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A bstract Inthe paper a proposal for a new idea
of description of granular materials is sketched. The quan-
tum mechanical like theory is applied to the problem of
the randomly packed spheres in the container.
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INTRODUCTION

Randomly or regularly packed beds of sphe-
res have been the subject of many papers and
books. They constitute a relatively simple mo-
del not only for grains [1,2,5,7] or other mate-
rials in containers but also, e.g., in informatics,
in the theory of error-correcting codes, some
mathematical problems in number theory and
algebra [3,4]. The problem is rather compli-
cated. Till now even the highest density pack-
ing configuration of spheres in a rectangular
container is unknown [3]. However, there are
known solutions for a series of lattices which
are partial solutions of the problem.

Our paper is a preliminary report on possi-
ble solution of the sphere packing problem and
makes use of a quantum mechanics - like ap-
proach instead of standard geometrical consi-
derations, or classical mechanics formalism. It
seems to be reasonable to replace very compli-
cated, for irregular packings, geometrical de-
scription, which requires solving rather com-
plicated systems of non-linear equations of ma-

ny variables or analysis of forces acting within
spheres, by more homogenous boundary con-
ditions for the quantum mechanical wave
function.

Obviously the task is to solve the many-
body problem which is still difficult enough.
However, considerations along this line are in-
teresting not only for the practical reasons
mentioned above, but also as a more interdis-
ciplinary problem of interacting particles with
“’hard cores’’ needed in physics, chemistry
and technology.

THE MODEL

The Hamiltonian of the problem H con-
sists of the kinetic energy term T, the potential
well ¥ describing the container, the potential
of the gravitational field ¥, and the short
range interaction ¥, , within tfle spheres simu-

int
lating their macroscopic properties:

H=T+V +V+V,, . (1
where
_-h? o2
T= ZM%:V (k). )
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and

Ve =%Mg (F(k) &),

©)

with €,,€,,€, denoting versors of the Cartesian

frame (z-axis points out in vertical direction),
h the Planck constant, M the mass of the
sphere and g the gravitational acceleration con-
stant. In the formulae 7(k) are the radius vec-

tors, dynamical variables for the k-th sphere.
As a possible model of container one
can choose the container in the form of the
“square” potential well with boundaries I'=
<=l /2,1 /2>x<=1,/2,l,/2>x<0,0):

Ve = %Vc (7(/()), 4)
where
0, if —le/2<F (k)ex<ly/2,
~ly125F (k)&y<ly/2,7 (k)3 20,
Vo(F(k)) = )

o, otherwise.

A possible, interesting two-body interac-
tion, which can simulate the behaviour of
macroscopic spheres of the radius R, is of the
following form:

Vint = % Vi Fo-7@))  ©

where

CUCRUE (St

This type of interaction can also simulate,
by allowing overlap among spheres, some me-
chanical properties of theses objects. In the
case of V=« one can exclude the situation
when two spheres overlap and come back to
the geometrical region. However, in this pre-
liminary report we decided to use another
type of the two-body interaction of a similar
nature, but simpler m calculation and allowing
for a geometrical interpretation. This is the
contact d-interaction:

Vint = kz1V°°5 (Ir (k) =7 (1)

) ®

where 6 (7) is the standard delta-Dirac distri-

bution.

In addition, we consider here only the
static case and neglect the kinetic energy of
the spheres. In this case we do not need to
solve the eigenequation for the Hamiltonian.
Instead, we chose the form of the single-parti-
cle (single-sphere) wave function which is
able to simulate a macroscopic sphere of ra-
dius R at the position Ry :

- 1 - 5
Pk, ('k)=9—09(R—|'7c "Rkl), )
where
0 (x)={§ Saammise (10)

and Qp=4/3n R® represents the volume of
the sphere.

Note that in principle all arguments of the
functions should be dimensionless. To achieve
this property one needs to choose a unit
length, e.g., /,=1m and use it as needed. How-
ever, by tradition this is not usually done and
we will follow this simplification.

N spheres can be described, in the first ap-
proach, by the product of the single-particle
functions (9):

N
Ry,...Ry >= _l'[1¢13,. (7). 1)

i=

Because our spheres are in the rectangular

container the space of states consists of the
square integrable functions L%T), where the
“cube’’ I'=<-lf2, [/2>x<-I/2, [/2>x<0,0>. Here,
1 is the length of x and y edges of the “’cube’’.
This physical condition restricts the range of
the sphere positions and the vectors Ry in (9)
must belong to I'. The above implies the scalar
product of the wave functions is given by;

<Y/ >= I{d%wl(f)*wz(f)‘ (12)



QUANTUM MECHANICAL APPROACH 187

The eigenstates |\|1V >of the Hamiltonian
(1) with the container and interaction given by
Eqs (4-7) should describe the configurations
of N hard spheres put into the box. They
should allow us to find the positions of the
spheres by calculating the following matrix
elements (average position of k-th sphere):

<F(k)>=<pg, IF(k)[gbRk > (13)

Having positions of the spheres one can
calculate the contact numbers for the given
configuration and the packing coefficient.
Similarly, the eigenenergies E(v) of H give the
energies of the configurations determined by
the sets of quantum numbers v. This way one
can obtain all characteristics needed in our
problem. In our case we neglect the kinetic
term in the Hamiltonian (1). In addition, we
try to obtain only the macroscopic part of
the energy. To this purpose one needs to cal-
culate only the appropriate average values in-
stead of solving the full eigenvalues problem.

