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ABSTRACT

The evolution of a steady stratified along-isobath current flowing cyclonically (shallower water on the right
looking downstream) over a sloping frictional bottom is examined using an idealized model. The flow is assumed
to consist of an inviscid vertically uniform geostrophic interior above a bottom boundary layer in which density
is vertically well mixed. Within the bottom boundary layer, vertical shear in the horizontal velocities is assumed
to result only from horizontal density gradients. Density advection is included in the model, but momentum
advection is not. The downstream evolution of the current is described by two coupled nonlinear partial differential
equations for surface pressure and boundary layer thickness, each of which is first order in the along-isobath
coordinate and can be easily integrated numerically.

An initially narrow along-isobath current over a uniformly sloping bottom spreads and slows rapidly owing
to the effects of bottom friction, much like the unstratified case. However, as the bottom boundary layer grows,
the resulting horizontal density gradients reduce the bottom velocity, which in turn, decreases both the transport
in the bottom boundary layer and the spreading of the current. An equilibrium is reached downstream in which
the bottom velocity vanishes everywhere and the current stops spreading. This equilibrium flow persists indef-
initely despite the presence of a frictional bottom. The width of the equilibrium current scales as W ; ( f/Na)(F0/
f )½, where f is the Coriolis parameter, N the buoyancy frequency, a the bottom slope, and F0 the inflow volume
flux per unit depth. The thickness of the bottom boundary layer scales as aW, while the along-isobath velocity
scales as (Na/f )(F0 f )½. Surprisingly, the downstream equilibrium flow is independent of the magnitude of bottom
friction. Good approximations for the equilibrium scales are obtained analytically by imposing conservation of
mass and buoyancy transports. Generalizations to variable bottom slope, nonuniform stratification, and coastal
currents are also presented.

1. Introduction

Low-frequency or quasi-steady ocean currents in con-
tact with the bottom tend to flow cyclonically along local
isobaths (i.e., with shallower water on the right in the
Northern Hemisphere). This is not surprising because
long topographic Rossby waves propagate in this sense,
so information is naturally transmitted in this direction.
What is remarkable about many along-isobath currents
is their persistence; that is, their narrow structure often
continues for many hundreds of kilometers, apparently
with little change in form or water properties. Examples
include long coastal currents like that on the eastern
North American shelf, slope currents such as the Lab-
rador and East Greenland Currents, poleward under-
currents along some continental slopes, deep western
boundary currents, and some deep flows along abyssal
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ridges. The persistence of such flows is surprising be-
cause an along-isobath flow in contact with the bottom
ought to experience frictional drag, which should gen-
erate an Ekman-like bottom boundary layer with a cross-
isobath component of transport, which in turn, should
spread and decelerate the flow. One does not, therefore,
expect a flow to remain narrow and distinct over a long
distance.

The combination of ambient stratification and a slop-
ing bottom complicates this simple logic because trans-
port in the bottom boundary layer may redistribute
buoyancy. For example, the cross-isobath transport in
the bottom boundary layer beneath a cyclonic along-
isobath flow is directed toward deeper water. In a stably
stratified fluid, this produces a downslope buoyancy flux
in which less dense water is carried under denser water.
The water column becomes unstable and must overturn
and mix, creating a rapidly thickening bottom boundary
layer with horizontal density gradients. (This is some-
times called a downwelling-favorable flow by analogy
to the coastal process of wind-driven downwelling.) The
horizontal density gradients within the bottom boundary
layer then lead (through thermal wind) to vertical shear
of the along-isobath current. The vertical shear modifies
the along-isobath current that drives the bottom bound-
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ary layer. So, the redistribution of buoyancy modifies
both the bottom boundary layer flow and the along-
isobath flow above it. The behavior of both flows is no
longer obvious, raising the basic question of how a strat-
ified along-isobath flow adjusts over a sloping bottom.

A number of recent studies have begun to investigate
this issue by examining the development of the bottom
boundary layer beneath a stratified flow and its potential
impact on the overlying flow (see the excellent review
by Garrett et al. 1993). In particular, Trowbridge and
Lentz (1991) and MacCready and Rhines (1993) de-
veloped one-dimensional models of boundary layer
growth normal to a uniformly sloping bottom in a semi-
infinite fluid. They showed that one of the primary ef-
fects of vertical shear in the bottom boundary layer
associated with the horizontal density gradient is to re-
duce the stress at the bottom. As the boundary layer
grows, the bottom stress and, consequently, the cross-
isobath buoyancy flux both decrease. Eventually, a
steady state is approached in which the bottom stress
and buoyancy flux become negligible, so the bottom
appears slippery to the overlying flow. The implication
is that the overlying flow could continue indefinitely,
unimpeded by bottom friction.

These recent results suggest a basic mechanism that
may contribute to the persistence of narrow ocean cur-
rents. However, one-dimensional models are not ade-
quate to address the three-dimensional evolution of a
spatially varying stratified flow that adjusts to an evolv-
ing bottom boundary layer. For example, the initial flow
in the models of Trowbridge and Lentz (1991) and
MacCready and Rhines (1993) is spatially uniform, ex-
tending to infinity away from and along the bottom. As
the bottom boundary layer develops, the overlying flow
(above the bottom boundary layer) remains fixed at its
initial value; that is, it is constant in both space and
time. Thus, the development of the bottom boundary
layer alters the overlying flow only within the boundary
layer itself. There is no feedback between the boundary
layer flow and the overlying flow. In contrast, spatial
variations in the initial flow (e.g., a narrow current)
create spatial variations in boundary layer growth with
associated regions of convergence and divergence in the
bottom boundary layer. The initial current must adjust
to these variations in the bottom boundary layer, so the
overlying flow must change. An altered overlying flow
affects the growth of the bottom boundary layer, and so
on. One-dimensional models cannot account for this
feedback.

The goal of this work is to examine the evolution and
adjustment of a stratified along-isobath flow over a slop-
ing frictional bottom in which feedback between the
bottom boundary layer and the overlying flow can occur.
The emphasis is on understanding the basic dynamics
that allow narrow currents to persist over long distances
in the ocean. To this end, an idealized model is con-
structed in section 2, the general behavior of which is
discussed in section 3. Scalings are introduced in section

4 to simplify the presentation of results. The adjustment
of a narrow current over a uniform slope with initially
uniform stratification is described in section 5. The be-
havior of the flow far downstream from the source is
examined in section 6. Generalizations to variable bot-
tom slope, variable stratification, and coastal flows are
presented in section 7. Some implications of the results
are discussed in section 8, followed by concluding re-
marks in section 9.

2. Model formulation

Steady hydrostatic flow of a stratified fluid over a
sloping bottom is considered. Bottom topography varies
only in the y direction; that is, the x axis is everywhere
parallel to the isobaths. Momentum advection is ne-
glected, but density advection is included. The along-
isobath scale of the flow is assumed to be much larger
than the cross-isobath scale, rendering the along-isobath
flow in geostrophic balance. Lateral diffusion of both
momentum and density is neglected. The momentum,
continuity, and density equations may be written as

x2fy 5 2p /r 1 t /r (1)x 0 z 0

fu 5 2p /r (2)y 0

0 5 p 1 gr (3)z

u 1 y 1 w 5 0 (4)x y z

ur 1 yr 1 wr 5 B , (5)x y z z

where (u, y, w) are the velocity components in the along-
isobath (x), cross-isobath (y), and vertical (z) directions,
respectively; p is pressure; r is the density anomaly
relative to the constant surface density r0; f is the Cor-
iolis parameter; tx is the stress in the along-isobath (x)
direction; B is the vertical turbulent density flux; and g
is gravitational acceleration. Subscripts x, y, and z de-
note partial differentiation. For convenience, the density
anomaly r is referred to as the density.

