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Abstract
In 1980, Hellman introduced a time/memory trade-off (TMTO) algorithm satisfying the

TMTO curve TM2 = N2, where T is the online time, M is the memory and N is the size
of the search space. Later work by Biryukov-Shamir incorporated multiple data to obtain the
curve TM2D2 = N2, where D is the number of data points. In this paper, we describe a
new table structure obtained by combining Hellman’s structure with a structure proposed by
Oechslin. Using the new table structure, we design a new multiple data TMTO algorithm
both with and without the DP method. The TMTO curve for the new algorithm is obtained
to be T 3M7D8 = N7. This curve is based on a conjecture on the number of distinct points
covered by the new table. Support for the conjecture has been obtained through some emperical
observations. For D > N1/4, we show that the trade-offs obtained by our method are better
than the trade-offs obtained by the BS method.
Keywords: one-way function, time/memory trade-off, cryptanalysis.

1 Introduction

One-way functions are fundamental primitives in the design of cryptographic algorithms. Conse-
quently, from a cryptanalytic point of view, it is of fundamental importance to study methods for
inverting one-way functions.

Hellman [7] in 1980, introduced a generic method of inverting one-way functions. Let f :
{0, 1}n → {0, 1}n be the one-way function to be inverted. (Hellman originally considered f to be
obtained from a block cipher by mapping the key space to the cipher space for a fixed message.)
Using pre-computation time of N , Hellman showed that the online time T and memory M satisfy
the relation TM2 = N2, where N = 2n. Consequently, the attack is called a time/memory trade-off
(TMTO) algorithm and the last equation is called a TMTO curve. Note that in the TMTO set-up,
the pre-computation time of N is not considered since this is an offline one-time activity “which
can be performed at the cryptanalyst’s leisure”(quotation from [7]).

In the context of stream ciphers, the function from state to a substring of the keystream can be
considered to be a one-way function. The difference from the block cipher scenario is that in this
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case, the obtained keystream provides multiple data points, inverting any of which yields a state
of the stream cipher and constitutes an attack. Independent works by Babbage [1] and Golić [6],
investigated this situation and obtained the so-called birthday attack satisfying the relations TM =
N and T = D, where D is the number of available data points.

Later work by Biryukov and Shamir [2], incorporated multiple data into the Hellman attack
and obtained the TMTO curve TM2D2 = N2 and 1 ≤ D2 ≤ T . This curve cannot be directly
compared to the BG curve, since the applicability ranges are different.

Hellman’s method requires a number of look-ups into a relatively large table. The cost of these
look-ups can be significantly high. The number of table look-ups can be brought down by using
the technique of distinguished points (DPs) attributed to Rivest. This idea has also been used in
the context of stream ciphers. The attack on A5/1 uses this idea along with a different kind of
sampling called the BSW sampling [3].

Our Contributions: We combine the table structure used by Hellman and the one used by
Oechslin [10] to propose a new table structure. This table structure is then used to design a new
time/memory trade-off algorithm. We provide the search algorithms both for the cases when DP
method is used and when it is not used. The number of distinct points covered in the new table is
difficult to analyse1. At present we make a conjecture on the coverage in the table. Support for the
conjecture has been obtained by us through certain computer experiments which makes us believe
the conjecture to be true. Further work is required to settle it. Based on the conjecture, we obtain
a TMTO curve for the new table. The curve that we obtain is T 3M7D8 = N7. This curve is better
than the BS curve when D > N1/4.

Related Work: In an earlier work, Fiat-Naor [5] described a TMTO algorithm (for D = 1) satis-
fying the TMTO curve TM3 = N3. This is worse than the Hellman curve, but can be proved to hold
for any one-way function. On the other hand, Hellman’s (also BS and our) method requires certain
randomness assumptions, which are reasonable to expect from standard cryptographic functions.
Thus, the Fiat-Naor technique is mainly of theoretical interest. A more recent work by Oech-
slin [10], describes a construction which has the same asymptotic behavior as the Hellman method
but improves the runtime by a factor of one-half. But the rainbow method is inferior to the Hellman
method in the presence of multiple data points (see [4]).

