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Abstract. In this article, we present a second preimage attack on a
double block-length hash proposal presented at FSE 2006. If the hash
function is instantiated with DESX as underlying block cipher, we are
able to construct second preimages deterministically. Nevertheless, this
second preimage attack does not render the hash scheme insecure. For
the hash scheme, we only show that it should not be instantiated with
DESX but AES should rather be used. However, we use the instantiation
of this hash scheme with DESX to introduce a new property of iterated
hash functions, namely a so-called b-block bypass. We will show that if
an iterated hash function possesses a b-block bypass, then this implies
that second preimages can be constructed. Additionally, the attacker has
more degrees of freedom for constructing the second preimage.

Keywords: iterated hash functions, double block-length hash functions,
differential cryptanalysis, second preimage

1 Introduction

A cryptographic hash function maps a binary string of arbitrary length to a
fixed length binary string, called hash value. A cryptographic hash function H
has to be secure against the following attacks:

– Collision attack: Find two messages m and m∗ 6= m such that H(m) =
H(m∗)

– Preimage attack: For a given hash value h, find a message m such that
H(m) = h

– Second preimage attack: For a given message m, find a second message
m∗ 6= m such that H(m) = H(m∗)

Based on the birthday paradox the expected complexity for a collision attack
is about 2n/2 hash computations, where n is the size of the hash value. For a
preimage attack and a second preimage attack the complexity is about 2n hash
computations. If for a given hash function H, collisions and (second) preimages
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can be found with a complexity less than 2n/2 and 2n, respectively, the hash
function is considered to be broken.

An alternative to dedicated hash functions such as MD5 and SHA-1 are hash
functions that are based on block ciphers. In [13], Preneel analyzed possible con-
structions of hash functions using block ciphers in different modes of operation.
Out of 64 schemes, 12 are considered to be secure. Black et al. have proven the
security of these schemes in the ideal cipher model in [3]. A drawback of block
cipher based hash functions is the limited output length. More precisely, by us-
ing a block cipher with an output length of for instance 128 bits, the complexity
to find a collision is ‘only’ about 264 hash computations. It is clear that with
the increase of available computational power such an output size does not give
a satisfying security margin (especially, if a hash function should be secure for
the next decades). A possible and common approach to overcome the limitation
of the security due to the output size is to use two or more block ciphers and
concatenate their outputs. Such schemes are referred to as “double block-length
hash functions” if the output of two block ciphers is concatenated. A recent
example is the proposal of Hirose [5] at FSE 2006. He proposes a double block-
length hash function and proves the security in the ideal cipher model. For the
remainder of this article, we will refer to this hash function as “DBLH”.

In general, the approach to prove the security of a cryptographic scheme in
the ideal cipher model (black box model) has attracted a lot of attention and is
of common use. Nevertheless, also doubts about the implications of such security
proofs do exist. In other words, it is an open question what one can expect from
a scheme that is provably secure in the ideal cipher model once the scheme is
instantiated with a concrete block cipher. A very recent paper covering security
proofs and the related doubts was published by Black at FSE 2006 [2].

The main contribution of this article is as follows. Firstly, we define a new
property of an iterated hash function, namely a b-block bypass. We will show that
if an iterated hash function possesses a b-block bypass then second preimages can
be constructed. Secondly, we show that for the double block-length hash function
DBLH instantiated with DESX as underlying block cipher, we can construct a
b-block bypass (depending on the configuration b = 2, 3) by exploiting differential
cryptanalysis. This leads to a powerful second preimage attack on the hash
scheme DBLH with DESX.

The remainder of this article is structured as follows. In Section 2, we give
notation and definitions. We introduce the definition of a b-block bypass for an
iterated hash function and show the implications for second preimage attacks
in Section 3. In Section 4, we describe the double block-length hash proposal
of Hirose and give the definition of the block cipher DESX. Furthermore, we
show different configurations of how the hash scheme can be instantiated with
DESX as underlying block cipher. Section 5 is dedicated to the construction
of a b-block bypass for different configurations of the hash scheme DBLH with
DESX. In Section 6, we discuss our results and present conclusions in Section 7.
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2 Preliminaries

2.1 Notation

For the concatenation of two variables, we write a‖b. Addition modulo 2 (XOR)
is denoted by a⊕b. The bit length of variable a is denoted by |a|. We stick to the
convention of [1] to denote a difference by u′ = u ⊕ u∗. Furthermore, we write
DESk(x) for the encryption of the input x with DES [10] under the key k.