Following this line we consider the energy
of N spheres in the box. The total energy can
be thus calculated as:

EN(R],...RN) =< R.l:-"R'NlV|R.l,-~RN >, (14)

Using the wave function (11) and writing
explicitly the operator V (respectively to the
formulae above) we obtain:

a) for the box-part potential:

< R],...,I-éN

Ve

Rl,...R.N >= Id3r-’i...d371v
ry

N o, YN (N -
o G) | ZVe@)| [T op, ()], (15
k=1 n=1 k'=1
where the last expression is equal to 0 because
the potential V=0 inside the box;
b) for the gravitational-part potential:
< R.la“-iéNlVg'iéls'"’R'N >=

N *
2 Jdg, (ms(@on i, ()=

N -
mg 3, (EZORn)

n=l

(16)

is a classical potential energy of the spheres in
the gravitational field;

c) for the two-body contact interaction be-
tween the spheres:

< R],...RN

Vintliél,---jéN >=
S [dFpr, Fior (FVepi, (Fipg, (F) =
k<n T

Vo >

Z L P} ().

amn
From the properties of the single-sphere
function (9), after a few transformations we

get:

<]_é1,...1-éN

T -

o; 2 [ 6Ra0)  ay

and at last:

< kl,...RN

Vim|k’|,...1-éN >=

where K(R,I_i;k) denotes the sphere of the ra-

dius R and the center determined by the radius

vector ﬁk. The operator vol (A) denotes the
volume of the set A. It means that the interac-
tion energy is proportional to the volume of
the overlap of the interacting spheres.

The total energy of N spheres can be thus
written as:

L N
EN(er-uRN):mg EZk'I"
k=1

V—j ) vol(K(R,ﬁk)nK(R,R,,)). (20)

o k<n
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It is useful to write the equation (20) in the re-
currence form. It allows us to calculate the
energy in much more effective way. On the
other hand, it enables us to build a pile of
spheres adding them one by one. After a short
algebra we get:

L N=L o N=lnzl
EN(Ry,...RN)=mg SZx+—5 3 X
k=1 o n=2 k=1

~ -~ Veo
vol (K(R,Rg)NK(R,Ry,)) +mgZy +?

o

N-1 - _
P vol (K(R, R )N K(R, Ry )) =

- - Voo N-1
En-i(Ri,.... Ry—1) +mgZy +—= X
S20 k=1

vol(K(R,kk)mK(R,R,,)). @1)
One may calculate a simple integral to obtain
the required volume of the common part of the
overlapping spheres. The calculation in 3 di-
mensional space gives:

vol (K(R, R )" K(R, R, )) =

© (2R~ - By ok~ |f ~ Ro|R>+

TR~ ;e,,|3]. @2)

TEST OF THE MODEL AND RESULTS

As a basic test of the method we con-
structed computer code simulating the gravita-
tional fall of the spheres into the container.
Using the basic formula (21) the program
drops sphere after sphere according to a given
distribution (here uniform) in xy plain. The N-
th sphere is placed in a given position if the
energy E N(fq ,;..,RN)' gets the local minimum
in respect to Ry for fixed positions of N-1
spheres. In the first two figures we show the
typical configurations obtained by this proce-

dure. Figure 1 shows a configuration for the
two dimensional case, the second one is plot-
ted for the spheres in 3 dimensions. However,
it is rather difficult to imagine the distribution
of the spheres from the Fig. 2. In the Fig. 3 we
plotted only the centres of the spheres. One
can easily observe the higher density of the
centres in the inner part of the container than
within the region close to its walls.

Fig. 1. A typical configuration of 200 circles.

Within this short report we have shown an
alternative method for a construction of the
theory for granular systems. It seems to be
more effective than the methods based on
more classical approaches. Its flexibility is
caused by splitting, as in quantum mechanics,
the notions of the observable and the function
of state which practically does not exist in
classical mechanics. It leads to more smooth
formulae which become, in this way, more
tractable. Simple modification of the calcula-
tions allows description of the spheres at diffe-
rent sizes. One can also to deform the wave
function (9) to obtain the grains of required
shapes. Different modifications of the interac-
tion among considered objects should allow us
to introduce required physical properties of
the constructed granular medium.
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Fig. 2. A typical configuration of 200 spheres. Fig. 3. The distribution of the centers of 200 spheres.
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