Automated Security Proofs
with Sequences of Games

Bruno Blanchet and David Pointcheval

CNRS, Ecole Normale Supérieure, Paris — {blanchet, pointche}@di.ens.fr

Abstract. This paper presents the first automatic technique for proving not only protocols
but also primitives in the exact security computational model. Automatic proofs of crypto-
graphic protocols were up to now reserved to the Dolev-Yao model, which however makes quite
strong assumptions on the primitives. On the other hand, with the proofs by reductions, in
the complexity theoretic framework, more subtle security assumptions can be considered, but
security analyses are manual. A process calculus is thus defined in order to take into account
the probabilistic semantics of the computational model. It is already rich enough to describe
all the usual security notions of both symmetric and asymmetric cryptography, as well as the
basic computational assumptions. As an example, we illustrate the use of the new tool with
the proof of a quite famous asymmetric primitive: unforgeability under chosen-message attacks
(UF-CMA) of the Full-Domain Hash signature scheme under the (trapdoor)-one-wayness of some
permutations.

1 Introduction

There exist two main frameworks for analyzing the security of cryptographic protocols. The most fa-
mous one, among the cryptographic community, is the “provable security” in the reductionist sense [8]:
adversaries are probabilistic polynomial-time Turing machines which try to win a game, specific to
the cryptographic primitive/protocol and to the security notion to be satisfied. The “computational”
security is achieved by contradiction: if an adversary can win such an attack game with non-negligible
probability, then a well-defined computational assumption is invalid (e.g., one-wayness, intractabil-
ity of integer factoring, etc.) As a consequence, the actual security relies on the sole validity of the
computational assumption. On the other hand, people from formal methods defined formal and ab-
stract models, the so-called Dolev-Yao [21] framework, in order to be able to prove the security of
cryptographic protocols too. However, these “formal” security proofs use the cryptographic primitives
as ideal blackboxes. The main advantage of such a formalism is the automatic verifiability, or even
provability, of the security, but under strong (and unfortunately unrealistic) assumptions. Our goal is
to take the best of each framework, without the drawbacks, that is, to achieve automatic provability
under classical (and realistic) computational assumptions.

The Computational Model. Since the seminal paper by Diffie and Hellman [20], complexity theory
is tightly related to cryptography. Cryptographers indeed tried to use NP-hard problems to build
secure cryptosystems. Therefore, adversaries have been modeled by probabilistic polynomial-time
Turing machines, and security notions have been defined by security games in which the adversary
can interact with several oracles (which possibly embed some private information) and has to achieve
a clear goal to win: for signature schemes, the adversary tries to forge a new valid message-signature
pair, while it is able to ask for the signature of any message of its choice. Such an attack is called an
existential forgery under chosen-message attacks [23]. Similarly, for encryption, the adversary chooses
two messages, and one of them is encrypted. Then the goal of the adversary is to guess which one has
been encrypted [22], with a probability significantly better than one half. Again, several oracles may be
available to the adversary, according to the kind of attack (chosen-plaintext and/or chosen-ciphertext
attacks [34,35]). One can see in these security notions that computation time and probabilities are
of major importance: an unlimited adversary can always break them, with probability one; or in a
shorter period of time, an adversary can guess the secret values, by chance, and thus win the attack
game with possibly negligible but non-zero probability. Security proofs in this framework consist in

2 Bruno Blanchet and David Pointcheval

showing that if such an adversary can win with significant probability, within reasonable time, then a
well-defined problem can be broken with significant probability and within reasonable time too. Such
an intractable problem and the reduction will quantify the security of the cryptographic protocol.

Indeed, in both symmetric and asymmetric scenarios, most security notions cannot be uncondi-
tionally guaranteed (i.e. whatever the computational power of the adversary). Therefore, security
generally relies on a computational assumption: for instance, the existence of one-way functions, or
permutations, possibly trapdoor. A one-way function is a function f which anyone can easily compute,
but given y = f(x) it is computationally intractable to recover x (or any pre-image of y). A one-way
permutation is a bijective one-way function. For encryption, one would like the inversion to be possible
for the recipient only: a trapdoor one-way permutation is a one-way permutation for which a secret
information (the trapdoor) helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the inversion
(without trapdoors), we would like that security could be achieved without any additional assump-
tions. The only way to “formally” prove such a fact is by showing that an attacker against the
cryptographic protocol can be used as a sub-part in an algorithm (the reduction) that can break the
basic computational assumption.

Observational Equivalence and Sequence of Games. Initially, reductionist proofs consisted in pre-
senting a reduction, and then proving that the view of the adversary provided by the reduction was
(almost) indistinguishable to the view of the adversary during a real attack. Such an indistinguishabil-
ity was quite technical and error-prone. Victor Shoup [38] suggested to prove it by small changes [11],
using a “sequence of games” (a.k.a. the game hopping technique) that the adversary plays, starting
from the real attack game. Two consecutive games look either identical, or very close to each other in
the view of the adversary, and thus involve a statistical distance, or a computational one. In the final
game, the adversary has clearly no chance to win at all. Actually, the modifications of games can be
seen as “rewriting rules” of the probability distributions of the variables involved in the games. They
may consist of a simple renaming of some variables, and thus to perfectly identical distributions. They
may introduce unlikely differences, and then the distributions are “statistically” indistinguishable.
Finally, the rewriting rule may be true under a computational assumption only: then appears the
computational indistinguishability.

In formal methods, games are replaced with processes using perfect primitives modeled by function
symbols in an algebra of terms. “Observational equivalence” is a notion similar to indistinguishability:
it expresses that two processes are perfectly indistinguishable by any adversary. The proof technique
typically used for observational equivalence is however quite different from the one used for computa-
tional proofs. Indeed, in formal models, one has to exploit the absence of algebraic relations between
function symbols in order to prove equivalence; in contrast to the computational setting, one does not
have observational equivalence hypotheses (i.e. indistinguishability hypotheses), which specify security
properties of primitives, and which can be combined in order to obtain a proof of the protocol.

Related Work. Following the seminal paper by Abadi and Rogaway [1], recent results [32, 18, 25] show
the soundness of the Dolev-Yao model with respect to the computational model, which makes it
possible to use Dolev-Yao provers in order to prove protocols in the computational model. However,
these results have limitations, in particular in terms of allowed cryptographic primitives (they must
satisfy strong security properties so that they correspond to Dolev-Yao style primitives), and they
require some restrictions on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols in the computational model. Backes,
Pfitzmann, and Waidner [5, 6, 3] have designed an abstract cryptographic library and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. Backes and Pfitzmann [4]
relate the computational and formal notions of secrecy in the framework of this library. Recently,
this framework has been used for a computationally-sound machine-checked proof of the Needham-
Schroeder-Lowe protocol [39]. Canetti [16] introduced the notion of universal composability. With
Herzog [17], they show how a Dolev-Yao-style symbolic analysis can be used to prove security prop-
erties of protocols within the framework of universal composability, for a restricted class of protocols
using public-key encryption as only cryptographic primitive. Then, they use the automatic Dolev-Yao

Automated Security Proofs with Sequences of Games 3

verification tool ProVerif [12] for verifying protocols in this framework. Lincoln, Mateus, Mitchell,
Mitchell, Ramanathan, Scedrov, and Teague [29-31, 36, 33] developed a probabilistic polynomial-time
calculus for the analysis of cryptographic protocols. Datta et al [19] have designed a computationally
sound logic that enables them to prove computational security properties using a logical deduction
system. These frameworks can be used to prove security properties of protocols in the computational
sense, but except for [17] which relies on a Dolev-Yao prover, they have not been automated up to
now, as far as we know.

Laud [26] designed an automatic analysis for proving secrecy for protocols using shared-key en-
cryption, with passive adversaries. He extended it [27] to active adversaries, but with only one session
of the protocol. This work is the closest to ours. We extend it considerably by handling more primi-
tives, a variable number of sessions, and evaluating the probability of an attack. More recently, he [28]
designed a type system for proving security protocols in the computational model. This type system
handles shared- and public-key encryption, with an unbounded number of sessions. This system relies
on the Backes-Pfitzmann-Waidner library. A type inference algorithm is sketched in [2].

Barthe, Cerderquist, and Tarento [7,40] have formalized the generic model and the random oracle
model in the interactive theorem prover Coq, and proved signature schemes in this framework. In
contrast to our specialized prover, proofs in generic interactive theorem provers require a lot of human
effort, in order to build a detailed enough proof for the theorem prover to check it.

Halevi [24] explains that implementing an automatic prover based on sequences of games would
be useful, and suggests ideas in this direction, but does not actually implement one.

Our prover, which we describe in this paper, was previously presented in [13,14], but in a more
restricted way. It was indeed applied only to classical, Dolev-Yao-style protocols of the literature, such
as the Needham-Schroeder public-key protocol. In this paper, we show that it can also be used for
the proof of security of cryptographic primitives. [13,14] considered only asymptotic proofs. In this
paper, we have extended the prover for providing exact security proofs. We also extend it to the proof
of authentication properties, while [13,14] considered only secrecy properties. Finally, we also show
how to model a random oracle.

Achievements. As in [13,14], our goal is to fill the gap between the two usual techniques (com-
putational and formal methods), but with a direct approach, in order to get the best of each: a
computationally sound technique, which an automatic prover can apply. More precisely, we adapt the
notion of observational equivalence so that it corresponds to the indistinguishability of games. To this
aim, we also adapt the notion of processes: our processes run in time ¢ and work with bit-strings.
Furthermore, the process calculus has a probabilistic semantics, so that a measure can be defined on
the distinguishability notion, or the observational equivalence, which extends the “perfect indistin-
guishability”: the distance between two views of an adversary. This distance is due to the application
of a transformation, which is purely syntactic. The transformations are rewriting rules, which yield a
game either equivalent or almost equivalent under a “computational assumption”. For example, we
define a rewriting rule, which is true under the one-wayness of a specific function. The automatic
prover tries to apply the rewriting rules until the winning event, which is executed in the original
attack game when the adversary breaks the cryptographic protocol, has totally disappeared: the ad-
versary eventually has a success probability 0. We can then upper-bound the success probability of
the adversary in the initial game by the sum of all gaps.