2 New Algorithm

An idea of the table construction methods of Hellman [7] and Oechslin [10] is helpful in under-
standing the new method and its success probability. We present brief descriptions of these two
methods in the Appendix.

In this section, we describe the new method. This has two parts – offline table preparation
and online search algorithm. These two algorithms are described in Sections 2.1 and 2.2. The

1Our analysis in an earlier version of the paper submitted to Asiacrypt 2005 was incorrect as was pointed out by
a reviewer for that conference. The current conjecture on the coverage follows from certain suggestions made by the
reviewer.
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combination of the online search with the DP method of Rivest substantially brings down the
number of table look-ups. This variation of the online search algorithm is described in Section 2.3.

2.1 Table Preparation

Let f : {0, 1}n → {0, 1}n be the one-way function to be inverted and N = 2n be the size of the
search space. Elements of {0, 1}n will be called points. We will be given a point y and will have to
find a point x such that f(x) = y.

We follow the convention (f1 ◦ f0)(x) = f1(f0(x)) and similarly for extension to composition of
more than one functions. Let f0, . . . , fr−1 be r functions obtained from the one-way function f to
be inverted, i.e.,

fi = gi ◦ f (1)

where gi is the ith output modification (bijective) function. The standard assumption in the
area (originally considered by Hellman [7]) is that if f behaves like a random function (as a proper
cryptographic function should), then for simple choices of the gi’s, the functions fi’s can be assumed
to be pairwise independent random functions.

In the pre-computation phase, we construct one table M of size m × (rt + 1). Let the entries
of the table be xi,j with 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ rt. For 0 ≤ i ≤ m − 1, the elements xi,0 are
chosen randomly. For 1 ≤ j ≤ rt, we define,

xi,j+1 = fj mod r(xi,j). (2)

The set of pairs of points (xi,0, xi,rt) for 0 ≤ i ≤ m− 1 are stored in a list L sorted on the second
components. The first component is called a start-point and the second component is called an
end-point. Thus, the list of pairs is sorted on the end points, as is usual in TMTO algorithms. (If
r = 1, then we obtain a single Hellman table, while if t = 1, then we obtain a single rainbow table.)

Suppose we are given D ≥ 1 many data points and it is required to invert any of these points.
Our aim during the table preparation stage is to cover a constant fraction of N/D many data
points, so that by the birthday bound, with a constant probability of success we will be able to
invert one of the D data points. For this, we choose m, r and t to be such that mrt = N/D. If
a single m × (rt + 1) table covered a constant fraction of N/D points, then we would be done.
Unfortunately, this is not the case and there are repetitions in a table which reduce the coverage.
We have the following conjecture on the coverage of a single table.

Conjecture 1: Let m and t be chosen such that, mt2 ≤ N in the above description.
Also note that mrt = N/D. Then the number of distinct points in the first rt columns
of M is at least a constant fraction of mr

1
2 t.

Note:

1. Due to the fall in coverage, we have to use r
1
2 random tables each of size m × (rt + 1). By

the above conjecture, the total coverage in all the tables becomes a constant fraction of mrt
as desired.
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2. If mt2 � N , then the above conjecture does not hold. In usual TMTO method, mt2 ≤ N is
usually taken to be the matrix stopping rule based on the birthday bound. This is not the
intrepretation of this constraint in the above conjecture. We would like to emphasize that
the condition mt2 ≤ N is important for the conjecture to be true.

3. If mt2 � N , then the coverage can be better. In fact, in our simulations, we have observed
the coverage to be mrt/rα, where α varies between 1/3 and 1/2. In this paper, we will be
working only with α = 1/2.

4. An earlier version of this paper had been submitted to Asiacrypt 2005, where we had mistak-
enly assumed the coverage of the table to be mrt, which gives a much better result compared
to the Hellman method. Anonymous reviewers had pointed out that the coverage assumption
was incorrect and one reviewer had mentioned the fall in coverage by the factor r1/2 based
on the experiments done by him/her. Comments by this reviewer was the starting point for
arriving at Conjecture 1.

