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ABSTRACT

The energetics of the wind-driven, quasigeostrophic circulation is used to rule out the vanishing of the Sverdrup
solution in the western boundary of the ocean, apart from the total solution near the eastern boundary. The
result holds for every wind stress curl.

1. Introduction

The understanding of the physical cause for the in-
tense crowding of streamlines in the proximity of the
western boundary of all the oceans is the main question
that generated the modern wind-driven ocean circulation
theory, beginning from Stommel (1948). Once the vari-
ation of the Coriolis parameter with latitude is recog-
nized as the fundamental dynamical ingredient in order
to reproduce the westward intensification,

‘‘. . . it is a classical problem . . . that shows that it is not
possible to add a boundary layer on the eastern boundary
of the oceans so that the Sverdrup solution itself must
satisfy the boundary condition there. Whether a boundary
layer is then possible on the western boundary is less
clear.’’ (Pedlosky 1994).

It is interesting that if one tries to solve the circulation
problem for the western boundary ignoring tout court
what happens on the eastern, then one is not able to
assign to the Sverdrup solution a definite boundary con-
dition on the western coast and the whole procedure
becomes problematic. However, a general physical ex-
planation for the preference for westward intensification
is given by Pedlosky (1965) on the basis of the an-
isotropy of the group velocity in the Rossby waves prop-
agation. In this paper we put forward another argument,
based on the energetics of the flow field, to show that
the vanishing of the Sverdrup solution on the western
boundary is not consistent with the steady energy bal-
ance of the ocean. In this way, we can assign the correct
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boundary condition to the Sverdrup solution in the ambit
of the whole class of quasigeostrophic models of wind-
driven circulation without resorting to the total solution
near the eastern boundary.

2. Basic equations

We assume a steady circulation in a rectangular basin
on the beta plane, governed by the well-known vorticity
equation (Pedlosky 1987a)

2
d ]c dsI 2 2J(c, ¹ c) 1 5 k ·= 3 t 2 ¹ c1 2L ]x L

3
dM 41 ¹ c (1)1 2L

with the following boundary conditions

cz]D 5 0, (2)

2¹ cz 5 0 or =cz 5 0 if d ± 0, (3)]D ]D M

where
D 5 [x # x # x ] 3 [y # y # y ]W E S N

is the fluid domain.

Hereafter we put

k · = 3 t 5 T(x,y), (4)

where T is assumed to be an O(1) given function of x
and y, slowly varying with respect to the horizontal
dimensions of the basin. Our investigation does not de-
mand specific details on the wind-stress curl, consistent
with the fact that we do not have at our disposal any
analytical expression of the ‘‘true’’ large-scale curl. In
fact, in the majority of the models, the forcing field
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mimics one of the nine zonal belts of world = 3 t fields
(Hellerman and Rosenstein 1983) by means of sinusoids
or more sophisticated best-fit profiles (i.e., Moro 1988).
On the other hand, nothing prevents us from taking into
account rather complex wind-stress curl; for instance,

p
k ·= 3 t 5 sin (2 2 x)y ,[ ]2

as did Bryan (1963).
The standard way to obtain an energy equation for

the system governed by Eqs. (1)–(4) is to multiply Eq.
(1) by c and then integrate over D with the aid of
boundary conditions (2) and (3). The result is

dScT dx dy 5 2 =c·=c dx dyEE EEL
D D

3
dM 2 22 (¹ c) dx dy. (5)EE1 2L

D

Equation (5) states an equilibrium condition between
the source of mechanical energy due the wind input (first
term on the rhs) and the sinks (represented by the last
two terms), which holds in the steady motion. In par-
ticular, the first term of Eq. (5) is proportional to

pw dx dy,EE E

D

where p is the geostrophic perturbation pressure, while
wE is the vertical velocity of the interface between the
upper Ekman layer and the geostrophic interior. Thus,
this is a pressure-work term arising from the conver-
gence/divergence of the subsurface horizontal transport
that, in the steady circulation, is balanced by the energy
absorption due to eddy viscosity [last two terms of
Eq.(5)].

3. The energy source

Since the last two terms of Eq. (5) are negative def-
inite [unless c is a constant, but this circumstance is
not consistent with Eq. (1)], the source term must satisfy
the inequality

c(x, y)T(x, y) dx dy , 0. (6)EE
D

In order to investigate some consequences of in-
equality (6) in the presence of the Sverdrup regime in
the interior, we consider the total O(1) solution c, valid
in the interior and in the boundary layer, written as

x L
c(x, y) 5 T(l, y) dl 1 f ˜ (x 2 x˜), y . (7)E B B1 2dFxB

In Eq. (7)
x

c (x, y) 5 T(l, y) dlI E
xB

is the Sverdrup solution, and fB̃(j,y) is the boundary
layer correction in x 5 xB̃, where

L
j 5 (x 2 x˜)BdF

is the stretched boundary layer coordinated and dF 5
max{dS, dM} is the boundary layer width.