Our prover also provides a manual mode in which the user can specify the main rewriting steps
that the prover has to perform. This allows the system to prove protocols in situations in which the
automatic proof strategy does not find the proof, and to direct the prover towards a specific proof,
for instance a proof that yields a better reduction, since exact security is now dealt with.

2 A Calculus for Games

2.1 Description of the Calculus

In this section, we review the process calculus defined in [13,14] in order to model games as done
in computational security proofs. This calculus has been carefully designed to make the automatic

4 Bruno Blanchet and David Pointcheval

proof of cryptographic protocols easier. One should note that the main addition from previous mod-
els [33,28] is the introduction of arrays, which allow us to formalize the random oracle model [9], but
also the authenticity (unforgeability) in several cryptographic primitives, such as signatures, message
authentication codes, but also encryption schemes. Arrays allow us to have full access to the whole
memory state of the system, and replace lists often used in cryptographic proofs. For example, in the
case of a random oracle, one generally stores the input and output of the random oracle in a list. In
our calculus, they are stored in arrays.

Contrarily to [13,14], we adopt the exact security framework [10], instead of the asymptotic one.
The cost of the reductions, and the probability loss will thus be precisely determined. We also adapt
the syntax of our calculus, in order to be closer to the usual syntax of cryptographic games.

In this calculus, we denote by T types, which are subsets of bitstring | = bitstring U { L}, where
bitstring is the set of all bit-strings and L is a special symbol. A type is said to be fized-length when
it is the set of all bit-strings of a certain length. A type T is said to be large when its cardinal is
large enough so that we can consider collisions between elements of T' chosen randomly with uniform
probability quite unlikely, but still keeping track of the small probability. Such an information is useful
for the strategy of the prover. The boolean type is predefined: bool = {true,false}, where true = 1 and
false = 0.

The calculus also assumes a finite set of function symbols f. Each function symbol f comes with

a type declaration f : Ty x ... x T}, — T. Then, the function symbol f corresponds to a function,
also denoted f, from T7 x ... x T, to T, such that f(z1,...,2,) is computable in time ¢y, which is
bounded by a function of the length of the inputs z1, ..., x,,. Some predefined functions use the infix

notation: M = N for the equality test (taking two values of the same type T and returning a value of
type bool), M A N for the boolean and (taking and returning values of type bool).

Let us now illustrate on an example how we represent games in our process calculus. As we shall
see in the next sections, this example comes from the definition of security of the Full-Domain Hash
(FDH) signature scheme [9]. This example uses the function symbols hash, pkgen, skgen, f, and invf
(such that x — invf(sk, z) is the inverse of the function x — f(pk, z)), which will all be explained later
in detail. We define an oracle Ogen which chooses a random seed r, generates a key pair (pk, sk) from
this seed, and returns the public key pk:

Ogen() :=r & seed; pk «— pkgen(r); sk < skgen(r); return(pk)

The seed r is chosen randomly with uniform probability in the type seed by the construct r & seed.
(The type seed must be a fixed-length type, because probabilistic bounded-time Turing machines can
choose random numbers uniformly only in such types. The set of bit-strings seed is associated to a
fixed value of the security parameter.)

Next, we define a signature oracle OS which takes as argument a bit-string m and returns its FDH
signature, computed as invf(sk,hash(m)), where sk is the secret key, so this oracle could be defined
by

OS(m : bitstring) := return(invf(sk, hash(m)))

where m : bitstring means that m is of type bitstring, that is, it is any bit-string. However, this
oracle can be called several times, say at most ¢S times. We express this repetition by foreach iS <
¢S do OS, meaning that we make available ¢S copies of OS, each with a different value of the index
iS € [1,¢S]. Furthermore, in our calculus, variables defined in repeated oracles are arrays with a cell
for each call to the oracle, so that we can remember the values used in all calls to the oracles. Here,
m is then an array indexed by iS. Along similar lines, the copies of the oracle OS itself are indexed
by iS5, so that the caller can specify exactly which copy of OS he wants to call, by calling OS[iS] for
a specific value of i.S. So we obtain the following formalization of this oracle:

foreach iS < ¢S do OS[iS|(m][iS] : bitstring) := return(invf(sk, hash(m[iS]))) (1)

Note that sk has no array index, since it is defined in the oracle Ogen, which is executed only once.
We also define a test oracle OT which takes as arguments a bit-string m’ and a candidate signature
s of type D and executes the event forge when s is a forged signature of m’, that is, s is a correct

Automated Security Proofs with Sequences of Games 5

signature of m’ and the signature oracle has not been called on m’. The test oracle can be defined as
follows:

OT(m' : bitstring, s : D) := if f(pk, s) = hash(m') then
find u < ¢S suchthat (defined(m[u]) A m' = m[u]) then end (2)

else event forge

It first tests whether f(pk,s) = hash(m’), as the verification algorithm of FDH would do. When the
equality holds, it executes the then branch; otherwise, it executes the else branch which is here
omitted. In this case, it ends the oracle, as if it executed end. When the test f(pk,s) = hash(m’)
succeeds, the process performs an array lookup: it looks for an index u in [1, ¢S] such that m[u] is
defined and m' = mfu]. If such an w is found, that is, m’ has already been received by the signing
oracle, we simply end the oracle. Otherwise, we execute the event forge and implicitly end the oracle.
Arrays and array lookups are crucial in this calculus, and will help to model many properties which
were hard to capture.

Finally, we add a hash oracle, which is similar to the signing oracle OS but returns the hash of
the message instead of its signature:

foreach iH < ¢H do OH[iH](z[iH] : bitstring) := return(hash(z[iH]))

To lighten the notation, some array indexes can be omitted in the input we give to our prover.
Precisely, when x is defined under foreach i; < n;...foreach i,, < n,,, ¢ is always an array with
indexes 41, ..., 4m, SO we abbreviate all occurrences of z[iy,...,i,] by x. Here, all array indexes in OS
and OH can then be omitted.

We can remark that the signature and test oracles only make sense after the generation oracle
Ogen has been called, since they make use of the keys pk and sk computed by Ogen. So we define OS
and OT after Ogen by a sequential composition. In contrast, OS and OT are simultaneously available,
so we use a parallel composition Qg | @7 where Qg and Qr are the processes (1) and (2) respectively.
Similarly, OH is composed in parallel with the rest of the process. So we obtain the following game
which models the security of the FDH signature scheme in the random oracle model:

Go = foreach iH < qH do OH (z : bitstring) := return(hash(z))

| Ogen() :=r kil seed; pk — pkgen(r); sk — skgen(r); return(pk);
(foreach iS < ¢S do OS(m : bitstring) := return(invf(sk, hash(m)))
| OT(m' : bitstring, s : D) := if f(pk, s) = hash(m’) then
find u < ¢S suchthat (defined(m[u]) A m’ = m[u]) then end

else event forge)

Our calculus obviously also has a construct for calling oracles. However, we do not need it explicitly
in this paper, because oracles are called by the adversary, not by processes we write ourselves.

As detailed in [13,14], we require some well-formedness invariants to guarantee that several def-
initions of the same oracle cannot be simultaneously available, that bit-strings are of their expected
type, and that arrays are used properly (that each cell of an array is assigned at most once during
execution, and that variables are accessed only after being initialized). The formal semantics of the
calculus can be found in [13].

2.2 Observational Equivalence

We denote by Pr[@ ~~ a] the probability that the answer of @ to the oracle call Ostart() is a, where
Ostart is an oracle called to start the experiment. We denote by Pr[Q ~ £] the probability that the
process Q) executes exactly the sequence of events £, in the order of £, when oracle Ostart() is called.

In the next definition, we use a context C to represent an algorithm that tries to distinguish @
from @'. A context C is put around a process @) by C[Q]. This construct means that @ is put in

6 Bruno Blanchet and David Pointcheval

parallel with some other process)’ contained in C, possibly hiding some oracles defined in @, so that,
when considering C’'[C[Q)]], C’ cannot call these oracles. This will be detailed in the following of this
section.

Definition 1 (Observational equivalence). Let Q and Q' be two processes that satisfy the well-
formedness invariants.

A context C is said to be acceptable for @ if and only if C' does not contain events, C' and Q) have
no common variables, and C[Q] satisfies the well-formedness invariants.

We say that Q and Q' are observationally equivalent up to probability p, written Q ~, Q’, when
for all t, for all contexts C acceptable for Q and Q' that run in time at most t, for all bit-strings a,

| Pr[C[Q] ~ a] — Pr[C[Q'] ~ a]| < p(t) and). | Pr[C[Q] ~] — Pr[C[Q’] ~ &]| < p(t).

This definition formalizes that the probability that an algorithm C running in time ¢ distinguishes
the games @ and @’ is at most p(¢). The context C is not allowed to access directly the variables of
Q (using find). We say that a context C runs in time ¢, when for all processes @, the time spent in C
in any trace of C[Q)] is at most ¢, ignoring the time spent in Q. (The runtime of a context is bounded.
Indeed, we bound the length of messages in calls or returns to oracle O by a value maxlen(O, arg;)
or maxlen(O,res;). Longer messages are truncated. The length of random numbers created by C' is
bounded; the number of instructions executed by C' is bounded; and the time of a function evaluation
is bounded by a function of the length of its arguments.)

Definition 2. We say that Q executes event e with probability at most p if and only if for all t, for
all contexts C acceptable for Q that run in time t, Y ¢ oo Pr[C[Q] ~ E] < p(t).

The above definitions allow us to perform proofs using sequences of indistinguishable games. The
following lemma is straightforward:

Lemma 1. 1. =, is reflexive and symmetric.

2. If Q =, Q and Q' =y Q", then Q ~prpy Q.

3. If Q executes event e with probability at most p and Q =, Q', then Q' executes event e with
probability at most p+p'.

4. If Q =, Q' and C is a context acceptable for Q and Q' that runs in time tc, then C[Q] ~p C[Q']
where p'(t) = p(t + to).