The flow is confined between the surface at z 5 0
and the bottom at z 5 2h(y). It is assumed to consist
of two distinct regions: a bottom boundary layer of
thickness d(x, y) and an interior extending from the top
of the bottom boundary layer to the surface (Fig. 1).
The interior flow is inviscid, vertically uniform, and free
of mixing, that is, no stress (tx 5 0), no vertical shear
(]/]z 5 0), and no density flux (B 5 0). Isopycnals are,
therefore, always horizontal in the interior. Mixing is
confined to the bottom boundary layer and is strong
enough to mix density completely in the vertical. Thus,
isopycnals are vertical in the bottom boundary layer,
while horizontal density gradients and associated ther-
mal-wind vertical shears may be present. The implicit
assumption is that the boundary layer thickness is large
enough that most of the shear is produced by the hor-
izontal density gradients and not the stress at the bottom.
This situation is approached fairly rapidly in the one-
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FIG. 1. Model geometry and stratification. An along-isobath flow
toward 1x (represented by circles) over a sloping bottom, z 5 2h(y),
adjusts in the presence of a growing bottom boundary layer of thick-
ness d. The interior, above the bottom boundary layer, is inviscid and
vertically stratified, while density in the bottom boundary layer is
completely mixed in the vertical. Isopycnals are continuous across
the top of the bottom boundary layer.

dimensional model of MacCready and Rhines (1993).
Finally, isopycnals are assumed to be continuous across
the top of the bottom boundary layer, so the density at
the bottom is simply the vertical projection of the den-
sity at the top of the bottom boundary layer down to
the bottom.

Restating mathematically, using (1)–(4), the two
regions have the following properties:

Interior 2h 1 d , z # 0;
2r 5 r 5 0, r 5 2r N G9(z)/gx y z 0

s sp 5 p , p 5 px x y y

i s i s iu 5 2p /r f, y 5 p /r f, w 5 0.y 0 x 0

(6)

Bottom boundary layer 2h # z # 2h 1 d;

r 5 0z

sp 5 p 1 gr (d 2 h 2 z),x x x (7)
sp 5 p 1 gr (d 2 h 2 z),y y y

su 5 2[p 1 gr (d 2 h 2 z)]/r fy y 0

i5 u 2 gr (d 2 h 2 z)/r f,y 0

where ps is the surface pressure, N is the buoyancy
frequency at z 5 0, G(z) is the vertical structure of the
interior density, and the prime indicates the derivative
with respect to the argument. The function G(z) is cho-
sen to increase with depth from zero at z 5 0, with its

derivative equal to unity at z 5 0. For example, uniform
stratification corresponds to G(z) 5 z. Note that the ver-
tical structures of v and w in the bottom boundary layer
are unknown because the vertical structure of is notxtz

specified.
In keeping with the assumed interior flow, no density

flux or stress is applied at the surface:

B 5 tx 5 0 z 5 0.

At the bottom, there is no density flux and the stress is
assumed proportional to the velocity:

B 5 0, tx/r0 5 ru z 5 2h,

where r is a bottom friction coefficient. No flow is per-
mitted through either the surface or the bottom:

w 5 0 z 5 0

w 5 2y h z 5 2h.y

The momentum equations (1) and (2) and continuity
(4) may be integrated vertically, making use of (6) and
(7) and the boundary conditions, to obtain

1 g r
s 2 b b2 f V 5 2 p 2 d r 2 u (8)x xr 2r h h0 0

1 g
s 2 bf U 5 2 p 2 d r (9)y yr 2r h0 0

(Uh) 1 (Vh) 5 0, (10)x y

where (U, V) 5 h21 (u, y) dz are the depth-averaged0∫2h

velocities, and ub and rb are the along-isobath velocity
and density, evaluated at the bottom, z 5 2h. From (7),

b s b i bu 5 2(p 1 gr d)/r f 5 u 2 gr d/r f. (11)y y 0 y 0

Combining (8)–(10) to eliminate the depth-averaged ve-
locities and using (11) produces

r g r
s s b b bp 2 p 5 (dr ) 1 d(r d 2 r d ) . (12)x yy y y y x x y[ ]fh h fy y

In terms of ps, (12) looks like a one-dimensional dif-
fusion or heat equation, forced by a function depending
on the thickness of the bottom boundary layer and the
density gradients therein. The along-isobath direction x
takes the place of time; that is, the evolution of surface
pressure along the isobaths is analogous to the evolution
of temperature with time for the heat equation. In fact,
in the absence of stratification ( 5 5 0), the right-b br rx y

hand side of (12) vanishes, reducing it to the arrested
topographic wave model constructed by Csanady (1978)
for which the heat equation analogy has been used quite
successfully for years. Alternatively, Csanady’s model
may be recovered by setting 5 5 0 and ub 5 Ub br rx y

in (8)–(10). However, as shown below, the right-hand
side of (12) is a function of ps and, therefore, cannot
be viewed simply as a forcing term for ps. Rather, the
right-hand side of (12) represents feedback between the
bottom boundary layer and the interior flow.
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Another equation relating d, rb, and ps may be ob-
tained by vertically integrating the density equation (5).
The interior flow contributes nothing to the integral, so
this is equivalent to integrating vertically through the
bottom boundary layer, dz. Furthermore, the ver-2h1d∫2h

tical advection and diffusion terms, wrz and Bz, con-
tribute nothing because rz 5 0 in the bottom boundary
layer and B 5 0 at the bottom and at the top of the
bottom boundary layer. Noting that rx and ry are in-
dependent of z within the bottom boundary layer and
using (1), (7), and the bottom stress condition yields

dfui 1 (rub 1 dfy i) 5 0.b br rx y (13)

The cross-isobath buoyancy flux in the bottom boundary
layer is assumed to be dominated by the bottom stress
associated with the along-isobath velocity, so the con-
tribution from the interior cross-isobath velocity dfy i is
neglected in (13) to obtain

bru
b br d 5 2r . (14)x y ifu

The validity of this assumption is discussed further in
section 8.

The remaining step is to relate the bottom boundary
layer thickness to the bottom density. The density within
the bottom boundary layer is simply the density at the
top of the boundary layer; that is, rb 5 rzz52h1d, which
from (6) becomes

2r N0br 5 2 Gz . (15)z52h1dg

For example, uniform stratification (G 5 z) yields rb 5
2 r0N2(d 2 h)/g. Substitution of (15) into (12) and (14)
results in

r r G9
s s 2 2p 2 p 5 r N [(h 2 d )dG9] 1 (d )x yy 0 y y y x5 6fh fh 2y y

(16)
bru

2(d ) 5 2(h 2 d ) (17)x y y ifu

with

b i 2u 5 u 2 N (h 2 d )dG9/ f (18)y y

i su 5 2p /r f, (19)y 0

where G9 here means dG/dz evaluated at z 5 2h 1 d.
The physical behavior encompassed by these equations
is discussed in section 3.

Three lateral boundary conditions are required for
both ps and d (one in x and two in y). The condition in
x consists of a specified along-isobath inflow with no
bottom boundary layer at x 5 0. In the absence of phys-
ical lateral boundaries, the inflow x 5 0 is chosen as at

su 5 2p /r f, 2W # y # W0 y 0 0 0iu 5 (20)50, y , 2W , y . W0 0

d 5 0, all y, (21)

where u0 is the inflow velocity and W0 is the half-width
of the inflow. In this case, the along-isobath velocity
and the bottom boundary layer thickness should vanish
away from the current, so

ui 5 2 → 0 and d → 0, y → 6`.spy

For coastal flows, a solid boundary is imposed at y 5
0 with zero transport normal to the boundary. From (8),
using (15) and (18), the coastal boundary condition is

2r r N G90s s 2p 2 p 5 [r(h 2 d )d/ f 1 d d /2]x y y y xfh hc c

y 5 0, (22)

where hc is the depth at the coast and G9 again means
dG/dz evaluated at z 5 2h 1 d. In this case, the inflow
condition is modified such that u0 is applied only for y
. 0, and ui, d → 0 at y → 1`.

The nonlinear system defined by (16)–(19) appears
to preclude analytical solutions, so a numerical approach
is taken here. The occurrence of only first derivatives
in x suggests that (16)–(19) may be integrated numer-
ically starting from the specified initial state at x 5 0.
The lateral boundary conditions at y → 6` are ap-
proximated by

5 d 5 0 y 5 6W`,spy (23)

where W` is some large distance. To monitor the ac-
curacy of the solution, the total along-isobath transport
is computed at several x locations to be sure that mass
is conserved. In all cases presented here, the space step
in x has been adjusted to ensure mass conservation to
within 0.2% of the specified inflow.

