Vol.38 Mar. 2002 pp.326-330

金属间化物 $Nd(Fe_{1-x}Co_x)_{10}V_2$ 的磁性能机制 *

罗广圣

曾贻伟

(南昌大学化学与材料科学学院、南昌 330047)

(北京师范大学物理系, 北京 100875)

通过 X 射线衍射,磁测量和 Mössbauer 谱测定了 $\mathrm{Nd}(\mathrm{Fe}_{1-x}\mathrm{Co}_x)_{10}\mathrm{V}_2$ 的结构和截性,结果表明, $Nd(Fe_{1-z}Co_z)_{10}V_2(x=0,0.05,0.10,0.15,0.20)$ 化合物的晶体结构均为 $ThMn_{12}$ 型结构: 随着 Co 含量 x 的增大、 晶格常 數將单调減少. ${
m Co}$ 原子的替代将导致化合物各个 ${
m Fe}$ 晶位上的磁超精细场值 $B_{
m hf}$ 逐渐增加. ${
m Co}$ 都分取代 ${
m Nd}({
m Fe}_{1-a}{
m Co}_a)_{20}{
m V}_2$ 中的 ${
m Fe}$ 原子时,将择优占据 8i 铁晶位 取向样品 ${
m NdFe_{10}V_2}$ 的热磁曲线和变温 ${
m M\"ossbauer}$ 潜研究结果表明,该化合物在 T=120 K 条件下存在自旋重取向现象

关键词 $\operatorname{Nd}(\operatorname{Fe}_{1-x}\operatorname{Co}_x)_{10}\operatorname{V}_2$,择优占位、自旋重取向,饱和磁矩, Mössbauer 谱

中間法分类号 TG132.2

文献标识码 A

文章编号 0412-1961(2002)03-0326-05

MAGNETIC PROPERTY MECHANISM OF THE INTER-METALLIC COMPOUNDS $Nd(Fe_{1-x}Co_x)_{10}V_2$

LUO Guangsheng

College of Chemistry and Material Sciences, Nanchang University, Nanchang 330047

Department of Physics, Beijing Normal University, Beijing 100875

Correspondent: LUO Guangsheng, associate professor, Tel: (0791)8100305, Fax: (0791)8304102

Supported by Natural Science Foundation of Jiangxi Province (No.150014)

Manuscript received 2001-04-17, in revised form 2001-09-19

ABSTRACT The crystal structure and magnetic properties of $Nd(Fe_{1-x}Co_x)_{10}V_2$ have been measured by X-ray diffraction, magnetic properties measurements and Mössbauer spectroscopy methods. The following conclusions are obtained: all $Nd(Fe_{1-x}Co_x)_{10}V_2(x=0, 0.05, 0.10, 0.15, 0.20)$ compounds crystallize in ThMn₁₂-type structure, the lattice constants decrease monotonically with increasing of Co atom concentration. Substitution of Co for Fe leads to a monotonic increase of the hyperfine interaction field B_{hf} on all Fe sites. Furthermore, the experiment results show that Co atom occupies preferentially 8i Fe site in $Nd(Fe_{1-x}Co_x)_{10}V_2$ compounds. The experimental results of theromagnetic curves and Mössbauer spectroscopy at different temperatures indicate that there exists a spin reorientation at T=120 K in the oriented sample NdFe₁₀V₂.

KEY WORDS $Nd(Fe_{1-x}Co_x)_{10}V_2$, preferential occupation, spin reorientation, saturation atom moment, Mössbauer spectroscopy

最近几年,新型稀土 (RE) —过渡族 (T) 金属间化 合物水磁材料的探索集中在 1 : 12, 2 : 17 和 3 : 29 型稀土铁基化合物上 [1],在探索新型稀土永磁材料的过 程中,人们发现利用磁性元素 Co, Ni 或非磁性元素 Al, Ga, Si 等替代 1 : 12 型 RE-Fe 化合物中的 Fe, 可以 有效提高材料的内票永磁性能 [2,3] 在 1 : 12 型化合物 中,存在三个不等价过渡族晶位: 8i,8j 和 8f,它们对