5. If Q executes event e with probability at most p and C' is a context acceptable for Q that runs in
time to, then C[Q)] executes event e with probability at most p' where p'(t) = p(t + t¢c).

Properties 2 and 3 are key to computing probabilities coming from a sequence of games. Indeed,
our prover will start from a game G corresponding to the initial attack, and build a sequence of
observationally equivalent games Gy ~,, G1 ~p, ... =p, Gm. By Property 2, we conclude that
Go ~py+...4p,, Gm. By Property 3, we can bound the probability that Gy executes an event from the
probability that G, executes this event.

The elementary transformations used to build each game from the previous one can in particular
come from an algorithmic assumption on a cryptographic primitive. This assumption needs to be
specified as an observational equivalence L ~, R. To use it to transform a game G, the prover finds a
context C such that G &y C[L] by purely syntactic transformations, and builds a game G’ such that
G’ =~ C[R] by purely syntactic transformations. C' is the simulator usually defined for reductions.
By Property 4, we have C[L] ~, C[R], so G ~, G'. The context C typically hides the oracles of L
and R so that they are visible from C' but not from the adversary C’ against G =, G’. The context
C’[C]]] then defines the adversary against the algorithmic assumption L ~, R.

If the security assumptions are initially not in the form of an equivalence L ~, R, one needs to
manually prove such an equivalence that formalizes the desired security assumption. The design of
such equivalences can be delicate, but this is a one-time effort: the same equivalence can be reused
for proofs that rely on the same assumption. For instance, we give below such an equivalence for
one-wayness, and use it not only for the proof of the FDH signature scheme, but also for proofs of
encryption schemes as mentioned in Section 4.2. Similarly, the definition of security of a signature (UF-
CMA) says that some event is executed with negligible probability. When we want to prove the security

Automated Security Proofs with Sequences of Games 7

of a protocol using a signature scheme, we use a manual proof of an equivalence that corresponds to
that definition, done once for UF-CMA in Appendix B.3.

The prover automatically establishes certain equivalences Gy ~, G, as mentioned above. However,
the user can give only the left-hand side of the equivalence Gy; the right-hand side G, is obtained
by the prover. As a consequence, the prover is in general not appropriate for proving automatically
properties L ~, R in which L and R are both given a priori: the right-hand side found by the prover
is unlikely to correspond exactly to the desired right-hand side. On the other hand, the prover can
check security properties on the right-hand side G, it finds, for example that the event forge cannot
be executed by G,,. Using Gy ~, G, it concludes that G executes forge with probability at most p.

3 Characterization of One-wayness and Unforgeability

In this section, we introduce the assumption (one-wayness) and the security notion (unforgeability)
to achieve.

3.1 Trapdoor One-Way Permutations

Most cryptographic protocols rely on the existence of trapdoor one-way permutations. They are fam-
ilies of permutations, which are easy to compute, but hard to invert, unless one has a trapdoor.

The Computational Model. A family of permutations P onto a set D is defined by the three
following algorithms:

— The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a seed r, the algorithm kgen produces a pair (pk, sk) of matching public and secret keys.
The public key pk specifies the actual permutation f,; onto the domain D.

— The evaluation algorithm f. Given a public key pk and a value x € D, it outputs y = f,i(z).

— The inversion algorithm invf. Given an element y, and the trapdoor sk, invf outputs the unique
pre-image x of y with respect to fyx.

The above properties simply require the algorithms to be efficient. The “one-wayness” property
is more intricate, since it claims the “non-existence” of some efficient algorithm: one wants that
the success probability of any adversary A within a reasonable time is small, where this success is
commonly defined by

R R
Succ¥(A) = Pr r — seed, (pk, sk) — kgen(r),x — D,y — f(pk,x),
' — Apk,y) 1 x =2

Eventually, we denote by Succh’(¢) the maximal success probability an adversary can get within time
t.

Syntactic Rules. Let seed be a large, fixed-length type, pkey, skey, and D the types of public
keys, secret keys, and the domain of the permutations respectively. A family of trapdoor one-way
permutations can then be defined as a set of four function symbols: skgen : seed — skey generates
secret keys; pkgen : seed — pkey generates public keys; f : pkey x D — D and invf : skeyx D — D, such
that, for each pk, x — f(pk,x) is a permutation of D, whose inverse permutation is z — invf(sk,x)
when pk = pkgen(r) and sk = skgen(r).
The one-wayness property can be formalized in our calculus by requiring that LR executes event
invert with probability at most Succy'(¢) in the presence of a context that runs in time ¢, where
LR =0Ogen() == & seed; g & D; return(pkgen(ro), f(pkgen(ro), zo));

=r
Oeq(x' : D) :=if 2’ = x(then event invert

8 Bruno Blanchet and David Pointcheval

foreach i, < ny do r < seed; (Opk() := return(pkgen(r))
| foreach i < nf do x £ p, (Oy() := return(f(pkgen(r), z))

| foreach i1 < n1 do Oeq(z' : D) := return(z’ = x)
| Oz() := return(z)))

~pov foreach i < ny do r E seed; (Opk() := return(pkgen’(r)) 3)

| foreach if < nf do x £ p, (Oy() := return(f'(pkgen’ (1), x))
| foreach i; < ni do Oeq(z’' : D) :=
if defined(k) then return(z’ = z) else return(false)
| Oz() := k < mark; return(z)))

Fig. 1. Definition of one-wayness

Indeed, the event invert is executed when the adversary, given the public key pkgen(ro) and the image
of some xg by f, manages to find z¢ (without having the trapdoor).

In order to use the one-wayness property in proofs of protocols, our prover needs a more general
formulation of one-wayness, using “observationally equivalent” processes. We thus define two pro-
cesses which are actually equivalent unless LR executes event invert. We prove in Appendix B.2 the
equivalence of Figure 1 where p®(t) = ni x ng x Succy' (t + (nkng — 1)t + (nic — 1)tpkgen), t is the
time of one evaluation of f, and tyugen is the time of one evaluation of pkgen. In this equivalence, the
function symbols pkgen’ : seed — pkey and f' : pkey x D — D are such that the functions associated
to the primed symbols pkgen’, f’ are equal to the functions associated to their corresponding unprimed
symbol pkgen, f, respectively. We replace pkgen and f with pkgen’ and f’ in the right-hand side just
to prevent repeated applications of the transformation with the same keys, which would lead to an
infinite loop.

In this equivalence, we consider ny keys pkgen(r[ix]) instead of a single one, and ns antecedents
of f for each key, x[i,it]. The first oracle Opk[ix] publishes the public key pkgen(r[ix]). The second
group of oracles first picks a new x[iy, it], and then makes available three oracles: Oylix, i] returns the
image of xz[iy, if] by f, Oeqlix, it, 1] returns true when it receives z[ix, if] as argument, and Ox[iy, if]
returns x[ix, if] itself. The one-wayness property guarantees that when Ozlix, i¢] has not been called,
the adversary has little chance of finding x[iy, i¢], so Oeqlix,it,%1] returns false. Therefore, we can
replace the left-hand side of the equivalence with its right-hand side, in which Oz[iy, if] records that it
has been called by defining k[ix, it], and Oeqlix, it, 31] always returns false when k[iy, i¢] is not defined,
that is, when Ox[iy, if] has not been called.

In the left-hand side of the equivalences used to specify primitives, the oracles must consist of a
single return instruction. This restriction allows us to model many equivalences that define crypto-
graphic primitives, and it simplifies considerably the transformation of processes compared to using
the general syntax of processes. (In order to use an equivalence L =, R, we need to recognize processes
that can easily be transformed into C[L] for some context C, to transform them into C'[R]. This is
rather easy to do with such oracles: we just need to recognize terms that occur as a result of these
oracles. That would be much more difficult with general processes.)

Since x — f(pkgen(r), x) and x +— invf(skgen(r),z) are inverse permutations, we have:

Vr : seed,Vx : D,invf(skgen(r), f(pkgen(r),z)) = x (4)
Since x +— f(pk, x) is injective, f(pk,z) = f(pk, ') if and only if x = z’:
Vpk : pkey,Vz : D,V2' : D, (f(pk,z) = f(pk,2’)) = (z = 2') (5)

Since x +— f(pk,z) is a permutation, when z is a uniformly distributed random number, we can
replace x with f(pk,x) everywhere, without changing the probability distribution. In order to enable

Automated Security Proofs with Sequences of Games 9
automatic proof, we give a more restricted formulation of this result:

foreach i, < ny do r & seed; (Opk() := return(pkgen(r))
| foreach i < n¢ do z il D; (Oant() := return(invf(skgen(r), z))
| Oim() := return(z)))
~ foreach i, < ny do r & seed; (Opk() := return(pkgen(r))
| foreach i < n¢ do z £ p; (Oant() := return(z)

| Oim() := return(f(pkgen(r), z))))

which allows to perform the previous replacement only when z is used in calls to invf(skgen(r), z),
where r is a random number such that r occurs only in pkgen(r) and invf(skgen(r), z) for some random
numbers x.

3.2 Signatures
The Computational Model. A signature scheme S = (kgen, sign, verify) is defined by:

— The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a random seed r, the algorithm kgen produces a pair (pk, sk) of matching keys.

— The signing algorithm sign. Given a message m and a secret key sk, sign produces a signature o.
For sake of clarity, we restrict ourselves to the deterministic case.

— The verification algorithm verify. Given a signature o, a message m, and a public key pk, verify tests
whether ¢ is a valid signature of m with respect to pk.

We consider here (existential) unforgeability under adaptive chosen-message attack (UF-CMA) [23],
that is, the attacker can ask the signer to sign any message of its choice, in an adaptive way, and has
to provide a signature on a new message. In its answer, there is indeed the natural restriction that
the returned message has not been asked to the signing oracle.