The model is completely specified by choosing the
topography h(y), bottom friction coefficient r, buoyancy
frequency at the surface N, density structure G(z), Cor-
iolis parameter f, and the appropriate boundary condi-
tions. The model is physically well posed, but two con-
straints must be imposed in the numerics to ensure so-
lutions consistent with the model assumptions. Both are
implicit in the model derivation. First, the bottom
boundary layer cannot grow thicker than the total water
depth; that is, d must remain less than h. This is not an
issue for most of the calculations presented below, being
invoked only close to the coast in some coastal flows
(section 7). Second, the assumed structure of the flow
(Fig. 1) implies that the bottom boundary layer can only
grow and cannot shrink because there is no mechanism
to restratify the water column. Therefore, d can only
increase or remain constant as x increases. This is not
a problem provided the initial state at x 5 0 is limited
to cyclonic flows, that is, toward 1x, which are expected
to lead to a density structure like that in Fig. 1.
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FIG. 2. Schematic depicting the adjustment and evolution of a nar-
row inflow starting at x 5 0. (a) Plan view of the current boundaries
that initially spread, owing to bottom friction, at a rate set by r/fhy.
(b) Evolution of the interior velocity ui and bottom velocity ub with
downstream distance. (c) Along-isobath velocity profiles at various
stages downstream. The bottom boundary layer grows, while the
interior and bottom velocities both decrease, eventually reaching an
equilibrium where the bottom velocity vanishes.

3. Preliminaries: General model behavior

Before launching into a presentation of model solu-
tions, it is useful to anticipate model behavior by ex-
amining some features of the model equations (16)–
(19). As mentioned above, the right-hand side of (16)
vanishes in the absence of stratification (i.e., N 5 0),
and the model reduces to the arrested topographic wave
model derived by Csanady (1978). There is no buoyancy
to redistribute, so (16) and (17) are uncoupled. In this
case, the left-hand side of (16) describes the spreading
of an along-isobath current by cross-isobath transport
in the bottom Ekman layer. The rate of spreading with
downstream distance is set by r/fhy, the effective ‘‘dif-
fusivity’’ by analogy to the heat equation, and thus in-
creases with stronger bottom friction, gentler bottom
slope and/or slower rotation rate. The spreading of an
initially narrow current is depicted schematically in Fig.
2a.

In the presence of stratification, the bottom boundary
layer redistributes buoyancy by growing beneath the
along-isobath flow, developing a structure like that in
Fig. 1. In this case, (16) and (17) are coupled; that is,
there is feedback between the bottom boundary layer
and the interior flow. The bottom boundary layer
changes thickness in response to the interior flow,
through (17)–(19), which then alters the spreading and
structure of the interior, through (16). The altered in-
terior flow, in turn, alters the growth of the bottom

boundary layer, and so on. The strength of the feedback
[right-hand side of (16)] is proportional to N2; that is,
stronger interior stratification amplifies the effect of the
bottom boundary layer on the interior flow. Thus, the
adjustment of the interior flow and the growth of the
bottom boundary layer should occur over shorter hor-
izontal scales when the background stratification is
stronger.

The bottom boundary layer will grow wherever the
right-hand side of (17) is positive. The assumed initial
state (at x 5 0) is a cyclonic flow with no bottom bound-
ary layer, that is, d 5 dy 5 0 and ub 5 ui . 0; so the
bottom boundary layer initially grows. As the bottom
boundary layer thickens downstream, the bottom ve-
locity ub decreases relative to the interior velocity ui

according to (18), as depicted schematically in Fig. 2.
Reduced ub slows the growth of the bottom boundary
layer in (17). If the bottom boundary layer ever becomes
thick enough to reduce the bottom velocity to zero in
(18), that is, ub → 0, then boundary layer growth ceases
according to (17). However, the right-hand side of (16)
does not vanish in this case, so the coupling between
the interior flow and the bottom boundary layer remains.
If, in addition, the cross-isobath velocity vanishes (i.e.,
y i 5 /r0 f → 0), then there exists the possibility of aspx

downstream equilibrium state in which ub 5 0 every-
where. Where this occurs, if at all, depends on the ad-
justment of the interior flow and cannot be simply de-
termined a priori.

The bottom boundary layer may also stop growing if
its top becomes horizontal in the cross-isobath direction,
that is, hy 2 dy 5 0, which reduces the right-hand side
of (17) to zero. In this case, the top of the bottom bound-
ary layer is coincident with an interior isopycnal, so the
cross-isobath density gradient vanishes within the bot-
tom boundary layer. According to (18), the vertical shear
in the along-isobath flow vanishes as well, so ub 5 ui.
With (d2)x 5 0 and hy 2 dy 5 0, the entire right-hand
side of (16) disappears, and the model locally reduces
to the arrested topographic wave, despite the presence
of interior stratification. The implication is that the bot-
tom boundary layer cannot grow beyond the point where
hy 2 dy 5 0, a situation which may be approached at
the shallow edge of the bottom boundary layer (Fig. 1).

Bottom friction takes on two competing roles in (16)–
(19). On one hand, bottom friction is responsible for
spreading the flow [left-hand side of (16)], so an in-
crease in r leads to a wider, slower flow. On the other
hand, the growth of the bottom boundary layer in (17)
is proportional to the strength of bottom friction; that
is, boundary layer growth increases as r increases. A
faster growing bottom boundary layer reduces the bot-
tom stress more rapidly, thereby reducing the spreading
of the flow. Therefore, strong bottom friction (large r)
leads to rapid spreading but also to rapid reduction in
bottom stress that reduces spreading. Weak bottom fric-
tion (small r) leads to slow spreading but also slow
boundary layer growth, so the flow may spread more
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before the boundary layer grows enough to reduce the
bottom stress to zero. This behavior suggests that the
two effects may tend to compensate, and any equilib-
rium state achieved far downstream may be insensitive
to the strength of bottom friction.

The bottom slope also affects both spreading and
boundary layer growth, but in ways that reinforce each
other. A steeper bottom slope leads to less spreading by
decreasing r/fhy on the left-hand side of (16). From (17)
and (18), a steeper bottom slope also leads to faster
growth of the bottom boundary layer and increased
shear in the bottom boundary layer, both of which de-
crease the bottom velocity more rapidly with a conse-
quent reduction in spreading. Thus, a steeper bottom
slope should produce a narrower, stronger current.

Two other points are worth noting here: First, the total
depth h appears in (16)–(19) only through G9. For uni-
form stratification, G9 5 1 and the solution is indepen-
dent of the total depth. The topography then enters only
through the bottom slope (and the depth at the coast for
coastal flows). Second, if three conditions are satisfied,
namely, 1) the boundary layer thickness and bottom
slope are independent of the cross-isobath coordinate
(dy 5 0 and hy 5 a), 2) stratification is uniform (G9 5
1), and 3) the bottom velocity vanishes (ub 5 0), then
(18) reduces to d 5 fui/aN2, which is identical to the
one-dimensional model result of Trowbridge and Lentz
[1991; their equation (31) after an appropriate change
of coordinates]. This limit is contrasted with the down-
stream equilibrium solution of (16)–(19) in section 4.

4. Scaling

An appropriate choice of scaling can both simplify
the model equations (16)–(19) and provide information
about the relative sizes of terms and the dependence of
model variables on model parameters. First, the inflow
is assumed to adjust over a cross-isobath scale W. An
appropriate along-isobath length scale L can then be
obtained by making both terms on the left-hand side of
(16) order one. An appropriate vertical scale is aW
where a is a typical bottom slope. Using these length
scales, an along-isobath velocity scale is found from
(18). The pressure scale follows from geostrophy in (6),
which then determines the cross-isobath velocity scale
as well. Accordingly, model variables are scaled as

y by W

2x by L 5 faW /r

h,d by aW

2 2u by N a W/ f

2 2y by N ar/ f

s 2 2 2p by r N a W . (24)0

With these scales (16)–(19) reduce to

1 1 G9
s s 2p 2 p 5 [(h 2 d )dG9] 1 (d ) (25)x yy y y y xh h 2y y

bu
2(d ) 5 2(h 2 d ) (26)x y y iu

b iu 5 u 2 (h 2 d )dG9 (27)y y

i su 5 2p (28)y

in which all variables are now nondimensional. This
scaling eliminates all model parameters, so once hy, G,
and the inflow are specified, a single solution to (25)–
(28) describes the result for all other parameter choices.

