ]y1 ]p 1 ] f g
fU 5 2 2 kr , (79)o5 6r ]y z ]r g ]ro r

where (ug, y g) is the geostrophic velocity. If ]k/]r 5
0, then (78) and (79) can be written in terms of the
potential vorticity, q̂ 5 f /zr, as

1 ]p ]q̂
2 fV 5 2 2 z k 1 kb (80)rr ]x ]yo

and

1 ]p ]q̂
fU 5 2 1 z k . (81)rr ]y ]xo

Equations (80) and (81) can be identified with equations
(65) and (66) by putting

]q̂
(z q0y0) 5 2z k 1 kb (82)r D r ]y

and

]q̂
2(z q0u0) 5 z k . (83)r D r ]x

The appearance of the kb on the right-hand side of (82)

should be noted. This term ensures that when the iso-
pycnals are horizontal, implying no vertical shear of the
geostrophic velocity, the eddy-induced transport veloc-
ity (U 2 u, V 2 y) is zero, as one might expect given
that GM90 is designed to mimic the effect of baroclinic
instability. For the b-plane geometry we are using, and
as long as k is independent of y, kb plays no role in
the potential vorticity equation because it is part of the
rotational component of the q-flux. We can then obtain
the potential vorticity equation

]q̂ ]q̂ 1
U 1 V 5 = · (z k= q̂). (84)r r r]x ]y zr

It should be noted that to derive (84), it was necessary
to assume that both ]k/]r 5 0 and ]k/]y 5 0. It is not
a coincidence that GL90 made these same two assump-
tions in order to obtain homogenization of potential vor-
ticity within closed q contours using the GM90 and
GL90 parameterizations. That Eq. (84) is satisfied by
the GM90 parameterization only when restrictions are
placed on k is a weakness of GM90. Indeed, the analysis
in section 4 shows that the potential vorticity equation
[that is, Eqs. (56) or (67) or their equivalent] should be
satisfied by any parameterization for (U, V).

We next note that the simplest parameterization in
terms of q-fluxes would be to use (80) and (81) to com-
pute (U, V) with a spatially variable, time-dependent k
and the kb term dropped; that is,

1 ]p ]q̂
2 fV 5 2 2 z k (85)rr ]x ]yo

and

1 ]p ]q̂
fU 5 2 1 z k . (86)rr ]y ]xo

Equation (84) is then automatically satisfied irrespective
of the form of k. In the context of geostrophic flow [see
the discussion following Eq. (57)], the eddy-induced
transport velocity is then given by

]q̂ ]q̂
2 f y 5 2z k ; fu 5 z k . (87)I r I r]y ]x

Writing these equations as

1 ] ]z
2 f y 5 2kb 1 k f ;I 5 6z ]r ]yr

1 ] ]z
2 fu 5 2k f (88)I 5 6z ]r ]xr

makes clear the connection with Treguier et al. (1997)
and K97 [compare Eq. (88) with Eq. (39) in Treguier
et al. (1997) and Eq. (35) in K97]. The analysis given
in section 4, however, shows that the approach taken
here is actually more general than that in Treguier et al.
(1997) or K97, a point we now explore further.

We first observe, by analogy with (54) and (55), that
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we can generalize (85) and (86) to the primitive equa-
tions by using the following equations to compute the
tracer transport velocity (U, V)

]u 1 ]q̂
2 (z 1 f )V 5 2 B 2 z k (89)x r]t r ]yo

and

]y 1 ]q̂
2 (z 1 f )U 5 2 B 2 z k , (90)y r]t r ]xo

where q̂ 5 (z 1 f )/zr is the (unapproximated) thickness-
weighted, isopycnal averaged potential vorticity, and the
q-flux terms on the right-hand side of (89) and (90) are
parameterizations for the q-flux terms on the right-hand
side of (54) and (55). A similar parameterization, but
for the case of zonal averaging (rather than the time-
averaging used here), has been proposed for the strato-
sphere by Tung (1986) [see his equation (5.10) and note
that Tung includes additional terms that arise from the
effect of diabatic heating, an issue to be explored in a
later paper]. Then ](90)/]x 2 ](89)/]y gives the poten-
tial vorticity equation

]q̂ ]q̂ ]q̂ 1
1 U 1 V 5 = · (z k= q̂), (91)r r r]t ]x ]y zr

where use has been made of (41). Equation (91) ensures
that potential vorticity is homogenized inside closed q̂
contours in the absense of forcing and dissipation of the
large-scale q̂-field. It should be noted that in (91), and
also (84), the term on the right-hand side refers only to
mixing along isopycnal surfaces; in particular, diapycnal
mixing of potential vorticity is not implied (Haynes and
McIntyre 1987).