When one designs a signature scheme, one wants to computationally rule out existential forgeries
under adaptive chosen-message attacks. More formally, one wants that the success probability of any
adversary A with a reasonable time is small, where

R ign(-,s
Succtf—em2(A) = Pr | " < seed, (pk, sk) < kgen(r), (m, o) « A5E"C:58) (pk) . .
verify(m, pk,o) =1

As above, we denote by Succ§f7cma (ns, £,t) the maximal success probability an adversary can get within

time ¢, after at most ng queries to the signing oracle, where the maximum length of all messages in
queries is /.

Syntactic Rules. Let seed be a large, fixed-length type. Let pkey, skey, and signature the types of
public keys, secret keys, and signatures respectively. A signature scheme is defined as a set of four
function symbols: skgen : seed — skey generates secret keys; pkgen : seed — pkey generates public
keys; sign : bitstring X skey — signature generates signatures; and verify : bitstring x pkey X signature —
bool verifies signatures.

The signature verification succeeds for signatures generated by sign, that is,

Vm : bitstring, Vr : seed, verify(m, pkgen(r), sign(m, skgen(r))) = true

10 Bruno Blanchet and David Pointcheval

According to the previous definition of UF-CMA, the following process LR executes event forge with

probability at most Succgffcma(ns, £,t) in the presence of a context that runs in time ¢, where

LR =0Ogen() :=r £ seed; pk — pkgen(r); sk «— skgen(r); return(pk);
(foreach is < ngs do OS(m : bitstring) := return(sign(m, sk))
| OT(m/' : bitstring, s : signature) := if verify(m’, pk, s) then (7)
find us < ng suchthat (defined(m|us])) A m' = m|us))

then end else event forge)

and £ is the maximum length of m and m'. This is indeed clear since event forge is raised if a signature
is accepted (by the verification algorithm), while the signing algorithm has not been called on the
signed message.

4 Examples

4.1 FDH Signature

The Full-Domain Hash (FDH) signature scheme [9] is defined as follows: Let pkgen, skgen, f,invf de-
fine a family of trapdoor one-way permutations. Let hash be a hash function, in the random ora-
cle model. The FDH signature scheme uses the functions pkgen and skgen as key-generation func-
tions, the signing algorithm is sign(m, sk) = invf(sk,hash(m)), and the verification algorithm is
verify(m/, pk, s) = (f(pk, s) = hash(m’)). In this section, we explain how our automatic prover finds
the well-known bound for Succs “™ for the FDH signature scheme.

The input given to the prover contains two parts. First, it contains the definition of security of
primitives used to build the FDH scheme, that is, the definition of one-way trapdoor permutations (3),
(4), (5), and (6) as detailed in Section 3.1 and the formalization of a hash function in the random
oracle model:

foreach iy, < ny do OH(x : bitstring) := return(hash(z)) [all]

):
~q foreach iy, < ny, do OH (z : bitstring) :
find u < ny suchthat (defined(z[u], r[u]) A = z[u]) then return(rfu]) (8)

else r & D; return(r)

This equivalence expresses that we can replace a call to a hash function with a random oracle, that
is, an oracle that returns a fresh random number when it is called with a new argument, and the
previously returned result when it is called with the same argument as in a previous call. Such a
random oracle is implemented in our calculus by a lookup in the array = of the arguments of hash.
When a u such that z[u], r[u] are defined and = = x[u] is found, hash has already been called with
x, at call number u, so we return the result of that call, r[u]. Otherwise, we create a fresh random
number 7. (The indication [all] on the first line of (8) instructs the prover to replace all occurrences
of hash in the game.)

Second, the input file contains as initial game the process G of Section 2.1. As detailed in Sec-
tion 3.2, this game corresponds to the definition of security of the FDH signature scheme (7). An im-
portant remark is that we need to add to the standard definition of security of a signature scheme the
hash oracle. This is necessary so that, after transformation of hash into a random oracle, the adversary
can still call the hash oracle. (The adversary does not have access to the arrays that encode the values of
the random oracle.) Our goal is to bound the probability p(¢) that event forge is executed in this game
in the presence of a context that runs in time ¢: p(t) = Succgf_cma(qS, bit+ty) > Succgf_cma(qS, 4,t)
where ¢y is the total time spent in the hash oracle and £ is the maximum length of m and m’'.

Given this input, our prover automatically produces a proof that this game executes event forge
with probability p(t) < (¢H + ¢S +1)Succh' (t+ (gH + ¢S)te + (3¢S +2qH +qS* +2qSqH + qH?)teq (£))
where £ is the maximum length of a bit-string in m, m/, or « and teq(¢) is the time of a comparison
between bit-strings of length at most ¢. (Evaluating a find implies evaluating the condition of the

Automated Security Proofs with Sequences of Games 11

find for each value of the indexes, so here the lookup in an array of size n of bit-strings of length ¢
is considered as taking time n X teq(¢), although there are in fact more efficient algorithms for this
particular case of array lookup.) If we ignore the time of bit-string comparisons, we obtain the usual
upper-bound [10] (¢H + ¢S + 1)Succy'(t + (¢H + ¢S)t¢). The prover also outputs the sequence of
games that leads to this proof, and a succinct explanation of the transformation performed between
consecutive games of the sequence. The input and output of the prover, as well as the prover itself,
are available at http://www.di.ens.fr/ blanchet/cryptoc/FDH/; the runtime of the prover on this
example is 14 ms on a Pentium M 1.8 GHz. The prover has been implemented in Ocaml and contains
14800 lines of code.

We sketch here the main proof steps. Starting from the initial game G given in Section 2.1, the
prover tries to apply all observational equivalences it has as hypotheses, that is here, (3), (6), and
(8). It succeeds applying the security of the hash function (8), so it transforms the game accordingly,
by replacing the left-hand side with the right-hand side of the equivalence. Each call to hash is then
replaced with a lookup in the arguments of all calls to hash. When the argument of hash is found in one
of these arrays, the returned result is the same as the result previously returned by hash. Otherwise,
we pick a fresh random number and return it.

The obtained game is then simplified. In particular, when the argument m’ of OT is found in the
arguments m of the call to hash in OS, the find in OT always succeeds, so its else branch can be
removed (that is, when m’ has already been passed to the signature oracle, it is not a forgery).

Then, the prover tries to apply an observational equivalence. All transformations fail, but when
applying (6), the game contains invf(sk, y) while (6) expects invf(skgen(r), y), which suggests to remove
assignments to variable sk for it to succeed. So the prover performs this removal: it substitutes skgen(r)
for sk and removes the assignment sk < skgen(r). The transformation (6) is then retried. It now
succeeds, which leads to replacing r; with f(pkgen(r),r;) and invf(skgen(r),r;) with r;, where r;
represents the random numbers that are the result of the random oracle. (The term f(pkgen(r),r;)
can then be computed by oracle Oy of (3) and r; can be computed by Oxz.) More generally, in our
prover, when a transformation 7 fails, it may return transformations 7"’ to apply in order to enable
T [14, Section 5]. In this case, the prover applies the suggested transformations 7’ and retries the
transformation 7.

The obtained game is then simplified. In particular, by injectivity of f (5), the prover replaces
terms of the form f(pk, s) = f(pkgen(r),r;) with s = r;, knowing pk = pkgen(r). (The test s = r; can
then be computed by oracle Oeq of (3).)

The prover then tries to apply an observational equivalence. It succeeds using the definition of
one-wayness (3). This transformation leads to replacing f(pkgen(r),r;) with f'(pkgen’(r),r;), r; with
k; < mark;r;, and s = r; with find u; < N suchthat (defined(k;[u;]) Atrue) then s = r; else false.
The difference of probability is p®(t 4+ ') = ni X ng x Succh' (t +t' + (neng — 1)ts + (nk — L)tpkgen) =
(¢H + ¢S + 1)Succy’(t + t' + (¢H + ¢S)ts) where nx = 1 is the number of key pairs considered,
ng = ¢H 4 ¢S + 1 is the number of antecedents of f, and ¢’ = (3¢S +2¢H + qS? +2qSqH + qH?)teq(¢)
is the runtime of the context put around the equivalence (3).

Finally, the obtained game is simplified again. Thanks to some equational reasoning, the prover
manages to show that the find in OT always succeeds, so its else branch can be removed. The
prover then detects that the forge event cannot be executed in the resulting game, so the desired
property is proved, and the probability that forge is executed in the initial game is the sum of the
differences of probability between games of the sequence, which here comes only from the application
of one-wayness (3).

4.2 Encryption Schemes

Besides proving the security of many protocols [14], we have also used our prover for proving other
cryptographic schemes. For example, our prover can show that the basic Bellare-Rogaway construc-
tion [9] without redundancy (i.e. £(m,r) = f(r)||hash(r) xor m) is IND-CPA, with the following manual
proof:

crypto hash apply the security of hash (8)
remove_assign binder pk remove assignments to pk

12 Bruno Blanchet and David Pointcheval

crypto f r apply the security of f (3) with random seed r
crypto xor * apply the security of xor as many times as possible
success check that the desired property is proved

These manual indications are necessary because (3) can also be applied without removing the assign-
ments to pk, but with different results: f(pk,) is computed by applying f to the results of oracles Opk
and Ot if assignments to pk are not removed, and by oracle Oy if assignments to pk are removed.

With similar manual indications, it can show that the enhanced variant with redundancy £(m,r) =
f(r)|[hash(r) xor m|lhash’ (hash(r) xor m, r) is IND-CCA2. With an improved treatment of the equational
theory of xor, we believe that it could also show that £(m,r) = f(r)||hash(r) xor m|lhash’(m,r) is IND-
CCA2.