2.2 Iterated Hash Functions

Let H be an iterated hash function with compression function f . Then, H is a
mapping H : {0, 1}∗ → {0, 1}n and f : {0, 1}l × {0, 1}n → {0, 1}n. The hash
value computation can be described as follows:

h0 = IV

hi = f(mi, hi−1) i = 1, . . . , t

H(h0;m) = ht ,

where hi is an n-bit chaining variable and IV is a predefined n-bit initial value.
After MD strengthening, i.e. fixing the IV and applying an unambiguous padding
method including the binary representation of the message length (cf. [9]), the
message m consists of t blocks, i.e. m = m1, . . . ,mt, where each block consists
of l bits.

3 Iterated Hash Functions Possessing a b-Block Bypass

In this section, we introduce a new property of iterated hash functions and show
which implications it has. For the remainder of this article, we assume without
loss of generality that we have message lengths that are a multiple of the block
length. Furthermore, we assume that the blocks required for MD strengthening
have been removed.

Definition 1. (b-Block Bypass) Let H be an iterated hash function. We say H
possesses a b-block bypass if for any b-block message m = m1, . . . ,mb there
exists a b-block message m∗ = m∗

1, . . . ,m
∗
b 6= m such that for any initial value

h0 the following holds:

H(h0;m1, . . . ,mi) 6= H(h0;m∗
1, . . . ,m

∗
i ) for i = 1, . . . , b− 1

H(h0;m1, . . . ,mb) = H(h0;m∗
1, . . . ,m

∗
b)

(1)

An example of a 2-block bypass for a message m = m1, . . . ,mt with t ≥ 2 is
shown in Figure 1.

Fact 1 It follows directly from Definition 1 that if an iterated hash function
possesses a b-block bypass then it is possible to construct a second preimage m∗

for any given message m = m1, . . . ,mt 6= m∗ with t ≥ b.
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Fig. 1. An iterated hash function with a 2-block bypass for messages
m = m1, . . . ,mt, with t ≥ 2

Lemma 1. Let H be an iterated hash function that possesses a b-block bypass.
Then, for every message m = m1, . . . ,mt with t ≥ b ≥ 1, we can construct

bt/bc∑
j=1

(
t− j(b− 1)

j

)
(2)

distinct second preimages.

Proof. Based on Fact 1, we know that we can construct a second preimage for
every message with block-length ≥ b. From Definition 1 it follows immediately
that it doesn’t matter which b consecutive blocks of the message m are taken
to construct a second preimage m∗. This implies that we have at least t− b + 1
second preimages for the message m (see Example 1).
On the other hand, if bt/bc ≥ 2, we can apply the fact from Definition 1 not
only for one b-block sub-message of m but for j sub-messages, where j can be in
the range of 1, . . . , bt/bc. An illustration of this fact is also shown in Example 1.
The problem of counting all these possible second preimages of m boils down to
counting the number of possibilities of putting t− jb indistinguishable balls into
j + 1 distinguishable urns. This number is known to be(

t− j(b− 1)
j

)
,

cf. [4, page 38, Eq. (5.2)]. Summing over all j = 1, . . . , bt/bc proves (2). ut

Example 1. Assume, we have an iterated hash function with a 2-block bypass.
Thus, for every two blocks mi,mi+1 of a message m = m1, . . . ,m5 there exist
m∗

i ,m
∗
i+1 with property (1). From formula (2), we know that we can construct 7

distinct second preimages for m. All these possibilities are depicted in Figure 2.