The cross-isobath scale W is determined by the inflow
transport. The dimensional inflow transport is F0h0,
where F0 5 2u0W0 is the unscaled inflow volume flux
per unit depth. Scaling u0 and W0 as in (24) and setting
the nondimensional inflow volume flux per unit depth
equal to unity leads to

F0 5 N2a2W2/f.

Solving for W yields

1/2f F0W 5 . (29)1 21 2Na f

The cross-isobath adjustment scale is proportional to the
square root of the inflow volume flux per unit depth and
varies inversely with the Burger number, Na/f. As the
relative importance of stratification increases (decreas-
es), the adjustment scale decreases (increases). For un-
stratified inflows N → 0, so W → `; that is, there is no
limit to the spreading across isobaths, a result consistent
with the arrested topographic wave model.

It is useful to reconsider the validity of some model
assumptions in light of the scaling (24). The neglect of
momentum advection in (1) and (2) is valid provided
that the Rossby number is small; that is, u/fW K 1,
which from (24) is (Na/f )2 K 1. That is, the square of
the Burger number must be small. This is a good as-
sumption in most of the deep ocean and over most con-
tinental shelves. It may be violated over the shallowest
parts of highly stratified continental slopes, typically
near the shelf break. The assumption of geostrophy in
the cross-isobath momentum equation (2) requires that

/r0 K fu in the unscaled equations. Using a linearyt z

bottom stress law, /r0 ; rv/d, the requirement be-yt z

comes (r/faW)2 K 1, which is simply a restatement of
the assumption that the along-isobath scale is much
greater than the cross-isobath scale (W2 K L2). So, the
chosen scaling is consistent with the neglect of stress
in (2). Interestingly, the restriction W2 K L2 constrains
the inflow volume flux per unit depth; F0 k r2N2/f 3.
This is basically a statement that the inflow transport
must be strong enough for the alongshelf flow to dom-
inate the cross-shelf flow.

As anticipated in section 3, the width scale (29) is
independent of bottom friction. The bottom friction co-
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FIG. 3. Plan views of the adjustment of a narrow inflow over a
uniformly sloping bottom with uniform initial stratification. The in-
flow enters at x 5 0 between y 5 60.1. Shallower water is toward
the bottom of each panel. Isobaths are parallel to the x axis. Variables
are (a) surface pressure, (b) interior along-isobath velocity, (c) interior
cross-isobath velocity, (d) bottom velocity, and (e) bottom boundary
layer thickness. All variables are scaled according to (24). Contours
are (a) 0.1 to 0.9 by 0.1, (b) 0.1 to 1 by 0.1, (c) 21.375 to 1.375 by
0.25, (d) 0.1 to 1 by 0.1, and (e) 0.06 to 0.6 by 0.06.

efficient r appears only in the x and y scales. This means
that the downstream distance over which adjustment
occurs and the cross-isobath velocity associated with
the adjustment each depend on bottom friction, but any
equilibrium state that develops far downstream and is
independent of x (and, therefore, y i 5 /r0 f 5 0) isspx

also independent of bottom friction. This is a convenient
result considering that r is probably the poorest known
parameter in the model.

The bottom boundary layer thickness scale is inde-
pendent of bottom slope; that is, aW 5 ( f/N)(F0/f )1/2

using (29). In contrast, the equilibrium boundary layer
thickness reported by Trowbridge and Lentz (1991)
from their one-dimensional model is d 5 fui/aN2 (in the
present notation), which is clearly a function of bottom
slope, becoming ever larger as the bottom slope de-
creases. Further, as mentioned in section 3, setting the
bottom velocity to zero in (18) produces an equilibrium
bottom boundary layer thickness identical to that of
Trowbridge and Lentz (1991). This apparent contradic-
tion is a consequence of the lack of feedback between
the bottom boundary layer and the interior flow in the
one-dimensional model of Trowbridge and Lentz
(1991); that is, ui is fixed in their model. In the present
model, ui varies with the scale given by (24). Substi-
tuting the u scale for ui in the Trowbridge and Lentz
(1991) expression produces d 5 aW, in agreement with
(24). Therefore, the equilibrium bottom boundary layer
scale for three-dimensional flow may be very different
from the scale for one-dimensional flow, especially over
a very gently sloping bottom, because of the adjustment
of the interior velocity in response to boundary layer
growth.

Thus, the scalings in (24) and (29) provide consid-
erable insight into the behavior of the model and also
greatly simplify the model equations. Henceforth, all
variables are scaled in this manner unless otherwise
noted. This also means that the nondimensional inflow
volume flux per unit depth is fixed at unity in order for
(29) to apply.

5. Adjustment of a narrow current over a uniform
slope

The simplest example that illustrates the basic be-
havior and dynamics of the model constructed in section
2 is the adjustment of a narrow along-isobath current
over a uniformly sloping bottom in the presence of uni-
form stratification. That is, the model is simplified by
choosing hy 5 1 and G9 5 1 in (25)–(28), and the inflow
is imposed over a small cross-isobath distance relative
to the adjustment scale W (i.e., W0 K 1).

The model solution for an inflow with half-width W0

5 0.1 and inflow velocity u0 5 5 is presented in Fig.
3. The inflow is centered at y 5 0 on the left boundary
(x 5 0), and isobaths (not shown) are parallel to the x
axis with the shallowest water at the bottom edge of
each panel (y 5 21.5). The inflow widens rapidly as it

moves downstream. The outermost contours of surface
pressure and along-isobath velocity approach y 5 61
by x 5 0.3 (Figs. 3a,b). The cross-isobath velocity re-
flects this spreading, with positive y i on the deep side
of the inflow and negative y i on the shallow side (Fig.
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FIG. 4. As in Fig. 3 but for an unstratified flow. Note that d 5 0,
so panel (e) is not shown.

3c). The initial spreading may be understood by forming
a vorticity equation from (8)–(10). Near x 5 0, the
bottom boundary layer has only begun to grow, so d
may be set to zero to obtain

fa ] r
b2 V 5 u (30)1 2h ]y h

in which all variables are dimensional. Equation (30)
expresses the balance between the stretching or squash-
ing of a water column and Ekman pumping or suction
in the bottom boundary layer, that is, the curl of the
bottom stress. At x 5 0, ub 5 ui, so the right-hand side
of (30) is positive on the 2y side of the inflow, and V
must be negative there. That is, water columns are
squashed and must move toward shallower water. The
reverse is true on the 1y side, so V is positive and flow
is toward deeper water.

As the flow moves downstream, the bottom boundary
layer grows beneath the along-isobath current (Fig. 3e).
As expected, this rapidly reduces the bottom velocity
(Fig. 3d), which, in turn, slows the spreading. By x 5
0.5, the bottom velocity has nearly vanished, and the
flow is approaching an equilibrium state independent of
x. The cross-isobath velocity has nearly vanished as
well. Beyond this point, the along-isobath current con-
tinues unchanged and unimpeded (Fig. 3b), despite the
presence of a frictional bottom!

In terms of dimensional distances and velocities, the
current adjustment depends on the various parameters
that set the scales in (24) and (29). For example, stronger
stratification, steeper bottom slope, or slower rotation
rate each decreases W (and hence L), leading to a more
rapid downstream adjustment (shorter x scale), a nar-
rower equilibrium current, and larger along-isobath ve-
locities. The opposite is true for weaker stratification,
gentler bottom slope, and/or more rapid rotation rate.
In the limit of vanishing stratification (N → 0) the x and
y scales become infinite, so the downstream equilibrium
is never reached. This corresponds to Csanady’s (1978)
arrested topographic wave model described earlier and
is shown for comparison in Fig. 4, the solution having
been obtained by solving (25)–(28) with d 5 0.1 The
scaling given by (24) is, of course, no longer valid be-
cause N 5 0, so a quantitative comparison with Fig. 3
is not sensible. Nevertheless, the qualitative differences
are clear even without specifying the scales. The surface
pressure initially spreads rapidly across the isobaths with
cross-isobath velocities that resemble those of the strat-
ified model (Fig. 3). However, the spreading continues
indefinitely in the downstream direction, never reaching
a downstream equilibrium. The along-isobath velocity
continues to widen and decrease downstream until,
eventually, all signs of the inflow are lost. (This behavior

1 Remember that d 5 0 here means no buoyancy flux in the bottom
boundary layer, not a vanishing bottom Ekman layer.

may be obtained from Fig. 3, as well, by stretching both
x and y axes to infinity as W → `.)