象主要基于以下考虑: (1)V 原子为磁中性原子,没有 磁矩,可以集中研究 RE 与 Fe 之间的相互作用; (2) $REFe_{12-x}V_x$ 中,当 x=2 时磁性能最好;(3) $REFe_{10}V_2$ 中、当 RE 为 Nd 时的 NdFe₁₀V₂ 磁性能较好. 考虑到 $NdFe_{10}V_2$ 的 Curie 温度 T_C (570 K) 比 $SmCo_5$ 的 T_C 要低,探讨用 Co 原子部分替代 Fe 原子,研究替代效 应对其结构和磁性能的影响以及 Co 原子的占位情况和 自旋重取向等磁性能微观机制有重要意义, 本文报道了通 过 X 射线衍射、磁测量和 Mössbauer 谱研究 Co 替代

 $NdFe_{10}V_2$ 中的 Fe 对化合物结构和**磁性能的影响**。

化合物的内禀磁性贡献不同。选择 NdFe10V2 为研究对

收到初稿日期: 2001-04-17, 收到修改稿日期: 2001-09-19

作者簡介: 罗广圣, 男. 1970 年生, 副教授, 硕士

^{*} 江西省自然科学基金资助项目 1500147

1 实验方法

纯度超过 99.9% 的 Nd, Fe, Co 和 V 原料, 按分子式配比**称量**后、利用电弧炉在高纯 Ar 气保护下熔炼成 Nd(Fe_{1-x}Co_x)₁₀V₂(x=0, 0.05, 0.10, 0.15, 0.20) 合金锭子, 每个合金熔炼 3 次以保证均匀、然后在 10^{-3} Pa 的高真空条件下在 1120 K 退火处理二周、再随炉冷却至室温。

取向样品的制备方法为:将退火后的样品粉碎研细后,用环氧树脂少许调匀后放入模具中,在 1 T 的强磁场中磁化 8-10 h,待样品固化后取出即为取向样品,供Mössbauer 诸测量用的取向样品为半径 7 mm 的圆形薄片,厚度为 0.5 mm,磁化方向垂直于薄片所在平面,用日本理学 D/\max -rc 型 X 射线衍射仪 (Cu K_{α} , 石墨单色器) 对 $Nd(Fe_{1-x}Co_x)_{10}V_2(x=0,0.05,0.10,0.15,0.20)$ 化合物粉末样品进行 X 射线衍射实验,扫描范围 2θ 为 20° — 100° .

用 MS-500 型匀加速透射 Mössbauer 谱仪对 $Nd(Fe_{1-x}Co_x)_{10}V_2(x=0, 0.10, 0.20)$ 进行了室温 290 K 和低温 80 K 条件下的 Mössbauer 谱测量. γ射 线源是 57Co/Pd (源强 25mCi). 室温样品为均匀的厚度 为 30 mg/cm^2 的吸收体; 低温样品为直径 14 mm, 厚度 30 μ m 的薄片样品、 γ 射线方向与薄片样品所在平面的法 线方向平行, 通过收集室温条件下 25 μ m 厚的 α -Fe 箔标 准吸收体的 Mössbauer 诸来标定速度,低温与室温条件 下的所有 Mössbauer 诸数据都是通过 MOSFUN 专用程 序根据最小二乘法原理来拟合分析的, 拟合的 Mössbauer 谱包络谱是由五套独立的 Fe 晶位的 Lorentzs 六线谱以 及杂质相的一套双线谱和一套单线谱叠加而成. 拟合过程 中各个 Fe 晶位及其子晶位的谱线强度比根据子谱分裂情 况约束为: 2:1:1:1:1, 分别对应 8i, $8j_1$, $8j_2$, $8f_1$ 和 $8f_2$ 子谱强度. 拟合时、 $(8j_1, 8j_2), (8f_1, 8f_2)$ 两 个 Fe 晶位上对应的两个子晶位产生的六线谱分别具有相 同的同质异能移 IS 和电四极分裂值 QS, 四套六线谱的宽 度限制为相等 每套磁分裂谱的宽度根据 Mössbauer 谱 学原理限制为 $\Gamma_{1.6} > \Gamma_{2.5} > \Gamma_{3.4}$.