4 Instantiating DBLH with DESX

In this section, we describe the double block-length hash proposal of Hirose [5].
Then, we describe the block cipher DESX [7,8] and show different configurations
of the hash scheme instantiated with DESX as underlying block cipher.
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Fig. 2. For an iterated hash function that possesses a 2-block bypass, we can
construct for any 5-block message m = m1, . . . ,m5 seven distinct second preim-
ages. The dashed rectangles show which blocks of the original message m have
been modified to construct the second preimage.

4.1 The Double Block-Length Hash Proposal DBLH

Shoichi Hirose proposed a double block-length hash function at FSE 2006 [5].
It is an iterated, block cipher based hash function. The compression function is
defined as follows:

gi = ehi−1‖mi
(gi−1)⊕ gi−1

hi = ehi−1‖mi
(gi−1 ⊕ c)⊕ gi−1 ⊕ c,

(3)

where c is an arbitrary constant (c 6= 0), and ek (k = hi−1‖mi) is an arbitrary
block cipher. The two blocks h0, g0 are two initial values. After t message blocks
have been processed, the final hash value is the concatenation ht‖gt. As it can
be seen in (3), the key length of the underlying block cipher ek has to be greater
than the block length. This is due to the fact that |k| = |hi−1|+|mi|, where |hi−1|
is the block length of the cipher. In [5], Hirose proved the security of DBLH in
the ideal cipher model. The security proof omits any reduction showing that if
an adversary breaks the scheme he can distinguish the underlying block cipher
from random.

4.2 DESX and the General FX-Construction

The block cipher DESX [8] was proposed by Rivest to protect DES against
exhaustive key search attacks. Kilian and Rogaway proved the security of the
DESX construction in [7,8].

For the description of DESX, we follow the notation of [8] except that we
denote concatenation by ‘‖’. DESX is defined as follows:

DESXk‖k1‖k2(x) = DESk(x⊕ k1)⊕ k2 , (4)

where |k| = 56, |k1| = 64, and |k2| = 64.
The more general construction is referred to as FX [7,8], where F can be any

(k, n) block cipher with block length |n| and key length |k|. The FX construction
is defined as follows:

FXk‖k1‖k2(x) = Fk(x⊕ k1)⊕ k2 , (5)

where |k1| = |k2| = |n|.

5



 DESDES

gi-1hi-1

c

mi = li || ri

gihi

 DESDES

gi-1hi-1

c

gihi

 DESDES

gi-1hi-1

c

gihi

li

ri

li

ri

ri

li

Configuration II Configuration IIIConfiguration I

mi = li || ri mi = li || ri

hi-1

Fig. 3. Three possible configurations of DBLH with DESX as underlying block
cipher. The hatch denotes the key input of DES.

4.3 DBLH with DESX

For DBLH with underlying block cipher DESXk‖k1‖k2(x), we can construct the
following three configurations (see Figure 3), where mi = li‖ri.

Configuration I:
k‖k1‖k2 = li‖hi−1‖ri, where |li| = 56, |hi−1| = |ri| = 64

Configuration II:
k‖k1‖k2 = h̃i−1‖li‖ri, where |h̃i−1| = 56, |li| = |ri| = 64

Configuration III:
k‖k1‖k2 = li‖ri‖hi−1, where |li| = 56, |ri| = |hi−1| = 64

(6)

For each configuration, we can interchange li and ri. However, without loss of
generality, we take the configurations defined in (6) for the further analysis. For
Configuration II, we have to truncate the 64-bit chaining variable hi−1 to 56 bits
denoted by h̃i−1, since we need a 56-bit key k. Which bits are truncated does
not have any impact on the analysis.

For the sake of simplicity, we will write DX to denote the instantiation of
DBLH with DESX as underlying block cipher. If we speak of a specific configu-
ration, we append the number of the configuration. For instance for DBLH with
DESX in Configuration II, we write DX-II.

5 The Second Preimage Attack on DX

In this section, we present our second preimage attack on DX. For each of the
configurations defined in (6) it is possible to construct second preimages since
we can construct a b-block bypass as in Definition 1.
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5.1 Second Preimages for DX-I Based on a 2-Block Bypass

We can construct second preimages for DX-I based on the following theorem.

