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Abstract: In this paper, a perturbing nonlinear Schrodinger equation is studied under limited time interval through homo-

geneous boundary conditions and real initial condition. The analytical solution for the linear case is introduced. The per-

turbation method is used to introduce an approximate solution for the perturbative nonlinear case for which a power series 

solution is proved to exist. Using Mathematica, the solution algorithm is tested through first order approximation. The 

method of solution is illustrated through case studies and figures. 
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INTRODUCTION 

 In many fields such as plasma physics [1], quantum me-
chanics [2] and wave propagation in nonlinear media [3,4], 
the nonlinear Schrodinger equation (NLS) is the principal 
equation to be analyzed and solved. In the literature, there 
are a lot of NLS problems depending on additive or multipli-
cative noise in the random case [5,6] or a lot of solution 
methodologies in the deterministic case. 

 Wang et al. [7] obtained the exact solutions to NLS using 

what they called the sub-equation method. They got four 

kinds of exact solutions of the equation  
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for which no sign to the initial or boundary conditions type is 

made. Xu L. and Zhang J. [8] followed the same previous 

technique in solving the higher order NLS: 
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Sweilam [9] solved  
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with initial condition ( ,0) ( )u x g x=  and boundary con-

ditions 
0 1( , ) ( , ) 0

x x
u L t u L t= =  which gives rise to soli-

tary solutions using variational iteration method. Zhu [10] 

used the extended hyperbolic auxiliary equation method in 

getting the exact explicit solutions to the higher order NLS: 
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without any conditions. Sun et al. [11] solved the NLS: 
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with the initial condition 
0( ,0) ( )x x=  using Lie group 

method. By using coupled amplitude phase formulation, 

Parsezian and Kalithasan [12] constructed the quartic anhar-

monic oscillator equation from the coupled higher order 

NLS. Two-dimensional grey solitons to the NLS were nu-

merically analyzed by Sakaguchi and Higashiuchi [13]. The 

generalized derivative NLS was studied by Huang et al. [14] 

introducing a new auxiliary equation expansion method. El-

Tawil et al. introduced a new approach in solving a pertur-

bative cubic nonlinear Schrodinger equation in [15] and with 

variable group velocity in [16]. 

 In this paper, a straight forward solution algorithm is 

introduced using the transformation from a complex solution 

to coupled equations in two real solutions. Eliminating one 

of the real solutions to get separate independent equations, a 

higher order equation is obtained in each variable. Finally, a 

perturbative approximate solution to the system is intro-

duced. Section 2 illustrates the method applied on the linear 

equation. Section 3 deals with the nonlinear case.  

THE LINEAR CASE  

 Consider the non homogeneous linear Schrodinger equa-

tion: 
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u(t, z)
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u(t, z)

t
2

+ i u(t, z)

= F(t, z), (t, z) (0, ) (0, )

          (1) 

where ( , )u t z  is a complex valued function which is sub-

jected to:  

  I.C. : u(t,0) = f (t),  a real valued function,         (2) 

. : (0, ) 0, ( , ) 0.BC u z u z= =           (3) 
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 Let ( , ) ( , ) ( , ), ,u t z t z i t z= + : real valued 

functions. The following coupled equations are obtained: 
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where ( ,0) ( )t f t=  while all corresponding other I.C. 

and B.C. are zeros. 

 To get rid of the loss terms in equations (4) and (5), one 

can use the following effective transformations: 

( , ) ( , ),z
t z e w t z=             (6) 

( , ) ( , ),z
t z e v t z=             (7) 

where ( ,0) ( )w t f t=  while all corresponding other I.C. 

and B.C. are zeros. The following coupled equations are ob-

tained: 
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where 

1 ( , ) ( , ).z
G t z e F t z=          (10) 

 Eliminating one of the variables in equations (8) and (9), 

one can get the following independent equations: 
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 Using the eigenfunction expansion technique [17], the 

following solution expressions are obtained: 

0

( , ) ( )sin( ) ,
n

n

n
w t z T z t

T=

=          (15) 

0

( , ) ( )sin( ) ,
n

n

n
v t z z t

T=

=          (16) 

where ( )
n

T z  and ( )
n

z  can be got through the applica-

tions of initial conditions and then solving the resultant sec-

ond order differential equations using the method of the 

variational parameter [18]. The final expressions can be got 

as the following: 

1 2 1( ) ( )sin ( ( )) cos ,
n n n
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2 2 2( ) ( )sin ( ( )) cos ,
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 The following conditions should also be satisfied: 
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C f t t dt B
T T
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2 2 (0).C B=              (27) 

 Finally, the following solution is obtained: 

( , ) ( ( , ) ( , )),z
u t z e w t z iv t z= +         (28) 

or 

2 2 2 2( , ) ( ( , ) ( , )).z
u t z e w t z v t z= +         (29) 

Example-1 

 Solving equations (1), (2) and (3) with taking ( )f t = , 

( , ) 0F t z =  and following the previous solution algorithm, 

the following final result is obtained: 

1

2 [1 ( 1) ]
( , ) cos sin( ) .

n

z

n

n

n
u t z e z t

n T=

=        (30) 

One can justify the following facts: 

i) 
0

lim ( , ) 0,u t z =  

ii) lim ( , ) 0,u t z = 0,z >  
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iii) 
0

lim ( , ) ,z
u t z e=  

iv) lim ( , ) 0, 0,
z

u t z = >  

which coincide with the physical conditions. The following 

figures illustrate some cases: 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The solution u at , , 1, 20T= =  for 50 terms using 

mathematica 5. 

 
 

 

 

 

 

 

 

 

Fig. (2). The solution u at z=0 and , , 1, 20T= =  for 50 

terms. 