For the moment, xB is left indeterminate between the
two possible longitudes xW and xE. We do not consider
the eventuality that xB may be some interior longitude
since it would imply uI(xB,y) 5 0 for the zonal com-
ponent of the interior current, but this kind of constraint
has no physical basis. If xB5 xW, then fB̃ 5 fE, that is,
the boundary layer correction is on the eastern side of
the basin; on the contrary, if xB 5 xE, then fB̃ is the
correction relative to the western side.

We recall that the very assumption of a Sverdrup
regime in the interior presupposes

dF K 1. (8)
L

Substitution of Eq. (7) into inequality (6) leads to the
following inequality:

y x xN E

T(x, y) T(l, y) dl dx dyE E E[ ]
y x xS W B

y xN E

1 f ˜(j, y)T(x, y) dx dy , 0. (9)E E B

y xS W

Consider now the first integral of inequality (9):

y x xN E

I 5 T(x, y) T(l,y) dl dx dy.1 E E E[ ]
y x xS W B

Using the above definition of cI(x,y), we can write
y xN E1 ]

2I 5 c (x, y) dx dy1 E E I2 ]xy xS W

2y XN E1
5 T(l, y) dlE E1 2[2 y xS B

2xW

2 T(l, y) dl dy.E1 2 ]
xB

Therefore,

(i) if x 5 x , thenB E

2y xN W1
I 5 2 T(l, y) dl dy , 0;1 E E1 22 y xS E
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while

(ii) if x 5 x , thenB W

2y xN E1
I 5 T(l, y) dl dy . 0.1 E E1 22 y xS W

About the second integral of inequality (9), it can be
written entirely in terms of j and y as follows:

(i) if x ˜ 5 x , then j $ 0 andB W

y 1`N d dF FI 5 f (j, y)T x 1 j, y dj dy2 E E W W1 2L Ly 0S

y 1`NdFø T(x , y) f (j, y) dj dy;E W E WL y 0S

while

(ii) if x ˜ 5 x , then j # 0 andB E

y 0N d dF FI 5 f (j, y)T x 1 j, y dj dy2 E E E E1 2L Ly 2`S

y 0NdFø T(x , y) f (j, y) dj dy.E E E EL y 2`S

In both cases (i) and (ii) I1 5 O(1), while

dFI 5 O ,2 1 2L

so because of inequality (8) the sign of inequality (9)
is ultimately controlled by that of I1. This fact allows
us to rule out the choice xB 5 xW for the Sverdrup so-
lution, whatever the wind stress curl may be.

4. Concluding remarks

In general, use of energetics in the investigation of
rotating fluids is not a powerful tool mainly because the
Coriolis force is purely deflecting and its effect can be
hardly isolated by resorting to the energy balance of the
system. However, in the present paper, due to the as-
sumption of a Sverdrup regime in the interior, we have
bypassed this difficulty by introducing into the stream-
function appearing in the energy source the Sverdrup
solution that has a typical rotating character; in this way,
we have preserved the memory of rotation also in the
energetics. The peculiarity of the employed method is
based on the direct correlation between the sign of the
energy source and the unique correct integration ex-
treme appearing in the Sverdrup solution.

The result that we have obtained in section 3, that is,
with reference to Eq. (7), xB 5 xE (and hence x̃B̃ 5 xW)
relies on Eq. (1), which concerns a homogeneous ocean.
A feature of Eq. (1) that is useful in proving the result
above is its immediate transformation into the Sverdrup
balance (for the geostrophic layer) as far as the sole
interior region of the fluid domain is taken into account.

These arguments still hold if the homogeneous layer in
motion extends down to the thermocline depth only, and
the fluid in the deeper layer remains at rest. In this case
the vanishing ageostrophic vertical velocity (w1, see be-
low) at the bottom level is substituted by the corre-
sponding velocity at the depth of the flat interface be-
tween the thermocline and the quiescent abyss. In any
case the same Eq. (1) is obtained by the vertical inte-
gration of the vorticity equation

]c ]w 112 4J(c, ¹ c) 1 b 5 1 ¹ c (10)
]x ]z Re

across the geostrophic interior. In Eq. (10) b 5 (L/dI)2

and Re 5 is the Reynolds number. From this last2 3Ld /dI M

point of view, the term

ds
22 ¹ c

L

appearing in Eq. (1) is perhaps better understood as a
formal eddy viscosity parameterization, rather than the
effect of Ekman pumping at the interface depth.