Theorem 1. The iterated hash function DX-I possesses a 2-block bypass, since
for every two block message m = m1,m2 the following message m∗ satisfies the
conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′),m2 ⊕ (0‖u′) , (7)

where mi = li‖ri, |li| = 56, |ri| = 64, u′ any value with |u′| = 64, and 0 is the
56-bit all-zero binary string.

Proof. Assume, we have the following 2-block messages m,m∗, where:

m = m1,m2 = (l1‖r1), (l2‖r2)
m∗ = m∗

1,m
∗
2 = m1 ⊕ (0‖u′),m2 ⊕ (0‖u′) = (l∗1‖r∗1), (l∗2‖r∗2)

l∗1 = l1 ⊕ 0 = l1, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ 0 = l2, r∗2 = r2 ⊕ u′

After one iteration, we have

g1 = g0 ⊕DESl1(g0 ⊕ h0)⊕ r1

g∗1 = g0 ⊕DESl1(g0 ⊕ h0)⊕ r1 ⊕ u′ = g1 ⊕ u′ , and
h1 = g0 ⊕ c⊕DESl1(g0 ⊕ c⊕ h0)⊕ r1

h∗1 = g0 ⊕ c⊕DESl1(g0 ⊕ c⊕ h0)⊕ r1 ⊕ u′ = h1 ⊕ u′ .

The outputs after two iterations are

g2 = g1 ⊕DESl2(g1 ⊕ h1)⊕ r2

g∗2 = g1 ⊕ u′ ⊕DESl2(g1 ⊕ u′ ⊕ h1 ⊕ u′)⊕ r2 ⊕ u′

= g1 ⊕DESl2(g1 ⊕ h1)⊕ r2 = g2 , and
h2 = g1 ⊕ c⊕DESl2(g1 ⊕ c⊕ h1)⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c⊕DESl2(g1 ⊕ u′ ⊕ c⊕ h1 ⊕ u′)⊕ r2 ⊕ u′

= g1 ⊕ c⊕DESl2(g1 ⊕ c⊕ h1)⊕ r2 = h2 .

Hence, g′2 = g2⊕g∗2 = 0 and h′2 = h2⊕h∗2 = 0. Since the difference of the chaining
variables g′0 = h′0 = 0, we have constructed a 2-block bypass for DX-I. ut

Corollary 1 For the iterated hash function DX-I and an arbitrary message
m = m1, . . . ,mt with t ≥ 2, we can find at least

bt/2c∑
j=1

(
t− j

j

)
second preimages.

Proof. This is an immediate consequence of Lemma 1 with b = 2 and Theorem 1.
ut
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5.2 Second Preimages for DX-II, DX-III Based on a 3-Block Bypass

For Configuration II and Configuration III of DX, we can also construct second
preimages. Different to the attack in Section 5.1, we will exploit the fact that we
can construct a 3-block bypass.

Theorem 2. The iterated hash function DX-II possesses a 3-block bypass, since
for every 3-block message m = m1,m2,m3 the following message m∗ satisfies
the conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′),m2 ⊕ (v′‖w′),m3 ⊕ (z′‖z′) , (8)

where mi = li‖ri, |li| = |ri| = 64, u′, v′ any value with |u′| = |v′| = 64, and 0
is the 64-bit all-zero binary string. The difference w′ = u′ ⊕ t′, where t′ is the
output difference of the left DES instance in iteration 2, namely

t′ =
[
DES

fh1
(g1 ⊕ c⊕ l2)

]
⊕

[
DES

h̃1⊕u′
(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)

]
. (9)

Once w′ is determined, the difference z′ can be computed as follows:

z′ =
[
DES

fh1
(g1 ⊕ l2)⊕ r2 ⊕ g1

]
⊕[

DES
h̃1⊕u′

(g1 ⊕ u′ ⊕ l2 ⊕ v′)⊕ r2 ⊕ w′ ⊕ g1 ⊕ u′
]

(10)