对 NdFe₁₀V₂ 取向样品进行了 90, 120, 160, 200 和 290 K 等不同温度条件下的变温 Mössbauer 谱测 量. 不同温度条件下的所有 Mössbauer 博數繼都是通过 MOSFUN 专用程序根据最小二乘法原理来拟合分析的. 对 NdFe₁₀ V_2 取向样品同时利用提拉样品藏强计进行了低温条件 (T < 200 K) 下的热磁曲线 (M-T) 测量,外磁场强度为 0.1 T.

2 实验结果与讨论

X 射线衍射实验结果表明,用 Co 原子部分替代 $NdFe_{10}V_2$ 中的 Fe 原子形成 $Nd(Fe_{1-x}Co_x)_{10}V_2$ 化合物、当 Co 的含量 x 为 0, 0.05, 0.10, 0.15, 0.20 时,所有样品晶体结构均保持 $ThMn_{12}$ 型四方结构不变,空间群为 I4/mmm. 进一步分析表明,所有样品除主相 $ThMn_{12}$ 型结构外,还存在少量顺磁性富 Nd 相和具有 CaCl 结构的杂质相,杂质相含量小于 5%.

表 1 列出了 $Nd(Fe_{1-x}Co_x)_{10}V_2(x=0, 0.05, 0.10, 0.15, 0.20)$ 粉末样品的晶格常数 a,c 和晶胞体积 V 等参数. 由表 1 可知, Co 原子部分替代 Fe 原子形成 $Nd(Fe_{1-x}Co_x)_{10}V_2$ 化合物、随着 Co 含量 x 的增加,晶格常数 a,c 均呈单调下降趋势、晶胞体积 V 也呈单调下降趋势、这是因为 Co 原子的半径比 Fe 原子的半径小、Co 原子的替代产生了局域晶格收缩,从而导致晶胞体积减小。

在 ThMn12 型结构中稀土原子占据一个 2a 晶位、 过渡金属原子占据三个结晶学不等效晶位 (8i, 8j, 8f). $ThMn_{12}$ 型结构各个晶位的近邻环境为: 2a(1, 4, 8, 8), 8i(1, 5, 4, 4), 8j(2, 4, 4, 2), 8f(2, 4, 2, 4), 其中四个指 标数表征 2a, 8i, 8j 和 8f 四个晶位相对不同晶位的最近 邻原子数、这样 8i 晶位的 Fe 近邻数最多, 为 13 个, 从而 8i 晶位的超精细场 Bhf 值最大; 而 8j, 8f 两个晶位的 子谱总强度以及近邻环境均相近,但其超精细场 B_{hf} 值 通过能带结构计算可判定为: $B_{hf}(8j) > B_{hf}(8f)$. 因 此、三个不等价铁晶位的超精细场值 B_{hf} 由大到小的順 序为: $B_{\rm hf}(8i) > B_{\rm hf}(8j) > B_{\rm hf}(8f)$. V 原子为截中 性原子、 V 原子在三个不等价铁晶位上的择优占位,使 得同一铁晶位上的 Fe 原子在不同晶胞中存在不同的近邻 环境, 从而构成超精细场的分布, 结合考虑偶极场的贡献 以及易磁化方向与电场梯度主轴之间夹角不同, 拟合过程 中 8j 和 8f 晶位分别由两套子谱 $(8j_1, 8j_2), (8f_1, 8f_2)$

表 1 Nd(Fe_{1-z}Co_z)₁₀V₂ 化合物的晶格常数 a, c 和晶胞体积 VTable 1 The lattice parameters a, c and the unit-cell volume V of the Nd(Fe_{1-z}Co_x)₁₀V₂ compounds