The vanishing of the Sverdrup solution along the east-
ern coast of the basins and the subsequent westward
intensification seem to be intimately linked to some
‘‘key inequalities’’ arising from the dynamics of the
circulation. This can be seen starting from the time-
dependent version of Eq. (1); that is,

2
d ] ]cI 2 2¹ c 1 J c, ¹ c 11 2 1 2[ ]L ]t ]x

5 F(c) 1 T(x, y), (11)

where F(c) represents any frictional mechanism.
With reference to Eq. (11), Pedlosky (1965) considers

what happens in a meridional boundary layer, where
the main balance is

2
d ] ]cI 2 2¹ c 1 J c, ¹ c 1 5 F(c). (12)1 2 1 2[ ]L ]t ]x

The time-dependent nature of Eq. (12) implies that the
small-scale decaying Rossby wave solution is charac-
terized by a positive group velocity

Cgx . 0, (13)

so, since the dissipation allows only short travel dis-
tances, the only source of small-scale motion is repre-
sented by the reflection of the large-scale motion on the
western boundary. Thus, assumption ]/]t ± 0 leads to
inequality (13).

In a complementary way, we have taken into account
the flow behavior in the interior where, unlike Eq. (12),
the dominant balance involves the wind stress forcing
and is typically steady. As we have already seen, the
related equation
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2
d ]cI 2J c, ¹ c 1 5 F(c) 1 T(x, y)1 2 1 2L ]x

leads to inequality (6).
From this viewpoint, the east–west asymmetry of the

large-scale circulation patterns can be ascribed to two
complementary inequalities: the first (13) implied by
the wavelike mesoscale dynamics and the second (6)
coming from the basin-scale energetics.

Strictly speaking, to account for negative values of
the planetary vorticity gradient, say b0, the term ]c/]x
in Eq.(1) should be substituted by

b ]c
,

zbz ]x

where
2 2L b L0b 5 5 .1 2d UI

As a consequence, the Sverdrup solution should take
the form

xzbz
c (x, y) 5 T(l, y) dl,I Eb xB

and, finally, the integral I1 becomes
2y xN Ezbz

I 5 T(l, y) dl1 E E1 2[2b y xS B

2xW

2 T(l, y) dl dy. (14)E1 2 ]
xB

From Eq. (14), recalling inequality (6), we conclude
that, if b , 0, we must rule out the choice xB 5 xE in
order that I1 , 0, so an eastern boundary current arises.
Obviously, in this case the (x,y) coordinates are referred
to the beta plane associated to the observer that detects
a negative planetary vorticity gradient.

We underline that the followed method is not only
independent from the explicit form of the wind stress
curl, but it is also largely independent from the details
of the parameterization of turbulence.

For instance, the same conclusion holds even if we
consider a dissipation including also a biharmonic term
of the kind 2zAz¹6c. In this case, instead of Eq. (5),
we have

2 2cT dx dy 5 2zAz =(¹ c) ·=(¹ c) dx dyEE EE
D D

d22 =c ·=c dx dyEEL
D

3
dM 2 22 (¹ c) dx dy,EE1 2L

D

but again inequality (6) follows, provided that at least
one of the dissipative terms be nonvanishing.

The fluid domain D, defined in section 2, has not
necessarily a rectangular shape. In fact, we can easily
see that the same conclusions hold if we allow xW and
xE to vary with y, provided that xW , xE. Therefore, the
correct boundary condition of the Sverdrup solution is
quite independent from the details of the meridional
shorelines.

There is an analogy between the problem of finding
the correct boundary condition of the Sverdrup solution
and that related to the outcropping of the isopycnals
considered by Pedlosky (1987b) within a wind-driven
two-layered model of the subtropical–subpolar circu-
lation. The governing equations of this last model for
the upper warm water layer of thickness D are the geo-
strophic equilibrium

g
u 5 k 3 =D, (15)

f

(g is the reduced gravity and k is the vertical unit vector)
and the Sverdrup balance

bvIDI 5 fwe(y) (16)

(the subscript I refers to the geostrophic interior and we

is the latitude-dependent Ekman pumping velocity).
Well south of the subtropical gyre

we , 0, (17)

while the outcrop can only exist if we is positive. This
property of the forcing field determinates the correct
integration interval of the differential equation for DI

that follows from Eqs. (15) and (16). In fact, from these
equations we obtain

2] 2 f
2D 5 w (y); (18)I e]x bg

however, the integration of Eq. (18) can be performed,
a priori, both from xW to x and from x to xE, xW and xE

being the longitudes of the meridional boundaries. In
the first case

22 f
2 2D (x, y) 5 D (x , y) 1 w (y)(x 2 x ), (19)I I W e Wbg

but because of inequality (17) the rhs of solution (19)
is not positive definite in the subtropical gyre; so so-
lution (19) itself must be rejected. On the contrary, in
the second case

22 f
2 2D (x, y) 5 D (x , y) 2 w (y)(x 2 x), (20)I I E e Ebg

where

22 f
2 w (y)(x 2 x) . 0e Ebg

in the subtropical gyre, so the outcropping is consis-



FEBRUARY 1997 361C R I S C I A N I A N D P U R I N I

tently forbidden in this region. Equation (20) is the first
step to relate the depth of the wind-driven motion at the
eastern boundary, that is, DI(xE, y), to the wind-stress
field evaluated at the latitude of vanishing curl [Eq.
(3.16) of the original paper].
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