Proof. We show that for the 3-block messages m and m∗, where

m = m1,m2,m3 = (l1‖r1), (l2‖r2), (l3‖r3)
m∗ = m1 ⊕ (0‖u′),m2 ⊕ (v′‖w′),m3 ⊕ (z′‖z′) = (l∗1‖r∗1), (l∗2‖r∗2), (l∗3‖r∗3)
l∗1 = l1 ⊕ 0, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ v′, r∗2 = r2 ⊕ w′

l∗3 = l3 ⊕ z′, r∗3 = r3 ⊕ z′ ,

the output difference equals zero after three iterations. As described in Section 4.3,
the chaining variable hi is truncated since we need a 56-bit key. This is denoted
by h̃i. After one iteration, we have

g1 = g0 ⊕DES
fh0

(g0 ⊕ l1)⊕ r1

g∗1 = g0 ⊕DES
fh0

(g0 ⊕ l1)⊕ r1 ⊕ u′ = g1 ⊕ u′

h1 = g0 ⊕ c⊕DES
fh0

(g0 ⊕ c⊕ l1)⊕ r1

h∗1 = g0 ⊕ c⊕DES
fh0

(g0 ⊕ c⊕ l1)⊕ r1 ⊕ u′ = h1 ⊕ u′ .

After two iterations, chaining variable h2 is computed as follows

h2 = g1 ⊕ c⊕DES
fh1

(g1 ⊕ c⊕ l2)⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c⊕DES
h̃1⊕u′

(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)⊕ r2 ⊕ w′ .
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With w′ = u′ ⊕ t′ and t′ as defined in (9), we get

h∗2 = g1 ⊕ u′ ⊕ c⊕DES
h̃1⊕u′

(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)⊕ r2 ⊕ u′

⊕ DES
fh1

(g1 ⊕ c⊕ l2)⊕DES
h̃1⊕u′

(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)︸ ︷︷ ︸
t′

= g1 ⊕ u′ ⊕ c⊕ r2 ⊕ u′ ⊕DES
fh1

(g1 ⊕ c⊕ l2)
= h2 .

The difference in chaining variable g2 after two iterations is

g∗2 = g2 ⊕ z′ ,

where z′ is defined in (10). After three iterations, we get

g3 = g2 ⊕DES
fh2

(g2 ⊕ l3)⊕ r3

g∗3 = g2 ⊕ z′ ⊕DES
fh2

(g2 ⊕ z′ ⊕ l3 ⊕ z′)⊕ r3 ⊕ z′

= g2 ⊕DES
fh2

(g2 ⊕ l3)⊕ r3

= g3

h3 = g2 ⊕ c⊕DES
fh2

(g2 ⊕ c⊕ l3)⊕ r3

h∗3 = g2 ⊕ z′ ⊕ c⊕DES
fh2

(g2 ⊕ z′ ⊕ c⊕ l3 ⊕ z′)⊕ r3 ⊕ z′

= g2 ⊕ c⊕DES
fh2

(g2 ⊕ c⊕ l3)⊕ r3

= h3 .

Therefore, after three iterations the differences in the chaining variables are
g′3 = g3 ⊕ g∗3 = 0 and h′3 = h3 ⊕ h∗3 = 0. Since the difference of the chaining
variables g′0 = h′0 = 0, we have constructed a 3-block bypass for DX-II. ut

Theorem 3. The iterated hash function DX-III possesses a 3-block bypass, since
for every 3-block message m = m1,m2,m3 the following message m∗ satisfies
the conditions of Definition 1:

m∗ = m1 ⊕ (u′‖v′),m2 ⊕ (0‖z′),m3 ⊕ (0‖(w′ ⊕ z′)) , (11)

where mi = li‖ri, |li| = 56, |ri| = 64, u′, v′ any value with |u′| = 56 and |v′| = 64,
and 0 is the 56-bit all-zero binary string. Once the values u′, v′ have been chosen
for the given input message block m1, the differences w′ and z′ can be computed:

w′ = [g0 ⊕ c⊕DESl1(g0 ⊕ c⊕ r1)⊕ h0]
⊕ [g0 ⊕ c⊕DESl1⊕v′(g0 ⊕ c⊕ r1 ⊕ u′)⊕ h0] ,

z′ = [g0 ⊕DESl1(g0 ⊕ r1)⊕ h0]
⊕ [g0 ⊕DESl1⊕v′(g0 ⊕ r1 ⊕ u′)⊕ h0]

The proof of Theorem 3 works along the same lines as the proof of Theorem 1
and Theorem 2 and is given in Appendix A.
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Corollary 2 For the iterated hash function DX-II, respectively DX-III, and an
arbitrary message m = m1, . . . ,mt with t ≥ 3, we can find at least

bt/3c∑
j=1

(
t− 2j

j

)
second preimages.