Composition	a, nm	c, nm	V, nm ³	$\Delta V/V$	Structure
x=0	0.8577	0.4796	0.3528	0	ThMn ₁₂
x = 0.05	0,8571	0.4794	0.3522	-0.17%	$ThMn_{12}$
x = 0.10	0.8561	0.4790	0.3511	-0.48%	ThMn ₁₂
x = 0.15	0.8554	0.4786	0.3502	-0.74%	ThMn ₁₂
x = 0.20	0.8549	0.4784	0.3496	-0.91%	ThMn ₁₂

构成、 8i 晶位用一套六线谱拟合、 $8j_1$, $8j_2$ 为 8j 晶位的两个子晶位、 $8f_1$, $8f_2$ 为 8f 晶位的两个子晶位、 这样用五套六线谱拟合、另外、考虑到杂质相的存在、增加一套双线谱(顺磁性富 Nd 相)及一套单线谱(CsCl 结构 FeV 相、对称性程度很高、电四极分裂值 QS 可视为零)参加拟合、拟合时、 $(8j_1, 8j_2)$. $(8f_1, 8f_2)$ 两个晶位上对应两个子晶位产生的六线谱分别具有相同的 IS, QS 值、强度比均约束为 1:1, 四套六线谱的宽度限制为相等. 对 Nd(Fe_{1-x}Co_x)₁₀V₂(x=0, 0.10, 0.20) 三个粉末样品在室温 290 K 和低温 80 K 两种温度条件下的Mössbauer 谱进行了拟合、低温与室温两种条件下拟合方法一样. Nd(Fe_{1-x}Co_x)₁₀V₂(x=0, 0.10, 0.20) 的室温 290 K 和低温 80 K 的 Mössbauer 谱以及拟合结果分别示于图 1 和表 2(表 2 中的 IS 为相对于室温条件下 α -Fe 的同质异能移).

由表 2 可知、室温 290 K 的各个 Fe 晶位的同质异能移 IS 均比低温 80 K 的值小、这一实验现象是由于二次 Doppler 能移对同质异能移的贡献. 从表 2 中不同 Fe 晶位的同质异能移 IS 值可知. 随着 Co 含量 x 的增加. 同质异能移 IS 整体没有出现规律性的变化. 这一现象是由于掺入 Co 原子后、晶格常数减小、电子密度增大. 导致同质异能移 IS 减小;同时、Co 原子掺入之后成为 Fe 原子的近邻、使 Fe 原子成为 3d 电子的接受者. 从而对 s 电子的屏蔽作用增大、促使同质异能移 IS 增加. 这两方面效应综合起来使 IS 呈现无规律性变化. 需要指出的是,在 T=290 K 时,8i 铁晶位的 IS 随 Co 含量 x 的增加而呈单调减小趋势;而在 T=80 K 时,8i 铁晶位的 IS 呈无规律性变化,这表明在低温 80 K 下热运动效应比择优占位效应更强.

从表 2 可以看出、低温 80 K 和室温 290 K 两种温度条件下的电四极分裂值 QS 均较小,且接近于零,这一

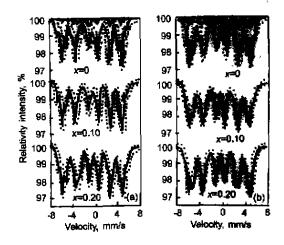


图 1 Nd(Fe_{1-x}Co_x)₁₀V₂(x=0, 0.10, 0.20) 化合物的室温 290 K 和低温 80 K 的 Mössbauer 谱图

Fig.1 Mössbauer spectra of the compounds $Nd(Fe_{1-x}Co_x)_{10}V_2(x=0, 0.10, 0.20)$ at room temperature 290 K (a) and low temperature 80 K (b)