We next note that in Eqs. (89) and (90) the q-flux
terms parameterize not only the eddy-induced transport
velocity, but also part of the Reynolds stresses that drive
time-mean flow [that the q-fluxes include a part of the
Reynolds stress terms was noted in the discussion fol-
lowing Eq. (56)]. Killworth argues that restrictions are
necessary on the diffusion coefficient k in order to en-
sure that the q-fluxes have the properties of the eddy-
induced transport velocity, as would be the case if equa-
tion (87) were valid [in particular, it would be necessary
to satisfy the boundary condition (27) at the ocean bot-
tom, together with (X, Y) 5 0 at z 5 0]. In general,
however, these restrictions may not be necessary since
Eq. (87) does not account for the contribution of the
Reynolds stress terms to the q-fluxes, an issue to be
discussed further in a later paper. It should also be noted
that even when the planetary geostrophic approximation
is valid for the large-scale flow, in which case (89) and
(90) can be approximated by (85) and (86), the q-flux
terms still contain a contribution from the Reynolds
stress terms, implying that (87) may still not be valid.
The validity of (87) required the assumption of geo-
strophic flow, as in (57), before the application of av-
eraging.

As written, Eqs. (89) and (90) do not provide a com-
plete closure. For example, part of the Reynolds stress
terms is included in the time-averaged Bernoulli func-
tion and requires parameterization. Noting that

2 2 2 2(u 1 y ) (u9 1 y9 )
B 5 r 1 p 1 grz 1 r ,o o2 2

(92)

we see that developing a closure for the missing Reyn-
olds stress term requires parameterizing the eddy kinetic
energy. One way to do this might be in terms of a
Richardson number for the large-scale flow (see, e.g.,
Treguier et al. 1997; Visbeck et al. 1997). Substituting
(92) into (89) and (90) shows that for both the mean
and eddy kinetic energy terms, it is only their gradient
that appears in the governing equations, which explains
why these terms play no role in the potential vorticity
equation (91). [It should be noted that a more complete
parameterization would likely include a rotational po-
tential vorticity flux that would also appear as the gra-
dient of a scalar in (89) and (90) and would need to be
included in the closure.] Another problem with Eqs.
(89), (90), and (92) is that they contain a mixture of the
time-mean velocity u and the tracer transport velocity
U. Since the tracer transport velocity is the fundamental
velocity variable, we need to express u in terms of U.
In general, the difference between u and U is likely to
be order the Rossby number (Smith and Dukowicz), so
it should be possible to simply replace u by U, including
for the calculation of z. [It should be noted that the
terms involving u are themselves of order the Rossby
number in (89), (90), and (92)]. There is also a need to
specify k. One approach is to try and use linear stability
theory, along the lines suggested by K97. Another
would be to base the coefficient on a Richardson number
for the large-scale flow, as in Visbeck et al. (1997).

Finally, we note that as in Eq. (88), the q-flux terms
on the right-hand side of (89) and (90) can be written as

]q̂ 1 ] ]z
2z k 5 2kb 1 k f ;r 5 6]y z ]r ]yr

]q̂ 1 ] ]z
z k 5 2k f . (93)r 5 6]x z ]r ]xr

In a later paper, we shall describe implementation of the
new parameterization in a model using the form for the
q-fluxes given in (93). Detailed discussion of the im-
plementation and, in particular, the top and bottom
boundary conditions, is given there. For now we note
that at the surface and the bottom, the slope =rz is
required to be parallel to the bounding surface; that is,
zero at the surface and parallel to the bottom slope at
the bottom, as required by considering the role in the
potential vorticity budget played by the top and bottom
boundaries in the stretching and squashing of a vertical
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column of fluid. In cases where the isopycnals intersect
the top and bottom boundaries without passing through
a well-mixed layer (that is, a layer, with rz 5 0), these
boundary conditions correspond to the delta functions
introduced by K97. When there is a mixed layer or a
well-mixed region due to deep convection, the isopycnal
slope is linearly interpolated across the region where rz

5 0 in a manner analogous to the suggestion of Treguier
et al. (1997). Detailed discussion of this and other re-
lated issues is deferred until a later paper.