Proof. This is an immediate consequence of Lemma 1 with b = 3 and Theorem 2,
respectively Theorem 3. ut

6 Discussion

It is of common use to prove the security of certain cryptographic schemes based
on the random-oracle model. In [2], John Black presented an overview on mod-
els for the security proof of different schemes. Additionally, he constructed a
so-called uninstantiable block cipher based hash function which is provably se-
cure in the ideal cipher model. Once the scheme is instantiated with a concrete
block cipher it becomes insecure. This is referred to as an uninstantiable scheme.
Our second preimage attack on DX does not imply that DBLH is an uninstan-
tiable scheme. This is due to the fact that if DBLH is instantiated with for
instance AES-192 or AES-256 [11], we did not find any attack. Furthermore, we
have to point out that even if Kilian and Rogaway proved the security of the
DESX construction in [7,8], they did not recommend DESX for the use in hash
functions. As it has been shown in several papers DESX is vulnerable to related-
key attacks [6,12]. This implies that DESX, or in general the FX construction,
should not be used in a Davies-Meyer like hash function (cf. [6]). Indeed, there
are some other schemes that become weak if DESX is used. For instance, the
Preneel-Govaerts-Vandewalle scheme number 5 [13, Table 5.4, page 105], which
is provably secure in the ideal cipher model (see Black et al. in [3]), is such a
scheme. We can perform a similar second preimage attack as we did for DX. A
sketch of the attack is given in Appendix B. As with DX, the input message for
this construction is the key of the block cipher.

For the attack on DBLH with DESX or with any other FX construction, we
did not exploit the related-key attack vulnerability but the fact that we gain
additional structure within the hash scheme. This additional structure can be
exploited to control the output differences for each iteration in such a way that
we can construct a b-block bypass (b = 2, 3) as shown in Section 5. We have
also shown that the attacker has a lot of freedom if an iterated hash function
possesses a b-block bypass. In other words, for a given message the attacker can
construct a huge amount of second preimages for the single given message.

Since the DBLH scheme has been proven in the ideal cipher model, the
reader should not get the feeling that this proofs are worthless once the scheme
is instantiated with a real-word block cipher. Even if there exist doubts about
what one can expect from schemes that are proven in the ideal cipher model
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once they are instantiated (see for instance [2]), we point out that these proofs
assume the ideal cipher model. It is clear that DESX does not fit into this model.
Nevertheless, we used the instantiation of DBLH with DESX as underlying block
cipher to show how second preimages can be constructed based on a b-block
bypass for the hash function. We hope that researchers feel motivated to come
up with more definitions about special properties of iterated hash functions.

7 Conclusion

In this article, we have shown that the underlying block cipher is important for
the hash function proposal DBLH. We understand, that nobody would really
instantiate DBLH with DESX as underlying block cipher but would rather use
AES-192 or AES-256. However, we introduced a new property for iterated hash
functions: a b-block bypass. We also showed how to construct them based on the
DBLH construction with DESX. If an attacker can construct a b-block bypass
then he has more degrees of freedom to construct second preimages. This makes
the second preimage attack more powerful.