5 Conclusion

We have presented a new tool to automatically prove the security of both cryptographic primitives
and cryptographic protocols. As usual, assumptions and expected security notions have to be stated.
For the latter, specifications are quite similar to the usual definitions, where a “bad” event has to
be shown to be unlikely. However, the former may seem more intricate, since it has to be specified
as an observational equivalence. Anyway, this has to be done only once for all proofs, and several
specifications have already been given in [13-15]: one-wayness, UF-CMA signatures, UF-CMA mes-
sage authentication codes, IND-CPA symmetric stream ciphers, IND-CPA and IND-CCA2 public-key
encryption, hash functions in the random oracle model, xor, with detailed proofs for the first three.
Thereafter, the protocol/scheme itself has to be specified, but the syntax is quite close to the notations
classically used in cryptography. Eventually, the prover provides the sequence of transformations, and
thus of games, which lead to a final experiment (indistinguishable from the initial one) in which the
“bad” event never appears. Since several paths may be used for such a sequence, the user is allowed
(but does not have) to interact with the prover, in order to make it follow a specific sequence. Of
course, the prover will accept only if the sequence is valid. Contrary to most of the formal proof
techniques, the failure of the prover does not lead to an attack. It just means that the prover did not
find an appropriate sequence of games.

Acknowledgments We thank Jacques Stern for initiating our collaboration on this topic and the
anonymous reviewers for their helpful comments. This work was partly supported by ARA SSIA
Formacrypt.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103-127, 2002.

2. M. Backes and P. Laud. A mechanized, cryptographically sound type inference checker. In Workshop on
Formal and Computational Cryptography (FCC’06), July 2006. To appear.

3. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In CSFW’04. IEEE, June 2004.

4. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In 26th IEEE Symposium on
Security and Privacy, pages 171-182. IEEE, May 2005.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In CCS’03, pages 220-230. ACM, Oct. 2003.

6. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable cryptographic
library. In ESORICS’03, LNCS 2808, pages 271-290. Springer, Oct. 2003.

7. G. Barthe, J. Cederquist, and S. Tarento. A machine-checked formalization of the generic model and the
random oracle model. In IJCAR’04, LNCS 3097, pages 385-399. Springer, July 2004.

8. M. Bellare. Practice-Oriented Provable Security. In ISW ’97, LNCS 1396. Springer, 1997.

9. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols.
In CCS’93, pages 62-73. ACM Press, 1993.

Automated Security Proofs with Sequences of Games 13

10. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures — How to Sign with RSA and Rabin.
In Furocrypt 96, LNCS 1070, pages 399-416. Springer, 1996.

11. M. Bellare and P. Rogaway. The Game-Playing Technique and its Application to Triple Encryption, 2004.
Cryptology ePrint Archive 2004/331.

12. B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on Security
and Privacy, pages 86—100, May 2004.

13. B. Blanchet. A computationally sound mechanized prover for security protocols. Cryptology ePrint
Archive, Report 2005/401, Nov. 2005. Available at http://eprint.iacr.org/2005/401.

14. B. Blanchet. A computationally sound mechanized prover for security protocols. In IEEE Symposium on
Security and Privacy, pages 140-154, May 2006.

15. B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. Cryptology ePrint
Archive, Report 2006/069, Feb. 2006. Available at http://eprint.iacr.org/2006/069.

16. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS’01,
pages 136-145. IEEE, Oct. 2001. An updated version is available at Cryptology ePrint Archive, http:
//eprint.iacr.org/2000/067.

17. R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic protocols (the case of
encryption-based mutual authentication and key exchange). Cryptology ePrint Archive, Report 2004/334,
2004. Available at http://eprint.iacr.org/2004/334.

18. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In
ESOP’05, LNCS 3444, pages 157-171. Springer, Apr. 2005.

19. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time semantics
for a protocol security logic. In ICALP’05, LNCS 3580, pages 16—29. Springer, July 2005.

20. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, IT-22(6):644-654, November 1976.

21. D. Dolev and A. C. Yao. On the Security of Public-Key Protocols. IEEE Transactions on Information
Theory, 29(2):198-208, 1983.

22. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, 28:270—
299, 1984.

23. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative Chosen-
Message Attacks. SIAM Journal of Computing, 17(2):281-308, April 1988.

24. S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181, June 2005. Available at http://eprint.iacr.org/2005/181.

25. R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal encryption in the
presence of active adversaries. In ESOP’05, LNCS 3444, pages 172-185. Springer, Apr. 2005.

26. P. Laud. Handling encryption in an analysis for secure information flow. In ESOP’03, LNCS 2618, pages
159-173. Springer, Apr. 2003.

27. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In
IEEFE Symposium on Security and Privacy, pages 71-85, May 2004.

28. P. Laud. Secrecy types for a simulatable cryptographic library. In CCS’05, pages 26-35. ACM, Nov. 2005.

29. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for
protocol analysis. In CCS’98, pages 112-121, Nov. 1998.

30. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equivalence and
security protocols. In FM’99, LNCS 1708, pages 776-793. Springer, Sept. 1999.

31. P. Mateus, J. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a probabilistic
polynomial-time process calculus. In CONCUR 2003, LNCS 2761, pages 327-349. Springer, Sept. 2003.

32. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. In
TCC’04, LNCS 2951, pages 133-151. Springer, Feb. 2004.

33. J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time calculus for
the analysis of cryptographic protocols. Theoretical Computer Science, 353(1-3):118-164, Mar. 2006.

34. M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Applications. In
STOC’89, pages 33-43. ACM Press, 1989.

35. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext
Attack. In Crypto ’91, LNCS 576, pages 433—444. Springer, 1992.

36. A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague. Probabilistic bisimulation and equivalence for
security analysis of network protocols. In FOSSACS’04, LNCS 2987, pages 468—483. Springer, Mar. 2004.

37. V. Shoup. OAEP Reconsidered. Journal of Cryptology, 15(4):223-249, September 2002.

38. V. Shoup. Sequences of games: a tool for taming complexity in security proofs, 2004. Cryptology ePrint
Archive 2004/332.

39. C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem
proving. In CSFW’06. IEEE, July 2006. To appear.

14 Bruno Blanchet and David Pointcheval

40. S. Tarento. Machine-checked security proofs of cryptographic signature schemes. In ESORICS’05, LNCS
3679, pages 140-158. Springer, Sept. 2005.

Appendix

A Syntax of the Process Calculus

M,N ::= terms
i replication index
z[Mi, ..., Mpy] variable access
f(My, ..., M) function application
= oracle definitions
0 nil
QlQ parallel composition

foreach i <n do @
newOracle O; Q

n copies of @) in parallel
restriction for oracles

Oli1y - yim](@1[i1y .o yim] : Thy ooy ki1, o yim] 1 Th) = P oracle definition
= oracle body
return(Ny,...,Ny); Q return
end end
Z[i1, ..., im] Fid T; P random number generation
xlit, ... im] : T — M; P assignment
(xl[il, AN ,im} : Tl, AN ,:Ek/[ih. . .,im] : Tk/) — O[M1, .. .,Ml](Nl, .. .,Nk);P else P’
oracle call
if defined(M.,..., M;) A M then P else P’ conditional

find (D)~, uj1li] <nj,..
else P

-y Ujm; (1] < Mjm; suchthat (defined(Mj,. . .,

Mjl_j) A\ Mj) then Pj)
array lookup

event e; P event
= contexts
] hole
C|Q parallel composition
Q|C parallel composition

newOracle O;C restriction for oracles

Fig. 2. Syntax of the process calculus

The syntax of our calculus is summarized in Figure 2. It distinguishes two categories of processes:
oracle definitions) consist of a set of definitions of oracles, while oracle bodies P describe the content
of an oracle definition. Oracle bodies perform some computations and return a result. After returning
the result, they may define new oracles. (An oracle definition @ follows the return(Ny,...,Ny)
instruction.)

The nil oracle definition 0 defines no oracle. The construct newOracle O; @) hides oracle O outside
Q; oracle O can be called only inside Q). The other constructs for oracle definitions have been presented
in Section 2.1.

The oracle call (x1[i1,...,0m] : T, Trr[i1, .oy im] 2 Tir) — O[My, ..
P’ calls oracle O[Mj,..., M;] with arguments Ny, ...,
return(Ny,..., Nj,), this result is stored in zi[i1,...,%m], ..., Tw[i1,...,im] and the process exe-
cutes P. When the oracle O[My, ..., M;] terminates by end, the process executes P’. (Returning a
result by return corresponds to the normal termination of the oracle O, while terminating with end
corresponds to abnormal termination.)

M (Ny, ..., Ng); P else
Nj. When this oracle returns a result by

Automated Security Proofs with Sequences of Games 15

This paper [13,14]

foreach i < n do Q li<rQ

newOracle O; Q newChannel c; Q

Om(xlm : Tl,. .. ,kam . Tk) =P @(l‘lm : T1,. . .,:Ckm : Tk);P
return(Mi, ..., My);Q cﬂ(Ml,...,Mw;Q

end yield()

m[N']ﬁT;P newm[ﬂ:T;P

afi] : T — M; P let z[i] : T =M in P

In equivalences that define security assumptions
O(z1:Th,...,2% : Tk) := return(M) | (z1: T, ... zp:Th) = M

Fig. 3. Differences of syntax with [13, 14]

The general syntax of an array lookup is find (@Tfl ujr[i] < nji, . Ujm, m < Njm, suchthat
(defined(Mjy, ..., Mj;,) AMj;) then P;) else P, where i denotes a tuple i1, . . ., 4,,. This process tries
to find a branch j in [1,m] such that there are values of w;1,...,ujy, for which Mj;,..., My, are

defined and M; is true. In case of success, it executes P;. In case of failure for all branches, it executes
P. More formally, it evaluates the conditions defined(M;i, ..., Mj;;) A M; for each j and each value of

wjifi), ..., ujmj[z~'] in [1,m51] % ... x [1,njm,]. If none of these conditions is 1, it executes P. Otherwise,
it chooses randomly with (almost) uniform probability one j and one value of ujl[z~'], ey U, m such
that the corresponding condition is 1, and executes P;. (When the number of possibilities is not a
power of 2, a probabilistic bounded-time Turing machine cannot choose these values exactly with
uniform probability, but it can choose them with a probability distribution as close as we wish to
uniform.)