实验现象表明不同铁晶位上 Fe 原子核的周围环境均具有较高的对称性,且与温度关系不大。但是, $T=290~\mathrm{K}$ 和 $T=80~\mathrm{K}$ 条件下的 8i 铁晶位上的电四极分裂 QS 值却较大。并有突变,x=0.10 和 0.20 的 QS 值相对于 x=0 的 QS 值有突变,且变化的绝对值较大,分别约为 0.23 和 $0.13~\mathrm{mm/s}$,并且随着 Co 含量 x 的增大,电四极分裂 QS 绝对值呈单调增加趋势。这一结果表明, Co 原子部分替代 $\mathrm{Nd}(\mathrm{Fe}_{1-x}\mathrm{Co}_x)_{10}\mathrm{V}_2$ 化合物中 Fe 原子。将择优占据 8i 铁晶位。

忽略各个 Fe 晶位上的无反冲因子之间的差异、各套 谱线的面积比等于各个 Fe 晶位上的 Fe 原子数之比. 据 此可推算出 Fe 原子在各个 Fe 晶位上的分布情况. 从而 可推知 Co 原子的占位情况. 由表 2 可知, *T*=290 K 和

表 2 Nd(Fe_{1-x}Co_x)₁₀V₂(x=0, 0.10, 0.20) 化合物在室温 290 K 和低温 80 K 条件下的 Mössbauer 潜报合结果

Table 2 Fitting results of Mössbauer spectra of the Nd(Fe_{1-x}Co_x)₁₀V₂ compounds at room temperature 290 K and low temperature 80 K

Co content	Site 8:			Site 81			Site 8f					
	IS -	QS mm/s	B _{bf} T	%	IS mm/s	QS mm/s	$B_{ m hf}$	%	IS mm/s	QS mm/s	B _{hf} T	%
	mm/s											
290K												
0	-0.080	0.042	25.55	22.0	-0.16	-0.041	21.09	39.9	-0.15	-0.14	17.65	38.2
0.10	-0.14	-0.19	26.54	15.4	-0.15	-0.0047	22.18	41.7	-0.20	-0.017	18.06	42.8
0.20	-0.23	-0.2 0	27.87	10.4	-0.17	-0.043	22.46	43.9	-0.19	-0.0034	18.06	45.7
80 K												
0	-0.030	-0.0020	27.30	22.7	-0.030	-0.017	23.85	41.2	-0.11	-0.031	19.66	36.1
0.10	0.050	-0.13	28.89	15.7	0.050	-0.040	24.07	39.2	-0.050	-0.042	19.69	45.1
0.20	-0.010	-0.21	29.39	8.3	-0.050	-0.0050	24.85	42.9	-0.07 0	0.020	20.20	48,8

T=80 K 两种温度条件下的 8i 铁晶位上的 Fe 原子数比 8j 和 8f 铁晶位上的 Fe 原子数均小得多. 约小 50%, 而 8j 铁晶位和 8f 铁晶位上的 Fe 原子数近似相同. 并且 随着 Co 含量 x 的增大 8i 铁晶位上的 Fe 原子数不断减小、 8f Fe 晶位和 8j Fe 晶位上的 Fe 原子数却不断增加. 这一实验结果形象地表明. 掺入 Co 原子后, Co 原子将择优占据 8i Fe 晶位、并造成 Fe 原子的重迁移分布.

由表 2 中不同 Fe 晶位的内磁场 $B_{\rm hf}$ 值可知. T=290 K 和 T=80 K 两种条件下各个 Fe 晶位上的磁超精细场值 $B_{\rm hf}$ 随着 Co 含量 x 的增大而不断增大,这一实验事实可用 Slater-Pauling 曲线 $^{[4]}$ 解释. 随着 Co 原子作为 Fe 原子近邻的原子数的增加,自旋向上的 3d 带中空穴数不断减少,而自旋向下的 3d 带中空穴数则不断增加,这样合金的总磁矩将增大,因而磁超精细场 $B_{\rm hf}$ 随 Co 含量 x 增大而不断增加,另外,T=290 K 和 T=80 K 下 8j 和 8f Fe 晶位上的 $B_{\rm hf}$ 值随 x 的变化不大,而 8i Fe 晶位上的的 $B_{\rm hf}$ 值随 x 的增大而不断增加,且增加的幅度较大,这表明 Co 原子将择优占据 8i Fe 晶位,由表 2还可知,T=290 K 下各个 Fe 晶位的 $B_{\rm hf}$ 值比 T=80 K 下的值要小,这是由于自发磁化强度随温度升高而逐渐衰减的缘故。