 

 

 

 

 

 

 

 

 

Fig. (3). The solution u at z=15 and , , 1, 20T= =  for 50 

terms. 

 One can notice the high reduction of the solution level. 

Example-2 

 Taking the case of ( ) sin( )
m

f t t
T

= , the following 

final result is obtained: 

( , ) cos sin( ) ,z

m

m
u t z e z t

T
=  

where 

2( ) .
m

m

T
=  

 The following figures illustrate the solution at different 

cases: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The solution 
2

u  at , , , 1, 20m T= = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The solution 
2

u  at , , , 1, 20m T= =  for different 

z range. 

 One can also notice the high reduction of the solution 

level. 

THE NON- LINEAR CASE 

 Consider the homogeneous non-linear Schrodinger equa-

tion: 
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where ( , )u t z  is a complex valued function which is sub-

jected to the initial and boundary conditions (2) and (3). 

Lemma 

 The solution of equation (31) with the constraints (2) and 

(3) is a power series in  if exists. 

Proof 

 At 0= , the following linear equation is got: 
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which has the solution 

0 0 0( , ) ( ( , ) ( , ))z
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 Following Pickard approximation, equation (31) can be 

rewritten as 
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 At n=1, the iterative equation takes the following form: 
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which can be solved as a linear case with zero initial and 

boundary conditions. The following general solution can be 

obtained: 
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 At n=2, the following equation is obtained: 
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which can be solved as a linear case with zero initial and 

boundary conditions. The following general solution can be 

obtained: 

(0) (1) 2 (2) 3 (3) 4 (4)

2 2 2 2 2 2( , )u t z u u u u u= + + + + . 

 Continuing like this, one can get 

(0) (1) 2 (2) 3 (3)
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u
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. 

 As n , the solution (if exists) can be reached as 

( , ) lim ( , )
n

n

u t z u t z= . Accordingly, the solution is a 

power series in .//// 

 According to the previous lemma, one can assume the 

solution of equation (31) as the following: 
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 Let ( , ) ( , ) ( , ), ,u t z t z i t z= + : real valued 

functions. The following coupled equations are got: 
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where ( ,0) ( )t f t=  and all corresponding other I.C. and 

B.C. are zeros. 

 As a second order perturbation solution, one can assume 

that 

2

0 1 2( , )t z = + + ,         (35)  

2

0 1 2( , )t z = + + ,         (36) 

where 
0 ( ,0) ( )t f t=  and all corresponding other I.C. and 

B.C. are zeros. 

 Substituting from equations (35) and (36) into equations 

(33) and (34) and then equating the equal powers of , one 

can get the following set of coupled equations: 
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2
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 Following the solution algorithm described in the previ-

ous section for the linear case, the following final results are 

obtained: 
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where the constants and variables 
11 12 11( ), , ( )A z C B z , 
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ner as the corresponding ones in the linear case. 

 The final results are 
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where the constants and variables 
21 22 21( ), , ( )A z C B z , 

22 22( ),A z C and 
22 ( )B z can be evaluated in a similar man-

ner as the corresponding ones in the linear case. 

First and second order approximations 

 In this case, the solution of equation (31) takes the fol-

lowing form 

(1)

0 1u u u= + .           (57) 

 Substituting from equations (43) and (47), one can get 

the following final expression: 

2
(1) 2 2 2 2 2

0 0 1 1 1( 2 ( ))z
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 The second order approximation takes the following form 
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Example-3 

 Solving equations (31), (2) and (3) with taking ( )f t =  

and following the previous solution algorithm, the following 

selective results for the first order approximation are ob-

tained: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). The first order approximation of 
2

(1)
u at 0=  and 

, , 1, 20T= =  and  

only one term in the series (m=1). 
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Fig. (7). The first order approximation of 
2

(1)
u at 2=  and 

, , 1, 20T= =  and  

only one term in the series (m=1). 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The first order approximation of 
2

(1)
u at 5=  and 

, , 1, 20T= =  and  

only one term in the series (m=1). 

 

 

 

 

 

 

 

 

 

Fig. (9). The first order approximation of 
2

(1)
u at 4=  and 

, , 1, 20T= =  and only one term in the series (m=1) for 

different z values. 

Example-4 

 Taking the case of ( ) sin( )
m

f t t
T

= , the following 

final results for the first order approximation are obtained: 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The first order approximation of 
2

(1)
u at 0=  and 

, , 1, 20T= =  (m=1). 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). The first order approximation of 
2

(1)
u at 3=  and 

, , 1, 20T= =  (m=1). 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). The first order approximation of 
2

(1)
u at 5=  and 

, , 1, 20T= =  (m=1). 
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Fig. (13). The first order approximation of 
2

(1)
u at 3=  and 

, , 1, 20T= =  (m=1). 

 

 

 

 

 

 

 

 

 

 

Fig. (14). The first order approximation of 
2

(1)
u at 5=  and 

, , 1, 20T= =  (m=1) for different values of z. 

 

 

 

 

 

 

 

 

 

 

Fig. (15). The first order approximation of 
2

(1)
u at 10=  and 

, , 1, 20T= =  (m=1) for different values of z. 

CONCLUSIONS 

 The perturbation technique introduces an approximate 
solution to the NLS equation with a perturbative nonlinear 
term under homogeneous boundary conditions and real ini-
tial condition for a finite interval. Using mathematica, the 
difficult and huge computations problems were fronted to 
some extent, even for the first order approximation and for 
limited series terms. To get more improved orders, it is ex-
pected to face a problem of computation. In general, the so-
lution is decreased with the distance z and is greatly affected 
according to the initial pulse. The solution level is increased 
with the increase of the nonlinearity level. 
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