The process if defined(M,..., M;) A M then P else P’ is syntactic sugar for find suchthat
(defined(M;,..., M;) A M) then P else P'.

To lighten notations, A true and defined() A may be omitted in conditions of if and find. More-
over, else end, a trailing 0, or a trailing end may be omitted. When oracle O returns nothing,
the oracle call to oracle O can be abbreviated O[My, ..., M;](Ny, ..., Ng); P else P’. Types may be
omitted when they can be inferred. Some array indexes can be omitted: when z is defined under
foreach i; < n;...foreach i,, < n,,, = is always an array with indexes i1,...,4,;,, so we abbre-
viate all occurrences of x[i1,...,%y,] by x, and more generally if = is defined under foreach i; <
ny ...foreach i,, < n,, and used under foreach i; < n;...foreach i, < ny (k < m), we abbreviate
Z[81y ey By Ukt 1y - - -, U] DY Z[Ukt1, ..., Up]. Similarly, an oracle definition Ofiy,...,iy](...) := P
under foreach i; < n; ...foreach i,, < n,, is abbreviated O(...) := P.

In the equivalences that serve as security assumptions in the prover, we also write foreach i <

n do x; & Ti;... Tm & Tm; @ as an abbreviation for foreach i < n do O() := z; & Ti;...Tm &
Tn;return; @, where O is a fresh oracle name. (The same oracle names are used in both sides of the
equivalences.)

A context is a process with a hole. In this paper, we consider only evaluation contexts, generated
by the grammar given at the bottom of Figure 2 and that do not contain events.

The syntax used in this paper differs from the syntax used in previous papers [13, 14], to make it
closer to the standard syntax of cryptographic games. The differences are summarized in Figure 3.
Previous papers [13,14] used channels ¢ instead of oracles O. An oracle call then corresponds to two
communications on channels: in the first communication, the caller sends the arguments of the oracle
to the callee, which receives them in an input process; in the second communication, the callee sends
the result of the oracle to the caller (or replies on a special channel yield when the oracle terminates
with end). The oracle calls never occur in processes given to the prover, so we just give in Figure 3
the correspondence between oracle definitions and inputs on the one hand, and between returns and
outputs on the other hand. Accordingly, [13,14] also used newChannel instead of newOracle, the
“input processes” of [13,14] correspond to oracle definitions, and the “output processes” of [13,14]

16 Bruno Blanchet and David Pointcheval

correspond to oracle bodies. As shown in Figure 3, [13,14] also used a different syntax for copies of
oracles, random number generation, and assignments, with exactly the same meaning. In equivalences
that define security assumptions, [13,14] used functions (z1 : T, ..., 2y : Tx) — M, while this paper
uses oracle definitions O(x; : T4, ..., xy : Tj) := return(M).

B Manual Proofs

Before proving the correctness of our formalizations of one-wayness and of unforgeability, let us present
a few simple lemmas, which will be used in these proofs.

B.1 Preliminary Lemmas

The next lemma is Shoup’s lemma [37], where we consider a process @ which contains an event e (e.g.
a “bad” event). In this lemma, the notation Q{P’/P} means that, in the process @, we substitute
any occurrence of the subprocess P by the process P’.

Lemma 2. If Q executes event e with probability at most p, then we have Q{P’'/event e.P} ~,
Q{P"/event e.P}.

We denote by n x @ the process obtained by adding foreach ¢ < n do in front of and by adding the
index 7 at the beginning of each sequence of array indexes and each sequence of indexes of oracles in @,
for some fresh replication index ¢. The process n x Q encodes n independent copies of). The following
lemma can be proved by choosing randomly the copy of @) that executes event e, and simulating all
other copies of Q.

Lemma 3. If Q) executes event e with probability at most p and Q) runs in time tg, then nx Q) executes
event e with probability at most p’ where p'(t) =n x p(t + (n — 1)tg).

B.2 Proof of the Definition of One-wayness as an Equivalence

Proof (of (3)). We expand the abbreviations foreach i, < ny do r & seed into foreach i <
nx do Ogr() :=r & seed;return and foreach i; < ny do x & D into foreach ir < ng do Ogzx() :=

z & D;return, and rename the oracle Oeq of (3) into Oeq’, in order to avoid confusion with the oracle
Oeq of the process LR defined in Section 3.1. Then, in order to prove (3), we show that L ~p R,
where

L =foreach iy < ny do Ogr() :=r & seed; return;
(Opk() := return(pkgen(r))

| foreach iy < n¢ do Ogzx() ===z & D;return;
(0 = return((phgentr).)
| foreach i1 < n; do Oeqg'(z' : D) := return(a’ = z)
| Oz() :=return(z)))

R =foreach iy < ny do Ogr() :==r & seed;return;

(Opk() := return(pkgen’(r))
| foreach if < n¢ do Ogzx() ===z & D:return;
(Oy() := return(f’ (pkgen’(r), m))
| foreach i1 < n; do Oeq' (2’ : D) :=
if defined(k) then return(x’ = z) else return(false)
| Ox() := k «— mark;return(z)))

Automated Security Proofs with Sequences of Games 17

Let

LR =0gr():=r ki3 seed; pk — pkgen(r); return; (Opk() := return(pk)

| foreach i¢ < n¢ do Ogzx() ;=== & D;y — f(pk, x); return;
(Oy() := return(y)
| foreach i1 < n; do Oeq' (2’ : D) :=
if defined(k) then return(z’ =) else
if 2/ = z then event invert else return(false)
| Ox() := k < mark;return(z)))

and for a € [1,ng],

C, =newOracle Ogen; newOracle Oeg; ([]
| Ogr() := (pk,y) < Ogen(); return;
(Opk() := return(pk)
| foreach i¢ < ny do Ogx() :=
if i = a then return;
(Oy() = return(y)
| foreach i; < n; do Oeq'(z’ : D) := Oeq(z') else return(false))

else z & D;return;
(Oy() := return(f(pk, z))
| foreach iy < ny do Oeq'(z’ : D) := return(z’ = x)

| Oz() :=return(z))))

Next, we show that LR’ executes event invert with probability at most ng x Succh'(t + t¢,) in the
presence of a context that runs in time ¢, where C, runs in time tc, = (ny — 1)t¢.t By definition
of one-wayness, the process LR defined in Section 3.1 executes event invert with probability at
most Succh'(t). By Lemma 1, Property 5, C,[LR] executes event invert with probability at most
Succy' (t+tc,). Let C be a context acceptable for LR’ that runs in time ¢. Consider a trace of C[LR’]
that executes event invert. Let a € [1,ng] such that the first time event invert is executed in this
trace, if = a. Then the prefix of this trace up to the point at which it executes event invert for the
first time can be simulated exactly by a trace of the same probability of C[C,[LR]]. More precisely,
the simulation proceeds as follows:

— When oracle Ogr is called, LR’ picks a new seed r. Correspondingly, C,[LR] also picks a seed 7
by calling oracle Ogen of LR. It also chooses a random value zg, so a single configuration of LR’
of probability p corresponds to |D| configurations of C,[LR] that differ only by the value of xg,
each of probability p/|D|. Both LR’ and C,[LR] return an empty message.

— When oracle Opk is called, LR’ returns pkgen(r). Correspondingly, C,[LR] returns the public key
pk = pkgen(ro).

— When oracle Ogzlif] is called, LR’ picks a random value x[if]. Correspondingly, Co[LR] either
picks a random value x[i¢] if is # a, or reuses the value of xg previously chosen by LR when
it = a. In the latter case, before executing this step, a single configuration of LR’ of probability p
corresponded to |D| configurations of C,[LR] that differed only by the value of ¢, each of proba-
bility p/|D|; after executing this step, each configuration of LR’ of probability p/|D| corresponds
to a single configuration of C,[LR], in which the chosen value of x¢ is the value of z[a] in LR'. Both
configurations have the same probability p/|D|. Both LR’ and C,[LR)] return an empty message.

L As usual in exact security proofs, we consider only the runtime of function evaluations and array lookups,
and ignore the time for communications, random number generations, etc. We could obviously perform a
more detailed time evaluation if desired.

18 Bruno Blanchet and David Pointcheval

— When oracle Oylig] is called, LR’ returns f(pkgen(r), [if]). Correspondingly, C,[LR] returns either
f(pk, z[if]) when i # a, or y = f(pk, zg) when if = a.

— When Oeq'[ig,i1](2") is called, LR’ returns =’ = x[i¢f] when i # a (since it never executes
event invert with i¢ # a in the considered trace prefix), executes event invert when z’ = x[i¢] and
it = a, and returns false when 2’ # x[i¢] and i¢ = a. (Since the considered trace prefix executes
event invert with i = a at the end of this prefix, k[a] is not defined at the end of this prefix, so
k[a] is not defined at any point in this trace prefix.) Correspondingly, C,[LR] returns ' = x[if]
when iy # a and calls LR when i; = a in order to execute event invert when =’ = xg; when LR
ends, it returns false.

— When oracle Oz][ig] is called, we have if # a since k[a] is not defined at any point in the considered
trace prefix, as mentioned above, and LR’ returns z[if]. Correspondingly, C,[LR] returns z[if] in
this case.

Hence Eg}invertef Pr[C[LR] ~ &] < Eaeu,nf] Ec‘:,inverteg Pr[C[Cu[LR]] ~ £] < Eaeu,nf] Succp'(t +
tc,) = ng xSuccy' (t+tc,). So LR executes event invert with probability at most ng x Succh’ (t+tc,).
By Lemma 3, nyx x LR’ executes event invert with probability at most nyx x ny x Succy' (¢t +
to, + (nk — Dtrr), where trrr = tpkgen + nets. Let t' = to, + (nc — Dtpp = (nng — 1)t +
(nik — 1)tpkgen and p®(t) = nx X ng X Succy' (t + t'). By Lemma 2, we have the equivalence (nji x
LR'){return(true)/event invert} ~,ov (nx X LR'){return(false)/event invert}.