Currently, we are trying to find other hash function schemes that posses a
b-block bypass. Furthermore, we are investigating the impact of the huge amount
of second preimages an attacker can construct with our approach for a single
given message.
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A Proof of Theorem 3

In this section, we prove Theorem 3 given in Section 5.2. As for the proof of
Theorem 1 and Theorem 2, we show that for the 3-block messages m and m∗,
where m = m1,m2,m3 = (l1‖r1), (l2‖r2), (l3‖r3) and

m∗ = m1 ⊕ (u′‖v′),m2 ⊕ (0‖z′),m3 ⊕ (0‖(w′ ⊕ z′)) = (l∗1‖r∗1), (l∗2‖r∗2), (l∗3‖r∗3)
l∗1 = l1 ⊕ u′, r∗1 = r1 ⊕ v′

l∗2 = l2 ⊕ 0, r∗2 = r2 ⊕ z′

l∗3 = l3 ⊕ 0, r∗3 = r3 ⊕ (w′ ⊕ z′) ,

the output difference equals zero after three iterations, i.e. g′3 = h′3 = 0. After
the first iteration, we have

g1 = g0 ⊕DESl1(g0 ⊕ r1)⊕ h0

g∗1 = g1 ⊕ z′,where
z′ = [g0 ⊕DESl1(g0 ⊕ r1)⊕ h0]
⊕ [g0 ⊕DESl1⊕v′(g0 ⊕ r1 ⊕ u′)⊕ h0] , and

h1 = g0 ⊕ c⊕DESl1(g0 ⊕ c⊕ r1)⊕ h0

h∗1 = h1 ⊕ w′,where
w′ = [g0 ⊕ c⊕DESl1(g0 ⊕ c⊕ r1)⊕ h0]

⊕ [g0 ⊕ c⊕DESl1⊕v′(g0 ⊕ c⊕ r1 ⊕ u′)⊕ h0] .
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The difference of the chaining variables after two iterations is

g2 = g1 ⊕DESl2(g1 ⊕ r2)⊕ h1

g∗2 = g1 ⊕ z′ ⊕DESl2(g1 ⊕ z′ ⊕ r2 ⊕ z′)⊕ h1 ⊕ w′

= g2 ⊕ (w′ ⊕ z′) , and
h2 = g1 ⊕ c⊕DESl2(g1 ⊕ c⊕ r2)⊕ h1

h∗2 = g1 ⊕ z′ ⊕ c⊕DESl2(g1 ⊕ z′ ⊕ c⊕ r2 ⊕ z′)⊕ h1 ⊕ w′

= h2 ⊕ (w′ ⊕ z′) .

The output difference after three iterations is computed as follows. For the sake
of clearness, we write y′ = w′ ⊕ z′:

g3 = g2 ⊕DESl3(g2 ⊕ r3)⊕ h2

g∗3 = g2 ⊕ y′ ⊕DESl3(g3 ⊕ y′ ⊕ r3 ⊕ y′)⊕ h2 ⊕ y′

= g3 , and
h3 = g2 ⊕ c⊕DESl3(g2 ⊕ c⊕ r3)⊕ h2

h∗3 = g2 ⊕ y′ ⊕ c⊕DESl3(g2 ⊕ y′ ⊕ c⊕ r3 ⊕ y′)⊕ h2 ⊕ y′

= h3

Hence, g′3 = g3⊕g∗3 = 0 and h′3 = h3⊕h∗3 = 0. Since the difference of the chaining
variables g′0 = h′0 = 0, we have constructed a 3-block bypass for DX-III. ut

B Second Preimage Attack on PGV Scheme Number 5
with DESX

In Figure 4, the PGV scheme number 5 (see [13, Table 5.4, page 105]) is schemat-
ically depicted on the left hand side. The scheme instantiated with DESX is
shown on the right hand side.

DES

hi-1

mi = k1 || k || k2

hi

k1

k

k2

E

hi-1

hi

mi

Fig. 4. PGV scheme number 5 with block cipher E (left) and instantiated with
DESX (right)
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It is easy to verify that for the two 1-block messages mi and m∗
i , where

mi = k1‖k‖k2 and m∗
i = k1 ⊕ u′‖k ⊕ v′‖k2 ⊕ w′, with

w′ = [DESk(hi−1 ⊕ k1)]⊕ [DESk⊕v′(hi−1 ⊕ k1 ⊕ u′)]

and u′, v′ any value, the difference in the chaining variables equals zero, i.e.
h′i = hi ⊕ h∗i = 0 and we have thus constructed a 1-block bypass.
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