The along-isobath development of the bottom bound-
ary layer thickness, the interior velocity, and the bottom
velocity is presented in Fig. 5. The maximum value at
each downstream location is plotted. The bottom bound-
ary layer initially grows rapidly in the presence of strat-
ification, but growth slows with distance downstream
and approaches a maximum. The interior velocity de-
creases rapidly, then reaches a constant at x ø 0.2. The
bottom velocity continues to decrease downstream, van-
ishing by x ø 1. The solution for the unstratified case
(dashed curves) is shown for comparison simply to dem-
onstrate that the unstratified solution never reaches an
equilibrium but rather continues to decay downstream.
As explained above, the comparison is only qualitative
because the x scales for the two cases are different.

The downstream evolution of the dynamical balance
is shown in Fig. 6 where each of the four terms in (25)
is plotted on each side of the inflow (y 5 60.33). Near
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FIG. 5. Maximum values of (upper) bottom boundary layer thick-
ness, (middle) interior along-isobath velocity, and (lower) bottom
velocity at each downstream (x) location for the stratified flow shown
in Fig. 3. Dashed curves correspond to the unstratified flow in
Fig. 4.

FIG. 6. Along-isobath evolution of the four terms in (25) at (upper)
y 5 0.33 and (lower) y 5 20.33 for the stratified flow shown in Fig.
3. Solid curves are ; dotted curves are 2 ; dashed curves are by

s sp pyy x

5 [(hy 2 dy)d]y; dash-dotted curves are bx 5 ½(d2)x.21hy

the inflow (x , 0.2), the dramatic adjustment is almost
entirely associated with the spreading of the inflow. As
mentioned above, the bottom boundary layer is quite
thin in this region, so density effects (buoyancy forces)
are minimal. The dynamical balance is essentially the
arrested topographic wave, that is, ø . Bottoms sp px yy

boundary layer growth, bx 5 (1/2)(d2)x, is largest near
the inflow (see also Fig. 5) and then decreases slowly
downstream. Farther downstream, the along-isobath
gradients decrease as the bottom boundary layer grows,
leaving a balance between 2 and by 5 [(1 2s 21p hyy y

dy)d]y in the equilibrium flow.
The along-isobath decay or shutdown scale over which

the inflow approaches the downstream equilibrium state
is L, given by (24). This scale is consistent with an estimate
for a shutdown time scale made by Garrett et al. (1993)

based on a one-dimensional model. They argued that the
shutdown time for the bottom boundary layer is of order
(1/2) N21(f/Na)3, where Cd is the drag coefficient in a21Cd

quadratic drag law for bottom stress. This shutdown time
scale may be converted to a shutdown length scale in the
presence of a linear bottom stress law (as in the present
model) by multiplying by an advective velocity u and
setting Cd 5 r/u to obtain

1
G 2 3 21L ; (u /r)( f /Na) N .

2

Using the u scale from (24), this becomes

1 1
G 2L ; faW /r 5 L.

2 2

Despite the consistency, neither scale agrees particularly
well with the scale over which the bottom velocity de-
cays in Fig. 5. That is, neither represents the scale ex-
pected for a simple exponential decay. Even ignoring
the initial spreading when x , 0.1, the shutdown of ub

is more rapid than either L or LG suggests, indicating
that arguments for shutdown length scales based solely
on L or LG may be misleading.

The cross-isobath structures of the bottom boundary
layer and the interior velocity in the downstream equi-
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FIG. 7. Downstream equilibrium structure of (upper) bottom bound-
ary layer thickness, (middle) interior along-isobath velocity, and
(lower) density field at x 5 1 for the stratified flow shown in Fig. 3.

librium (x 5 1) are shown in Fig. 7. The boundary layer
thickness is smooth and nearly symmetric about y 5 0,
while the interior velocity is asymmetric owing to the
effects of stratification (also compare Figs. 3b and 4b).
The along-isobath velocity is enhanced on the deeper
side of the flow because the top of the bottom boundary
layer slices through the interior density field at a steeper
angle on that side of the flow, so the cross-isobath den-
sity gradient is greater there. This produces a larger
vertical shear in the bottom boundary layer, which can
support a larger interior velocity above the vanishing
bottom velocity.

6. Downstream equilibrium

Three general constraints on the downstream equilib-
rium solution may be obtained by applying conservation

of mass and buoyancy transport. These constraints are
applicable for any inflow, and they may be applied to
the special case of (20) to produce an approximate so-
lution valid for any inflow width W0. The discussion is
again limited to the case of uniform stratification (G9 5
1) over a uniformly sloping bottom (h 5 h0 1 y; hy 5
1), although it could be generalized further.

The model requires that the along-isobath flux of mass
and buoyancy, integrated across the flow at any along-
isobath (x) location, must equal the flux imposed at the
inflow. Thus,

Y 0 ` 0d

u dz dy 5 u (y) dz dy (31)E E E E in

2Y 2h 2` 2hs

Y 0 ` 0d

ur dz dy 5 u (y)rz dz dy, (32)E E E E in x50

2Y 2h 2` 2hs

where the inflow velocity uin is an arbitrary function of
y that is spatially limited (i.e., uin → 0 as y → 6`),
and 2Ys and Yd are, respectively, the shallow and deep
edges of the current, defined as the positions at which
the bottom boundary layer vanishes (i.e., d 5 0 at y 5
2Ys and Yd). For consistency with the scaling introduced
in section 4, the inflow velocity must provide unit trans-
port per unit depth; that is, uin dy 5 1.`∫2`

The interior flow is horizontally nondivergent with w
5 0, so fluid never changes depth. This allows the ver-
tical integrals on the left-hand side of (31) and (32) to
be separated into two parts: an upper region above the
shallowest depth of the bottom boundary layer, that is,
2h0 1 Ys , z , 0, and a lower region below this depth,
that is, 2h , z , 2h0 1 Ys. The velocities in the upper
region are vertically uniform, so both (31) and (32)
reduce to

Y `d

iu dy 5 u (y) dy 5 1,E E in

2Y 2`s

2h 1 Y , z , 0. (33)0 s

In the downstream equilibrium, both the velocity at the
bottom and along-isobath variations in ps must vanish
(i.e., ub → 0 and → 0). From (26), boundary layerspx

growth ceases, so both x-derivative terms in (25) dis-
appear. Equation (25) may then be integrated to obtain

ui 5 2 5 (1 2 dy)d,spy (34)

which is also obtained by setting ub 5 0 in (27). Sub-
stituting (34) into (33) and using the fact that d 5 0 at
y 5 2Ys and Yd yields a constraint on the equilibrium
flow:
Constraint 1

Y `d

d dy 5 u (y) dy 5 1. (35)E E in

2Y 2`s

Conservation of mass transport within the depth range
spanned by the bottom boundary layer is imposed using
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FIG. 8. Downstream equilibrium structure of (upper) bottom bound-
ary layer thickness and (lower) interior along-isobath velocity for
several choices of inflow width; W0 5 0.1 (solid), 1 (dashed), 2 (dash–
dotted), and 3 (dotted). Total inflow transport is unity in each case.

(31) but integrating vertically from the bottom to z 5
2h0 1 Ys. Above the bottom boundary layer (2h 1 d
, z , 2h0 1 Ys), the equilibrium velocity is again
given by (34). Within the bottom boundary layer, the
equilibrium velocity is given by (7) combined with (15),
which in scaled form becomes

u 5 ui 2 (1 2 dy)(d 2 h 2 z). (36)

Using (34) and (36) in (31) and imposing constraint 1
leads to a second constraint on the equilibrium flow:
constraint 2

Y `d

yd dy 5 yu (y) dy. (37)E E in

2Y 2`s

Note that the right-hand side of (37) vanishes if the
inflow is an even function, that is, if uin(2y) 5 uin(y).