The process if ' = = then return(true) else return(false) can be replaced with return(z’ = z),
the process find...then return(z’ = z) else return(az’ = x) can be replaced with return(z’ = z),
and the assignments to pk and y can be expanded without changing the behavior of the process, so
(nkxx LR"){return(true)/event invert} ~y L. The test if 2’ = x then return(false) else return(false)
can be replaced with return(false), and the assignments to pk and y can be expanded, so (ny X
LR'){return(false)/event invert} ~qg R. Hence L ~pov R. O

B.3 Definition of Security of Signatures

Lemma 4. Let skgen' : seed — skey, pkgen’ : seed — pkey, sign’ : bitstring x skey — signature, and
verify’ : bitstring x pkey x signature — bool such that the functions associated to the primed symbols
skgen’, pkgen’, sign’, verify’ are equal to the functions associated to their corresponding unprimed
symbol skgen, pkgen, sign, verify. We have the following equivalence:

foreach 7, < ny do r & seed;
(Opk() := return(pkgen(r))
| foreach is < ngy do OS’(m : bitstring) := return(sign(m, skgen(r))))
| foreach i, < n, do OV (m/ : bitstring,y : pkey, s : signature) := return(verify(m’, y, s)) [all]

1
2
3
4
5. Apuf-cma
6. foreach i, <ny dor & seed;
7 (Opk() := return(pkgen’(r))
8 | foreach iy < ng do OS'(m : bitstring) := return(sign’(m, skgen’(r))))
9. | foreach i, < n, do OV (m' : bitstring,y : pkey, s : signature) :=
10. find uy < ny,us < ng suchthat (defined (r[uy], m[uy, us])A
11. y = pkgen’ (r[ux]) Am’ = m[uy, us] A verify’(m’, y, s)) then return(true) else
12. find u, < ny suchthat (defined(r[uy]) Ay = pkgen'(r[ux])) then return(false) else
13. return(verify(m’,y, s))

where pYf=ema(t) = ny x Succgffcma(nmmax(£s7£\,),t + (nk — 1)(tpkgen + tskgen + Nstsign(ls)) + (i +
ny — 1)(tverify(gv) + tﬁnd<nS7€V)) + nvtﬁnd(nhgpkey)); tpkgeny tskgen; tsign(g); tverify(g) are the times f07“
one evaluation of pkgen, skgen, sign, verify respectively, with a message of length at most £; tgna(n, £)
is the time of a find that looks up a bit-string of length at most £ in an array of at most n cells;

Automated Security Proofs with Sequences of Games 19

Upkey is the mazimum length of a key in pkey; s = max; cn ny]ic(1,n.) length(mlix, is]); and £, =
max; e1,n,]length(m’[i,]).

As for one-wayness, this equivalence considers ny keys instead of a single one. We denote by ng the
number of signature queries for each key and by n. the total number of verification queries. We use
primed function symbols to avoid the repeated application of the transformation of the left-hand
side into the right-hand side. Note that we use verify and not verify’ at line 13 in order to allow a
repeated application of the transformation with a different key. The first three lines of each side of
the equivalence express that the generation of public keys and the computation of the signature are
left unchanged in the transformation. The verification of a signature verify(m’,y, s) is replaced with
a lookup in the previously computed signatures: if the signature is verified using one of the keys
pkgen’ (r[uy]) (that is, if y = pkgen'(r[ux])), then it can be valid only when it has been computed by
the signature oracle sign’(m, skgen’(r[uy])), that is, when m’ = m[uy, us] for some us. Lines 10-11 try
to find such wi and wug and return true when they succeed. Line 12 returns false when no such ug
is found in lines 10-11, but y = pkgen’(r[uk]) for some uy. The last line handles the case when the
key y is not pkgen’(r[uy]). In this case, we verify the signature as before. The indication all at line 4
instructs the prover to transform all occurrences of function verify into the corresponding right-hand
side.

Proof. We denote by L the left-hand side of the equivalence above and by R its right-hand side, after

expanding the abbreviation foreach i, < ny do r & seed into foreach ix < nx do Ogr() :=r &

seed;return, and show that L ~juf—cma .
By definition of UF-CMA, the process LR defined in Section 3.2 executes event forge with prob-

ability at most Succgffcma(ns,é, t) in the presence of a context that runs in time ¢ where ¢ is the

maximum length of m and m’. By Lemma 3, ni x LR executes event forge with probability at most

ng X Succgf_cma(ns, max(¢,,0,),t+ (nx — 1)trr), where t1r = tpkgen + tskgen + Nstsign (£s) + tverify (£4,) +

tand (Ns, £4,), € = MaX;, (1 ny],i.e[1,n.] length(ml[iy, is]), and £, = max; (1 n,] length(m/[iy]).

nx X LR = foreach i, < ny do

Ogen() :=r £ seed; pk — pkgen(r); sk < skgen(r); return(pk);
(foreach is < ngs do OS(m : bitstring) := return(sign(m, sk))
| OT(m/ : bitstring, s : signature) := if verify(m', pk, s) then
find us < ng suchthat (defined(m[ix, us]) A m’ = m[ix,us]) then end else event forge)

Let

C =newOracle Ogen; newOracle OS;newOracle OT; ([]
| foreach iy < ny do Ogr() := pk — Ogenlix](); return;
(Opk() := return(pk)
| foreach is < ng do OS’(m : bitstring) := s < OS[ix, is)(m); return(s))
| foreach i, < n, do OV (m' : bitstring,y : pkey, s : signature) :=
find ux < nk suchthat (defined(pk[uk]) Ay = pk[uk]) then
if verify(m/, y, s) then
find us < ng suchthat (defined(m|uy, us|) A m’ = mfuy, us]) then
return(true) else OT [uy](m’, s)
else return(false)

else return(verify(m’,y, s)))
By Lemma 1, Property 5, C[ny x LR] executes event forge with probability at most ny x Succéfﬁcma (ns,
max({g, by), t+(nk—1)tLr+tc) where C runs in time tc = ny (tverify (bv) +tfind (ks Lpkey) +tind (s, £y))-
Let t/ == (nk - 1)tLR +tC S (nk - 1) (tpkgen +tskgen +nstsign (Es)) + (le +ny,— 1) (tverify (Ev) +tﬁnd (n57 EV)) +

20 Bruno Blanchet and David Pointcheval

Nytaind (M, Lpkey), since £ < £s and £, < £,. Let puf=cma(¢) = ny x Succgffcma(ns,max(fslv),t +).
Let

LR" =foreach i < ny do Ogr() :=r & seed; return;
(Opk() := return(pkgen(r))
| foreach is < ng do OS’(m : bitstring) := return(sign(m, skgen(r))))
| foreach i, < n, do OV (m' : bitstring,y : pkey, s : signature) :=
find uy < ni suchthat (defined(pk|uy]) Ay = pkuy]) then
if verify(m’,y, s) then
find us < ng suchthat (defined(m|uy, us]) A m’ = mfuy, us]) then
return(true) else event forge
else return(false)

else return(verify(m’,y, s))

By inlining the calls to oracles Ogen, OS, and OT, we can easily see that each prefix of a trace
C[nx x LR] until the first execution of event forge can be simulated by LR”, and conversely. Indeed,
when C' calls OT[ug](m’, s), C has checked that s is a forged signature of m’ under the key pk[uy], so
nx X LR always executes event forge when receiving this call. Therefore LR" executes event forge
with probability at most p“f—m2. By Lemma 2,

LR"{return(true)/event forge} ~ - LR"{return(false)/event forge}.

The process find . . . then return(true) else return(true) can be replaced with return(true), the pro-
cess if verify(m’,y, s) then return(true) else return(false) can be replaced with return(verify(m’,y,
s)), and the process find . . . then return(verify(m/, y, s)) else return(verify(m’,y, s)) can be replaced
with return(verify(m’,y, s)) without changing the behavior of the process, so we have the equiva-
lence LR"{return(true)/event forge} ~q L. By reorganizing finds, we can prove the equivalence
LR"{return(false)/event forge} ~(R. Hence L ~u—cm R. O

C Automatic Proof of the FDH Signature Example

In this appendix, we give detailed explanations on the proof automatically generated by our prover
for the FDH example. Starting from the initial game @ given in Section 2.1, the prover first tries
to apply a cryptographic transformation. It succeeds applying the security of the hash function (8).
Then each argument of a call to hash is first stored in an intermediate variable, x19 for m’, xo; for m,
and xo3 for x, and each occurrence of a call to hash is replaced with a lookup in the three arrays that
contain arguments of calls to hash, z19, 21, and z23. When the argument of hash is found in one of
these arrays, the returned result is the same as the result previously returned by hash. Otherwise, we
pick a fresh random number and return it. Therefore, we obtain the following game. (In this game,
the identifiers @i are generated by the prover. We use the special character @ just to distinguish
them from identifiers chosen by the user.)