6. Summary and discussion

We began in section 2 by showing that the eddy-
induced transport velocity can always be written as an
Ekman velocity associated with a horizontally directed
stress term in the momentum equations for the tracer
transport velocity. In the case of the GM90 parameter-
ization, the stress is provided by the vertical flux of
geostrophic momentum. We then went on to show that
the eddy stress has a natural interpretation as the ‘‘in-
viscid pressure drag’’ or ‘‘form drag’’ associated with
the eddies, although the correspondence is not exact.
We have also shown the link between the eddy-induced
transport velocity, the eddy form drag, and the isopycnal
flux of potential vorticity, generalizing the quasigeo-
strophic result of Rhines and Holland (1979) and Rhines
and Young (1982) that equates vertical mixing of mo-
mentum with horizontal mixing of potential vorticity.
The link to the isopycnal flux of potential vorticity pro-
vides a basis for developing parameterizations in terms
of potential vorticity mixing. We noted that the GM90
parameterization is compatible with the potential vor-
ticity equation only when restrictions are placed on the
diffusivity coefficient. We regard the need for these re-
strictions to be a weakness of GM90 since the potential
vorticity equation should be satisfied by any parame-
terization. We suggest that the development of improved
parameterizations should be based on specifying forcing
terms in the momentum equations for the tracer transport
velocity and that the forcing terms should be expressed
in terms of the isopycnal flux of potential vorticity, as
illustrated by Eqs. (89) and (90). A new parameteriza-
tion is suggested that is the simplest parameterization
with the required form. We have shown that the new
parameterization not only parameterizes the eddy-in-
duced transport velocity, but also part of the time-mean
flow driven by the Reynolds stress terms in the mo-
mentum equations. By working with the momentum
equations, as in this paper, it is the tracer transport ve-
locity that emerges as the fundamental variable. Indeed,
the analysis of sections 4 and 5 suggests that effort
should be directed at parameterizing the tracer transport
velocity directly, rather than the eddy-induced transport
velocity on its own, thereby including the Reynolds
stress driven flow directly in the parameterization.

The approach taken in this paper has some similarity
to that taken by Tung (1986). For the case of zonal

averaging applied to the atmosphere, Tung relates the
isentropic flux of Ertel’s potential vorticity to the Elias-
sen–Palm pseudodivergence, a result analogous to that
expressed by Eq. (72). Tung also advocates parameter-
izing the isentropic flux of Ertel potential vorticity as a
forcing term in the averaged momentum equations, and
in fact proposes a parameterization similar to that pro-
posed here. Tung’s parameterization includes additional
terms [see his Eq. (5.10)] that arise from considering
the effect of diabatic heating of the atmosphere, cor-
responding to diapycnal mixing in the ocean. Future
work will address the possible role of these extra terms
in parameterizations applicable to the ocean, general-
izing the parameterization proposed here.

A somewhat different approach to parameterizing the
momentum equation can be found in Gent and Mc-
Williams (1996). These authors advocate parameterizing
the eddy-induced transport velocity separately from the
momentum equations and do not take advantage, as is
done in this paper or in Tung (1986), of the close cor-
respondence between the pseudodivergence of the Elias-
sen–Palm flux and the isopycnal flux of potential vor-
ticity.

A feature of the proposed parameterization is that for
horizontally flat isopycnals, the q-flux terms in (93) are
nonzero if k is nonzero, on account of the kb term. We
do not regard this as a weakness of the proposed pa-
rameterization. In fact, as pointed out by Holloway
(1992), although baroclinic instability processes act to
remove horizontal density gradients, the effect of eddies
is to drive the large-scale ocean circulation towards a
state of motion, not one of rest. The possibility of a
connection between the parameterization proposed here
and the ‘‘Neptune’’ effect of Holloway (1992) is dis-
cussed in detail in a later manuscript. The kb term also
appears in the work of Welander (1973) and Tung
(1986). Indeed, Tung (1986) notes that without the kb
term the winter stratospheric jet would reach unrealisti-
cally large velocities.

A complication throughout our analysis has been that
whereas Gent et al. (1995) assumed the tracer transport
velocity and the thickness-weighted, isopycnal-aver-
aged velocity to be synonymous, recent theoretical work
by Smith and Dukowicz (1997) suggests that this may
not be true in general. Guidance from eddy-resolving
model output is required to clarify this issue.

A feature of our analysis, and other related papers,
for example, Gent et al. (1995), McDougall et al. (1996,
submitted to J. Phys. Oceanogr.), and McDougall and
McIntosh (1996) is the application of different kinds of
averaging to the equations of motion. Indeed, our manu-
script illustrates the use of both weighted and un-
weighted averaging on isopycnals. It follows that care
is required when interpreting the variables carried by
models, a particularly important issue when assimilating
observations into a model.
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