A third constraint is obtained from buoyancy con-
servation (32), applied within the depths spanned by the
bottom boundary layer (2h , z , 2h0 1 Ys). The
velocities above and within the bottom boundary layer
are given by (34) and (36), respectively. The density
above the bottom boundary layer is r 5 2r0N2z/g, while
the density within the bottom boundary layer is given
by (15) as rb 5 2r0N2(d 2 h)/g. Note that a density
scale was not chosen in section 4, but the choice is
unimportant here because it cancels when used in (32).
Using these velocities and densities in (32) and impos-
ing constraints 1 and 2, leads (after integration by parts
and some algebra) to
constraint 3

Y `d 1
2 3 2y d 2 d dy 5 y u (y) dy. (38)E E in1 23

2Y 2`s

The above three constraints must be satisfied by the
downstream equilibrium flow for any choice of inflow.
Although they do not provide enough information to
find a unique analytical solution, they can be used to
derive a good approximate solution for the special case
of a constant inflow uin 5 u0 over an inflow width 2W0

as defined by (20). In this case, the right-hand side of
(37) vanishes, and the right-hand side of (38) equals
⅓ .2W0

In order to see the dependence of the downstream
equilibrium structure on W0, the basic calculation de-
scribed in section 5 has been repeated for a wide range
of inflow widths. In each case the inflow transport per
unit depth is maintained at unity; that is, 2u0W0 5 1.
Examples of the downstream equilibrium are shown in
Fig. 8 for several choices of W0. The equilibrium width
of the current increases with W0, while the maximum
height of the bottom boundary layer and the maximum
velocity both decrease, as they must to maintain unit
inflow. Spreading of the current takes place at the edges
where the relative vorticity is largest.

For wide inflows, W0 . 2, the adjustment is nearly
two-dimensional (in the vertical and along-isobath di-

rections). That is, the bulk of the inflow simply follows
isobaths with the bottom boundary layer growing be-
neath. This flow is basically the analog of the one-di-
mensional models (e.g., Trowbridge and Lentz 1991)
with along-isobath motion playing the role of time. The
interior velocity hardly changes from its inflow value,
and the bottom boundary layer simply grows thick
enough to reduce the inflow velocity to zero at the bot-
tom. Spreading is limited to smoothing at the edges,
leaving a wide, flat region of constant boundary layer
thickness and constant along-isobath velocity.

The simplest representation of the equilibrium bottom
boundary layer thickness, which is consistent with the
wide inflow results of Fig. 8, is a constant thickness de

from y 5 2We to y 5 We (i.e., Ys 5 Yd 5 We). This
choice satisfies constraint 2 and is easy to use in the
other constraints. Constraint 1 requires that 2deWe 5 1,
which can be combined with constraint 3 to find

1/2
1 1

2 4 1/2W 5 W 1 (1 1 W ) . (39)e 0 0[ ]2 2

This estimate represents the effective width of the
model downstream equilibrium if the boundary layer
had uniform thickness. It can be compared to the model
results by defining an effective model equilibrium width
based on the maximum bottom boundary layer thickness
dm; that is, Wm 5 (2dm)21. This definition satisfies mass
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FIG. 9. Downstream equilibrium structure versus inflow width W0.
Solid curves are the maximum bottom boundary layer thickness dm

(lower) and the effective current width Wm 5 (2dm)21 (upper) from
the model calculations. Dashed curves are the estimates based on a
uniform boundary layer thickness de and current width We in (39)
combined with the equilibrium constraints (35), (37), and (38).

FIG. 10. As in Fig. 7 but for variable bottom slope (40) with a1 5
1, a2 5 2, yb 5 0.4, and D 5 0.2. Dashed curves are for a uniformly
sloping bottom (Fig. 7).

conservation for a constant boundary layer thickness of
dm. Figure 9 shows Wm and dm as a function of inflow
width (solid curves). The effective equilibrium width is
fairly constant for narrow inflows (W0 , 0.5) and then
becomes nearly equal to W0 for W0 . 1.5. Estimates of
equilibrium width We from (39) and boundary layer
thickness de 5 (2We)21 are drawn as dashed curves in
Fig. 9. Overall agreement is quite good. The largest
discrepancies occur for narrow inflows (W0 , 1) where
the bottom boundary layer thickness is least like a con-
stant. For W0 . 1, the estimate is nearly identical to the
model result. Thus, the three constraints derived above,
based only on the downstream equilibrium, provide
powerful restrictions on the solution, which may be used
to approximate the equilibrium scales rather accurately.

7. Generalizations

For completeness, a few examples are presented here
in which the simplifications of a uniformly sloping bot-
tom and uniform stratification are relaxed. In addition,
flows adjacent to a coastal boundary are considered brief-
ly. In all cases, the basic behavior is fairly easy to un-
derstand based on results from the previous sections.

a. Variable bottom slope

According to (29), the cross-isobath adjustment scale
(for a narrow inflow) is inversely proportional to the
bottom slope, so an inflow spreads across the isobaths
more (less) over a gentler (steeper) bottom slope. There-
fore, an inflow that encounters a change in bottom slope
is expected to remain narrower over the steeper part of
the topography. To demonstrate, the adjustment of the

narrow inflow of section 5 has been calculated over
variable bottom slope by solving (25)–(28) with bottom
slope hy varying smoothly in y from a1 to a2 as

1 1
h 5 (a 1 a ) 1 (a 2 a )tanh[(y 2 y )/D],y 1 2 2 1 b2 2

(40)

where yb is the location of the change in bottom slope,
and D is the scale over which the slope changes. Uni-
form stratification is assumed as before, G9 5 1.

Figure 10 shows the downstream equilibrium
achieved with a1 5 1, a2 5 2, yb 5 0.4, and D 5 0.2.
The change in bottom slope occurs on the deeper side
of the inflow, but within the adjustment scale for the
uniform slope (i.e., yb , 1). As the inflow spreads, most
of the flow encounters the same slope as in section 5,
but some of the deeper part of the flow must adjust to
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FIG. 11. Downstream equilibrium structure of (upper) bottom
boundary layer thickness, and (lower) interior along-isobath velocity
at x 5 1 for exponential stratifications given by (41) with g 5 `
(uniform stratification as in Fig. 7; solid), g 5 5 (dashed), and g 5
3 (dash-dotted).

the steeper bottom slope. Thus, the inflow widens nearly
identically to Fig. 3 until the deeper part encounters the
steeper bottom slope. The shallower part then continues
as before, while the deeper part spreads less. Not sur-
prisingly, the boundary layer thickness and along-iso-
bath velocity over the gentler slope are nearly identical
to those in Fig. 7. Over the steeper slope, the width of
the equilibrium flow is roughly halved, while the max-
imum velocity is approximately doubled, and the max-
imum boundary layer thickness is nearly unchanged.
These changes are all consistent with (24) and (29). The
result is a strong, narrow jet near the break in topog-
raphy.

b. Variable stratification

Variations in the interior stratification affect the ad-
justment of the inflow by changing the horizontal den-
sity gradients within the bottom boundary layer, which
in turn alter the vertical shear [see (11)]. Where rela-
tively stronger (weaker) stratification occurs at the top
of the bottom boundary layer, the vertical shear within
the boundary layer is larger (smaller), so a given bottom
boundary layer thickness will reduce a larger (smaller)
interior velocity to zero at the bottom. Alternatively, a
thinner (thicker) bottom boundary layer beneath stron-
ger (weaker) stratification is required to reduce a given
interior velocity to zero at the bottom. Thus, regions of
stronger (weaker) stratification should correspond to
regions of stronger (weaker) equilibrium interior cur-
rents and/or thinner (thicker) bottom boundary layers.
This behavior may be demonstrated by solving (25)–
(28) as before over a uniformly sloping bottom, but now
allowing variable background stratification. As a by-
product, the depth now enters the problem because the
stratification varies with height above the bottom.
Therefore, some depth must be specified, so the x axis
(y 5 0) is chosen to coincide with the h 5 4 isobath.