(
foreach iH13 < qH do

OH (z : bitstring) :=

Ta3 : bitstring «— x;

find suchthat defined(z19, 7158) A (223 = 719) then
return(rg)

D @i29 S qS suchthat deﬁned(x21[@i29], 7"20[@2'29}) A ($23 = 1821[@’5'29}) then
return(ryo[@Qigg))

@ Qisg < gH suchthat deﬁl’led(xgg[@igg], 729 [@128]) A\ (11323 = $23[@i28]) then
return(rz[Qisg))

else

Automated Security Proofs with Sequences of Games 21

ro2 & D;
return(rys)

Ogen() =
r& seed;
pk : pkey «— pkgen(r);
sk : skey < skgen(r);
return(pk);
(
foreach 514 < ¢S do
OS(m : bitstring) :=
To1 : bitstring «— m;
find suchthat defined(zg, r15) A (221 = 719) then
return(invf(sk, r1g))
@ Qigr < ¢S suchthat defined (2 [Qigr], 190[Qigr]) A (221 = 221[Qigr]) then
return(invf(sk, ro0[@Qisr]))
D @ig@ < qH suchthat deﬁl’led(l’gg [@igg], ng[@igﬁ]) A (3321 = -7323[@2.26}) then
return(invf(sk, ro2[@Qigg]))
else
r20 - D;
return(invf(sk, ra9))

OT(m' : bitstring,s : D) :=
T19 : bitstring «— m’;
1 find suchthat defined(z;9,m15) A (719 = 219) then
if (f(pk,s) = rig) then
find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge
2 ® Qiss < ¢S suchthat deﬁl’led(xgl[@igg,}, T’QQ[@iQ5]) A\ ($19 = 3721[@i25]) then

3 if (f(pk, S) = Tgo[@i25]) then
4 find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else

event forge
D @i24 < qH suchthat deﬁl’led(l’gz; [@i24], ng[@ig4]) A (.7319 = .7)23[@2'24}) then
if (f(pl{?, S) = TQQ[@i24]) then
find u < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge
else
g & D;
if (f(pk,s) = rg) then
find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge

)
)

This game is automatically simplified as follows: The test at line 1 always fails since r1g is not defined
at this point. (It is defined only in the else branch of the find.) The variables 19, z21, and xa3 are

22 Bruno Blanchet and David Pointcheval

substituted with their value, respectively m’, m, and x. After this substitution, the values assigned to
Z19, T21, and x93 are no longer important, so they are replaced with constants cst_bitstring. (The fact
that these variables are defined is tested in conditions of find, so the assignments cannot be removed
completely.) Finally, the find at line 4 always succeeds, with u = @Qis5, due to the find are line 2. So
the else branch of the find at line 4 can be removed, hence the find at line 4 and the three following
lines can be replaced with end, and therefore lines 3, 4, and the three following lines can be replaced
with end.

Then, the prover tries to apply a cryptographic transformation. All transformations fail, but when
applying (6), the game contains invf(sk, y) while (6) expects invf(skgen(r), y), which suggests to remove
assignments to variable sk for it to succeed. So the prover performs this removal: it substitutes skgen(r)
for sk and removes the assignment sk : skey < skgen(r). The transformation (6) is then retried. It now
succeeds, which leads to replacing r; with f(pkgen(r),r;) and invf(skgen(r), r;) with r;. We obtain the
following game:

(

foreach iH,3 < qH do

OH (z : bitstring) :=

Xo3 @ bitstring «— cst_bitstring;

find suchthat defined(m/’, z19,715) A (z = m’) then
return(f(pkgen(r), r1s))

@ Qigg < ¢S suchthat defined(m[Qigg], 221[Qiag], 720[Qiag]) A (z = m[Qigg]) then
return(f(pkgen(r), r20[@igg]))

® Qigg < ¢H suchthat defined(z[Qigg), 223[Qigg], T22[Qigg]) A (z = z[Qizs]) then
return(f(pkgen(r), ro2[@isg]))

else
T22 ﬁ D;
return(f(pkgen(r), r22))

Ogen() :=
R
r « seed;

pk : pkey «— pkgen(r);
return(pk);

foreach 514 < ¢S do

OS(m : bitstring) =

Zo1 : bitstring < cst_bitstring;

find suchthat defined(m/’, z19,m15) A (m = m’) then
return(rg)

@ Qig7 < ¢S suchthat defined(m[Qigr], 221 [Qiar], 120[Qigr]) A (m = m[Qiyr]) then
return(ryg[Q@igr])

@ Qig < gH suchthat defined(z[Qigg), 223[Qigg], 122[Qigg]) A (m = z[Qigg]) then
return(rys[Qigg))

else
720 & D;
return(ry)

OT(m/' : bitstring,s : D) :=
Tyg : bitstring < cst_bitstring;
find @i25 S qS suchthat deﬁned(m[@i25], Igl[@i25], 1"20[@i25]) AN (m’ = m[@z%D then
end
@ Qigy < gH suchthat defined(z[Qigy], 203[Qiog], 192[Qing]) A (m' = z[Qioy]) then
if (f(pk,s) = f(pkgen(r), r22[@Qigy])) then
find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end

Automated Security Proofs with Sequences of Games 23

else

event forge
else

718 & D;

if (f(pk,s) = f(pkgen(r), rs)) then

find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end

else
event forge

)
)

This game is automatically simplified as follows. In this game, it is useless to test whether zo3[i] is
defined, since when we require that xo3[i] is defined, we also require that ro5[i] is defined, and if rog[i]
is defined, then z53[i] has been defined before. So the prover removes xo3[i] from defined tests, and
removes the assignments to zo3, which is no longer used. The situation is similar for x19 and xo;.

By injectivity of f, the prover replaces three occurrences of terms of the form f(pk, s) = f(pkgen(r),
rj) with s = r;, knowing pk = pkgen(r).

The prover then tries to apply cryptographic transformations. It succeeds using the definition
of one-wayness (3). This transformation leads to replacing f(pkgen(r),r;) with f'(pkgen’(r),r;), r;
with kj : bitstring < mark;r;, and s = r; with if defined(k;) then s =r; else false. Actually, the
replacement is however a bit more complicated: k47[i] is defined for some 7 when 715 is used, so we
replace s = r1g with a lookup that returns s = r1g when ky7[i] is defined for some i and false otherwise:
find @Qi53 < N suchthat defined(k47[@Qi53]) then s = r15 else false. Similarly, kso[i] is defined when
r99[@igg[i]] is used, so we replace s = ros[@igy] with a lookup that returns s = ro9[@igg] when rog[@igy]
is used, that is, when kso[i] is defined for some i such that @Qioy = @iggli], and false otherwise: find
@i56 < N suchthat deﬁned(k50[@i56]) 74\ (@i24 = @igﬁ[@if,ﬁ]) then s = 7“22[@2'24} else false. The
difference of probability is p®(t + t') = nx X ng x Succy'(t + ' + (nxng — L)te + (nk — 1)tpkgen) =
(¢H + ¢S + 1)Succy’(t + t' + (¢H + ¢S)ts) where nx = 1 is the number of key pairs considered,
ng = ¢H + ¢S + 1 is the number of antecedents of f, and ¢’ = (3¢S +2¢H + qS? +2qSqH + qH?)teq(¢)
is the runtime of the context put around the equivalence (3). After this transformation, we obtain the
following game:

(

foreach iHq3 < qH do

OH (x : bitstring) :=

find suchthat defined(m/’, r,m5) A (z = m’) then
return(f’(pkgen’(r), r15))

® Qigg < ¢S5 suchthat defined(m[Qigg), 7, r20[@Qigg]) A (z = m[Qigg]) then
return(f’(pkgen’(r), 7“20[@2'29}))

® Qigg < ¢H suchthat defined(z[Qigg), 122[Qigs]) A (z = 2[Qigg]) then
return(f’(pkgen’ (1), ra2[@igg]))

else
raz & D;
return(f’(pkgen’(r), r22))

Ogen() =
R
r « seed;
pk : pkey < pkgen’(r);
return(pk);
(
foreach 1514 < ¢S do
1 OS(m: bitstring) :=
2 find suchthat defined(m/’, rig) A (m = m’) then

24 Bruno Blanchet and David Pointcheval

3 ka7 : bitstring < mark;
return(rig)
@ Qiy7 < ¢S suchthat defined(m[Qis7], 120[Qia7]) A (M = m[Qiy7]) then
kyg : bitstring < mark;
return(ry[Q@igr])
4 @ Qig < ¢H suchthat defined(z[Qigg], 192[@igg]) A (m = 2[@ige]) then
5 kso : bitstring < mark;
return(rys[Qigg))
else
r20 < D;
kys @ bitstring < mark;
return(ry)

OT(m' : bitstring,s : D) :=
find @Qig5 < ¢S suchthat defined(ro[@igs], m[@Qigs]) A (m' = m[Qigs]) then
end
6 D @Z'24 < qH suchthat deﬁned(m[@im}, TQQ[@i24]) N (m’ = .73[@224}) then
find @i56 < qS suchthat deﬁned(k50[@i56]) A (@i24 = @ig(g[@ig,@]) then
if (s = ry2[@igy]) then
8 find u < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge
else
9 if false then
find u < ¢5 suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge
else

EN|

rs & D;
10 find Qi535 < ¢S suchthat defined(ks7[Qi53]) then
if (s = rig) then
11 find u < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge
else
12 if false then
find v < ¢S suchthat defined(m[u]) A (m’ = m[u]) then
end
else
event forge

)
)

The prover then simplifies the obtained game automatically. The tests if false then... at lines 9
and 12 are obviously simplified out. The finds at lines 8 and 11 always succeed:

— At line 11, k47[@i53] is defined according to the condition of the find at line 10. Since k47 is defined
only at line 3, m[@is3] is then defined (line 1) and m[@is3] = m’ by the condition of the find at
line 2. So the find at line 11 succeeds with u = Qi53.

— At line 8, k50[@i5g] is defined by the condition of the find at line 7. Since k5o is defined only at
line 5, m[@isg] is defined (line 1), and m[Qisg] = 2[Qige[@Qisg)] by the condition of the find at
line 4, @Qiq6[Qisg] = Qigy by the condition of the find at line 7, and m’ = z[@iy4] by the condition

Automated Security Proofs with Sequences of Games 25

of the find at line 6, so m[@igg] = 2[Qigg[Qisg]] = 2[Qiog] = m'. So the find at line 8 succeeds
with v = @i56.

Therefore, the else branches of the finds at lines 8 and 11 can be removed, hence these finds can
themselves be replaced with end, and therefore the test that precedes these finds can also be replaced
with end.

After these simplifications, event forge has been removed, so the probability that event forge
is executed in the final game is 0. Therefore, exploiting Lemma 1, Properties 2 and 3, the system
concludes that the initial game executes event forge with probability p(t) < (¢H + ¢S + 1)Succy' (¢t +
t' + (gH + qS)ts) where t' = (3¢S + 2¢H + qS? + 2qSqH + qH?)teq(¢) is the runtime of context put
around the equivalence (3). (The only transformation that introduced a difference of probability is
the application of one-wayness (3).)