根据关系式: $B_{\rm hf}=A_i\mu_i$ 、可以求出各个 Fe 晶位上的局域原子磁矩. 总的平均原子磁矩以及总的饱和原子磁矩[5]。比例因子 A_i 只与晶体结构有关、对不同Fe 晶位以及不同温度条件下则近似相同。在 ThMn $_{12}$ 型结构中, A_i 可选取为 $14.5~{\rm T}/\mu{\rm B}$. 由此可以推算出。在低温 80 K 条件下, Nd(${\rm Fe}_{1-x}{\rm Co}_x$) $_{10}{\rm V}_2(x=0,0.10,0.20)$ 化合物三个不等价 Fe 晶位 8i. 8j 和 8f 的局域原子磁矩及总的平均原子磁矩分别为: 1.88, 1.64, 1.36, $1.63~\mu{\rm B}(x=0)$; 1.99, 1.66, 1.36, $1.67~\mu{\rm B}(x=0.10)$; 2.03, 1.71, 1.39, $1.71~\mu{\rm B}(x=0.20)$. 这样进一步可推出 Nd(${\rm Fe}_{1-x}{\rm Co}_x$) $_{10}{\rm V}_2(x=0,0.10,0.20)$ 化合物总的饱和原子磁矩分别为: 1.65, 1.70, $1.75~\mu{\rm B}$. 另外, $T=290~{\rm K}$ 和 $T=80~{\rm K}~{\rm Nd}({\rm Fe}_{1-x}{\rm Co}_x)_{10}{\rm V}_2(x=0,0.10,0.20)$ 总的平均磁超精细场值 $B_{\rm hfa}$ 可分别推算为: 21.43, 22.26, $22.80~{\rm T}(T=290~{\rm K})$, 23.60, 24.22, $24.81~{\rm T}(T=80~{\rm K})$.

在拟合 $NdFe_{10}V_2$ 取向样品的变温 Mössbauer 谱时,过渡金属原子占据的三个不等效晶位 8i, 8j, 8f 各只用一套六线谱拟合,再加上一套双线谱 (顺磁性富 Nd 相)及一套单线谱 (CsCl 结构 FeV 相,对称性程度很高,电四极分裂值 QS 可视为零)参加拟合,并且要求三套六线谱的二、五线强度放开拟合,而其宽度限制为相等。图 2为 $NdFe_{10}V_2$ 取向样品在 90, 120, 160 和 200 K 等不同温度下的变温 Mössbauer 谱图.

对取向样品 NdFe₁₀V₂ 在 90, 120, 160, 200, 290 K

等不同温度条件下的平均夹角 θ_{av} 进行了计算、计算结果分别为 90° , 85° , 52° , 8° , 0° . 由平均夹角 θ_{av} 与温度的关系可知, $NdFe_{10}V_2$ 化合物在室温下呈现易 c 轴各向异性、随着温度的逐渐降低,平均夹角 θ_{av} 逐漸增加,这表明 $NdFe_{10}V_2$ 化合物易磁化方向逐渐偏离 c 轴,在温度下降到 120 K 时发生自旋重取向现象、即其截结构由易 c 轴各向异性转至易 c 平面各向异性 [e] . $NdFe_{10}V_2$ 取向样品的低温热磁曲线 (M-T) 示于图 3 由图 3 可明显看出 $NdFe_{10}V_2$ 化合物在 T=120 K 温度下发生自旋重取向现象,与 Mössbauer 谱结果吻合得很好。