Figure 11 shows the equilibrium flow structure for
exponential background density profiles of the form

G(z) 5 g(ez/g 2 1). (41)

Uniform stratification corresponds to g → `. Any finite
choice for g corresponds to decreasing stratification with
depth. As anticipated, decreased stratification leads to
a broader and weaker equilibrium flow with a thicker
bottom boundary layer. The changes are more pro-
nounced on the deeper side of the flow where the strat-
ification is weakest.

Local changes in background stratification, for ex-
ample, a pycnocline, may also dramatically affect the
equilibrium flow. Figure 12 shows the equilibrium flow
in the presence of a density profile with a pycnocline
at z 5 2z0;

z02G(z) 5 1 2 b sech z1 2[ ]Dz

z 1 z z0 01 bDz tanh 2 tanh , (42)1 2 1 2[ ]Dz Dz

where b represents the local increase in buoyancy fre-
quency at the pycnocline and Dz is the thickness of the
pycnocline. The pycnocline in Fig. 12 (z0 5 4, Dz 5
0.25, b 5 2) intersects the top of the bottom boundary
layer on the deeper side of the equilibrium flow. The
horizontal density gradients within the boundary layer
are locally increased, thereby increasing the vertical
shear. As a result, a stronger interior velocity is main-
tained in this region over a thinner bottom boundary
layer. The shallower part of the equilibrium flow is
largely unaltered by the pycnocline, but the deeper flow
is reduced because that transport is carried by the strong,
narrow jet generated at the pycnocline. The net effect
is similar to the change in bottom slope shown in Fig.
10.

c. Coastal currents

The present model may be used to examine the ad-
justment and evolution of an inflow in the presence of
a coastal boundary by applying boundary condition
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FIG. 12. As in Fig. 7 but for pycnocline stratification given by (42)
with z0 5 4, Dz 5 0.25, and b 5 2. Dashed curves are for uniform
stratification (Fig. 7).

FIG. 13. As in Fig. 7 but for a flow bounded by a coastal wall of
depth hc 5 0.5 located at y 5 0 and depth given by (43) with a1 5
1, a2 5 2, yb 5 1, and D 5 0.2. Dashed curves correspond to the
same case but with a uniformly sloping bottom, a1 5 a2 5 1.

(22). The coastal boundary restricts the spreading of the
inflow such that it may move only into deeper water.
Typical results are shown in Fig. 13 for an inflow with
width W0 5 1 and velocity u0 5 1 adjacent to the coast
(y 5 0). Stratification is uniform, G9(z) 5 1. The scaled
bottom topography has the form

1 D
h 5 h 1 (a 1 a )y 1 (a 2 a )c 1 2 2 12 2

y 2 y yb b3 ln cosh 2 ln cosh , (43)5 1 2 1 2 6[ ] [ ]D D

which has depth hc at y 5 0, and the slope hy is given
by (40). The dashed curves correspond to the equilib-
rium flow over a uniformly sloping bottom (a1 5 a2 5
1 and hc 5 0.5). The solid curves and the lower panel
correspond to a change in bottom slope at y 5 1, similar

to a shelf break although not very sharp (a1 5 1, a2 5
2, yb 5 1, D 5 0.2, and hc 5 0.5). In both cases, the
current spreads into deeper water and reaches an equi-
librium with the strongest currents near the outer edge
of the flow. The maximum boundary layer thickness is
slightly greater and the equilibrium width wider than
the noncoastal case with W0 5 1 because more transport
is forced to move into the deeper water in the coastal
case. The effect of the shelf break is qualitatively iden-
tical to that in Fig. 10; a strong and narrow jet (ap-
proaching twice the maximum speed) forms near the
change in bottom slope. The implication is that the shelf
break acts somewhat like a barrier, inhibiting the coastal
current from simply moving offshore over the conti-
nental slope.

In both cases shown in Fig. 13, the bottom boundary
layer just reaches the surface at the coast. The effect of
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FIG. 14. As in Fig. 13 but for a shallower coastal wall; hc 5 0.25.
Dashed curves are for the deeper coastal wall (solid curves in Fig.
13).

this on the equilibrium flow is minimal. If the coastal
depth is reduced to hc 5 0.25 while maintaining unit
inflow, then the bottom boundary layer reaches the sur-
face over a large portion of the shelf (y&0.4). The hor-
izontal density gradients vanish in this region, and so
must the vertical shear. Therefore, the interior velocity
must match the bottom velocity, which is zero in the
equilibrium flow. As a result, the equilibrium flow (Fig.
14) moves offshore leaving a stagnant region adjacent
to the coast. Further, the increased transport near the
change in bottom slope generates a stronger and slightly
wider jet compared to the previous case with a deeper
coastal boundary (dashed curves).

8. Discussion

The model constructed here, despite its many ideal-
izations, provides insight into the general behavior of

stratified ocean flows over a sloping bottom. In partic-
ular, the model demonstrates the importance of both
density advection in the bottom boundary layer and,
especially, feedback between the boundary layer and
the overlying flow, thereby progressing beyond one-
dimensional models of bottom boundary layer growth
in which the overlying flow that drives the bottom
boundary layer is fixed at its initial value. In addition,
the scaling (24) eliminates all free parameters, so the
insights may be applied to many situations. The present
model also allows the investigation of spatially varying
currents over variable bottom topography in the pres-
ence of variable stratification in a straightforward way.
The existence of a downstream equilibrium in which
bottom stress vanishes everywhere provides a mecha-
nism for narrow ocean currents to persist over long dis-
tances with little change in structure or properties. This
contrasts with the model proposed by MacCready
(1994) that explains long ocean currents by appealing
to the gradual drainage of fluid and energy by bottom
Ekman transport; if the drainage is slow enough, then
the current persists for a long distance before spinning
down. In the present model, however, there is no drain-
age or spin down at all, once the downstream equilib-
rium is reached, so the current persists indefinitely!

The present model results also suggest that the hor-
izontal (cross isobath) structure of persistent ocean cur-
rents (i.e., having reached an equilibrium) may be large-
ly determined by the dynamics of the underlying bottom
boundary layer. In regions of uniform bottom slope,
currents should be stronger on the deeper side of the
flow. Over variable topography with nonuniform strat-
ification, currents should be strongest where the bottom
slope is greatest and where the interior stratification is
strongest. Remarkably, and in contrast to one-dimen-
sional models, the thickness scale of the bottom bound-
ary layer is independent of the bottom slope, reaching
a finite size even over a very gentle slope (e.g., over
the continental shelf). Further, the model equilibrium
flow is independent of the magnitude of bottom friction,
suggesting that the precise form assumed for bottom
stress may not be important, so the model results may
apply more generally than originally anticipated.

The model results also have implications concerning
the formation of shelfbreak fronts. Wright (1989) pro-
posed that a shelfbreak front can form as a shelf front,
which separates fresher water from denser water, and is
moved offshore by bottom Ekman transport until it
reaches the shelf break. Chapman and Lentz (1994)
showed that this may not work because the front may
reach an equilibrium position where it stops moving
offshore, similar to the present situation. The present
results suggest that whether or not bottom Ekman trans-
port can carry a coastal flow to the shelf break depends
on the relative size of W from (29) and the shelf width.
If the source flow is initially narrow compared with W
and the shelf is wider than about 2W, then the flow
should not reach the shelf break. Instead, a midshelf
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front may form. If the shelf width is less than 2W, then
an initially narrow flow should reach the shelf break
where the change in bottom slope should impede further
progress offshore (e.g., Fig. 10). This situation is con-
sistent with the formation mechanism proposed by Ga-
warkiewicz and Chapman (1992). They showed that a
front forms at the shelf break where the spreading coast-
al flow encounters the change in bottom slope causing
the bottom boundary layer to detach from the bottom.