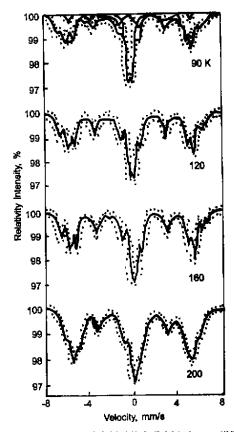


图 2 NdFe₁₀V₂ 取向样品的变温 Mössbauer 谱图

Fig.2 Mössbauer spectra of the oriented sample NdFe₁₀V₂ at different temperatures

在室温下、NdFe₁₀V₂ 化合物呈现易 c 釉各向异性、而在 T=120 K 下其磁结构变至易 c 平面各向异性。这一实验现象表明、 NdFe₁₀V₂ 化合物具有较强的室温单轴各向异性。在 NdFe₁₀V₂ 化合物中、稀土 Nd 原子占据一个 2a 晶位,过渡金属 Fe 原子占据三个结晶学不等效晶位 8i, 8j, 8f, 磁中性 V 原子在三个不等价铁晶位上择优占位,导致 Fe 亚晶格单轴各向异性增强,从而NdFe₁₀V₂ 化合物在室温下具有较强的单轴各向异性。Co 替代 NdFe₁₀V₂ 化合物中的 Fe 原子,Co 择优占据 8i 晶位,呈现面各向异性,随着 Co 原子含量的增加,Fe—Co 亚晶格的单轴各向异性将减弱,导致 Nd(Fe_{1-a}Co_a)₁₀V₂

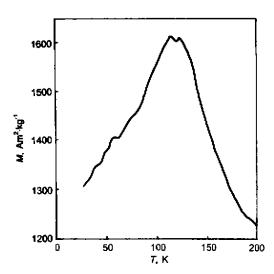


图 3 NdFe $_{10}$ V₂ 取向样品的热磁曲线 Fig.3 M-T curve of the oriented sample NdFe $_{10}$ V₂

化合物的易 c 轴各向异性减弱、这样 $Nd(Fe_{1-x}Co_x)_{10}V_2$ 化合物的自旋重取向温度 T_{sr} 将在 120 K 温度以下逐渐减小。 $NdFe_{10}V_2$ 化合物具有最高的自旋重取向温度 [7].

3 结论

通过对金属间化物 $Nd(Fe_{1-x}Co_x)_{10}V_2$ 的磁性能机

制进行研究,可得出以下结论:

- (1) Co 原子的替代, 导致晶格常数的减小和各个 Fe 晶位磁超精细场的增加, 但仍保持 ThMn₁₂ 型晶体结构 不变.
- (2) Co 原子择优占据 8i Fe 晶位, 使得化合物的酸结构发生变化.
- (3) $NdFe_{10}V_2$ 化合物在 T=120 K 温度下存在自旋 重取向现象.

参考文献

- Han X F, Yang F M, Zhu J J, Pan H G, Wang Y G, Wang J L, Tang N, Zhao R W. J Appl Phys, 1997; 81: 3248
- [2] Wang J L, Tang N, Bruck E, Zheo R W, Yang F M, de Boer F R. J Appl Phys, 1997; 81: 5131
- [3] Shen B G, Cheng Z H, Liang B, Guo H Q, Zhang J X, Gong H Y, Wang F W, Yan Q W, Zhan W S. Appl Phys Lett, 1995; 67: 1621
- [4] Yang Y C, Sun H, Zhang Z Y, Shen B G, Hu B P, de Boer F R. Sol Stat Commun, 1988; 68: 175
- [5] Shiga M, Nakamura Y. J Phys Soc Jpn, 1976; 40: 1295
- [6] Wang J L, Tang N, Yang D, Yang F M, de Boer F R. Acta Phys Sin, 1999; 48(suppl): 74
- [7] Wang Y Z, Hu B P, Song L, Sheng B G. J Phys Conden Matter, 1999; 6: 7085