One significant difference between the present model
and that of Gawarkiewicz and Chapman (1992) is that
a surface-to-bottom front does not form near the shelf
break in the present model (see Figs. 13 and 14). This
occurs because the interior of the present model is as-
sumed inviscid, whereas Gawarkiewicz and Chapman
(1992) used a constant vertical mixing coefficient
throughout the water column. Indeed, numerical model
calculations identical to those of Gawarkiewicz and
Chapman (1992), but with greatly reduced vertical mix-
ing outside the bottom boundary layer, produce flows
very much like those in Figs. 13 and 14. These, and
other related results, will be reported separately.

Many simplifications and assumptions were made in
constructing the present model, thus making it difficult
to apply the results directly to observed ocean currents.
For example, the model interior flow is vertically uni-
form with no vertical shear of the horizontal currents
and no sloping isopycnals. Bottom-intensified flows,
such as poleward undercurrents and deep western
boundary currents, do not generally have these prop-
erties. The model topography is assumed to vary only
in one direction, so regions of complex bathymetry are
not properly modeled. The model only allows the
boundary layer to grow or equilibrate but never to shrink
because there is no way to restratify the water column.
So, upwelling-favorable flows and/or rapidly deceler-
ating flows cannot be modeled. Furthermore, the dy-
namics of the model bottom boundary layer are partic-
ularly simple, ignoring shear generated by inertial os-
cillations and that within the log-layer near the bottom.

Another limitation of the present model is the as-
sumption that the bottom boundary layer must remain
attached to the bottom, which may not be the case in
some flows. For example, if convergence within the
bottom boundary layer becomes strong enough, then
large vertical velocities can be generated that cause the
bottom boundary layer to detach from the bottom and
thereby modify the interior flow (e.g., Gawarkiewicz
and Chapman 1992; Chapman and Lentz 1994). The
present model responds to strong convergences, such as
a change in bottom slope, by turning the flow along the
isobaths, forming a narrow along-isobath jet (Fig. 10).
A related issue is that the jet may become so strong and
narrow that it is unstable to small perturbations; that is,
the neglect of nonlinear advection in the momentum
equations becomes questionable. Resolution of these is-
sues probably requires comparison of the present model

results with similar calulations using a sophisticated nu-
merical model and is not attempted here.

Regardless of the model limitations, estimates of
model scales for various oceanic conditions can be made
that establish the relevance of the model results. For
example, recent observations of the deep western
boundary current south of the Grand Banks at 558W
show the transport to be about 15 3 106 m3 s21 with a
vertical scale of about 2000 m, a horizontal width of
150–200 km, and geostrophic velocities between 0.03
and 0.09 m s21 (R. Pickart 1995, personal communi-
cation). Taking F0 5 (15 3 106/2000) m2 s21, a 5 1022,
N 5 1023 s21, and f 5 1024 s21 in (29) yields W 5 87
km. From (24), the along-isobath velocity scale is 0.087
m s21, while the boundary layer thickness scale is 866
m. Based on the narrow inflow results and the down-
stream equilibrium calculations (i.e., using the precise
values from Fig. 7), the equilibrium flow would have a
total width of 2 3 1.32W 5 229 km with an along-
isobath velocity maximum of about 0.067 m s21 and
maximum boundary layer thickness of about 520 m; all
quite reasonable compared with Pickart’s recent obser-
vations.

Another example is the shelf flow along the Middle
Atlantic Bight. Here the transport is roughly 0.5 3 106

m3 s21 distributed over an average depth of about 70 m
(e.g., Beardsley et al. 1985). Taking a 5 1023, N 5
1022 s21, and f 5 1024 s21 leads to W 5 85 km. The
along-isobath velocity scale is 0.085 m s21 while the
bottom boundary layer thickness scale is 85 m. Using
the results shown in Fig. 13 for the uniformly sloping
bottom, the equilibrium flow would have a total width
of about 150 km. The width is wider than the shelf,
consistent with the existence of a shelfbreak front in the
Middle Atlantic Bight. The peak velocity is about 0.058
m s21, and the maximum boundary layer thickness is
about 48 m. All of these values are again quite reason-
able, suggesting that the present model may provide
insight for a variety of situations.

The final point of discussion concerns the neglect of
the contribution of the interior cross-isobath velocity to
the cross-isobath buoyancy flux in the bottom boundary
layer in going from (13) to (14). The scaling (24) shows
that the omitted term dfy i is, in fact, the same order as
rub, so its neglect is not strictly valid. Nevertheless, this
term is omitted for the following reason: The inflow is
purposely chosen to be out of dynamical balance in
order to study the downstream adjustment of the flow.
The interior cross-isobath velocity just downstream of
the inflow is, therefore, exceptionally large at the edges
of the inflow. In fact, it violates the model assumption
that y i K ui, so the transport in the bottom boundary
layer would be dominated by y i if it were included. The
adjustment process of interest would be overwhelmed
by this term. The implicit assumption is that other pro-
cesses, also neglected, would rapidly reduce the cross-
isobath velocity near the inflow, so its influence on the
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development of the downstream equilibrium would be
unimportant.

To determine whether or not neglecting this term sub-
stantially alters the model results, calculations have been
made using a primitive-equation numerical model con-
figured to represent the narrow inflow reported in sec-
tion 5 and the coastal current described in section 7c.
In both cases, the primitive equation model produces
an adjustment of the inflow much like that described
here and reaches a downstream equilibrium that is both
qualitatively and quantitatively similar to the idealized
model results. There are some differences in the details,
of course, but it is clear that the idealized model captures
the essence of the adjustment process quite well. In
particular, the interior cross-isobath velocity is rapidly
reduced near the inflow and is unimportant in the flow
adjustment. The numerical model also provides more
details of the flow, for example, the velocity structure
within the bottom boundary layer, and the results of a
more comprehensive study will be reported separately.

Some additional confidence in the present model re-
sults comes from the good agreement between the model
results and the estimate of the downstream equilibrium
(Fig. 9). The estimate is based only on the constraints
derived in section 6 and a very simple form for the
bottom boundary layer thickness (a constant). The con-
straints were developed independent of the details of
the adjustment process, so the neglect of the cross-iso-
bath velocity term in (13) is not an issue. The close
agreement in Fig. 9 suggests that the model reaches the
correct downstream equilibrium. To test this further, oth-
er shapes for the narrow inflow were imposed instead
of (20), and in all cases the downstream equilibrium
structure was nearly identical to that shown in Fig. 7,
again supporting the simplified dynamics assumed here.

9. Conclusions

The adjustment of stratified along-isobath flow over
a sloping, frictional bottom has been examined using
an idealized model in which the feedback between the
bottom boundary layer and the overlying flow plays a
crucial role. That is, the overlying flow that drives the
bottom boundary layer flow is itself altered by the evolv-
ing flow in the boundary layer. The typical sequence of
events is as follows: A vertically uniform inflow of lim-
ited spatial extent generates a bottom boundary layer
that transports water downslope. The downslope ad-
vection of density creates horizontal density gradients
within the boundary layer that produce vertical shears
of the along-isobath velocity beneath the overlying flow.
The shears reduce the velocity at the bottom and, there-
fore, the bottom stress. This, in turn, alters the boundary
layer transport, which thereby changes the overlying
flow. Eventually, an equilibrium is reached downstream
in which the bottom velocity is zero everywhere and
the overlying flow ceases to adjust. The equilibrium flow

then persists indefinitely, despite the presence of a fric-
tional bottom.

The equilibrium flow formed by a narrow inflow over
a uniformly sloping bottom with initially uniform strat-
ification has a cross-isobath adjustment scale of W 5
( f/Na)(F0/f )1/2 where f is the Coriolis parameter, N the
buoyancy frequency, a the bottom slope, and F0 the
inflow volume flux per unit depth. The thickness of the
bottom boundary layer scales as aW, while the along-
isobath velocity scales as (Na/f )(F0 f )1/2. Somewhat sur-
prisingly, the downstream equilibrium flow is indepen-
dent of the magnitude of bottom friction, although the
along-isobath distance required to reach equilibrium is
inversely proportional to the bottom friction coefficient
r. These scales are useful for understanding generali-
zations of the model to variable bottom slopes, non-
uniform stratification, and coastal currents. Conserva-
tion properties provide a means of approximating the
downstream equilibrium structure for an inflow with
arbitrary width.
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