Emperical Observations: For 0 ≤ j ≤ rt, define Cj to be jth column of the table M. For
0 ≤ k ≤ r − 1, the function fk is applied to the points in the columns Ck, Cr+k, . . . , C(t−1)r+k.
Let Mk be the m × t sub-matrix formed by the columns Ck, Cr+k, . . . , C(t−1)r+k. By the table
construction procedure, the column Clr+k is obtained from C(l−1)r+k as

Clr+k = (fk+(r−1) mod r ◦ · · · ◦ fk)(C(l−1)r+k).

If we define φk = (fk+(r−1) mod r ◦ · · · ◦ fk), then Clr+k = φk(C(l−1)r+k). In other words, in Mk,
the next column is obtained from the previous column by applying φk. By the table construction
procedure, we have

M0,M1 = f0(M0),M2 = f1(M1), . . . ,Mr−1 = fr−2(Mr−2). (3)

The columns of M0 are C0, Cr, . . . , C(t−1)r where Clr = φ0(C(l−1)r).
We have observed the following through computer experiments.

1. The number of distinct points covered by M0 is mt
rα for some α in the range 1

3 ≤ α ≤ 1
2 .

The actual value of α depends on the values of m, t and r. The value α = 1
2 is attained for

relatively small values of m.

2. If M0 is chosen to be a random collection of mt points (with mt2 ≤ N), then the union of
M0,M1, . . . ,Mr−1 covers a constant fraction of mrt points.

3. When M0,M1, . . . ,Mr−1 are constructed using the suggested method, the total number of
distinct points in the union of M0,M1, . . . ,Mr−1 is mrt

rα for some α in the range 1
3 ≤ α ≤ 1

2 .

From emperical observations, the coverage drop is explained by the first point above, i.e., M0

covers mt
rα distinct points. The function applied to the columns of M0 is φ0 which is a composition

of r many pairwise independent random functions f0, f1, . . . , fr−1. At this point, we do not have
a good understanding of the behaviour of α, except for the emperical observations of its range.
Explaining the value of α and settling the conjecture requires further study.
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2.2 Search Algorithm

We describe the search in a single table for the pre-image of a single element y in the range of f .
The search algorithm requires an online memory of r elements of {0, 1}n. We define

ψ = φ0 = fr−1 ◦ fr−2 ◦ · · · ◦ f0. (4)

Note that the cost of applying ψ once is equal to r invocations of f . The functions gk which are
used to define fk from f are easy to compute and do not add to the cost.

Algorithm Search(y)
1. for i = 0 to r − 1 do
2. vi = gi(y);
3. for j = i+ 1 to r − 1 do
4. vi = fj(vi);
5. end do;
6. Process(r − 1− i, vi);
7. end do;
8. for i = 1 to t− 1 do
9. for j = 0 to r − 1 do
10. vj = ψ(vj);
11. Process(r − 1− j + ir, vj);
12. end do;
13. end do;
14. return “failure”.
end Search.

For 0 ≤ k ≤ r − 1, let wk = gk(y), i.e., wk is the initial value of vk (set by Search in Line 2). If a
pre-image for y is present in the table, then one of the wk’s must be present in the table. To see
this, suppose xi,j is such that f(xi,j) = y. Let k = j mod r. Then

xi,j+1 = fk(xi,j) = gk(f(xi,j)) = gk(y) = wk.

Thus, if none of the w0, . . . , wr−1 is present in the table, then no pre-image of y is present in the
table and the search is unsuccessful.

The function Process(k, u) performs the following task. The first input to Process(, ) is the
number of applications of the fi’s which have already been applied to obtain u. The algorithm
first looks up u in the end points of L. If no match is found, then it returns nothing and the
Search continues as usual. If a match is found, then it goes to the corresponding start point and
starts generating the relevant row. The parameter k denotes that a pre-image of y is (possibly) at the
(rt−1−k)th position in the row. Thus, the row is generated upto this point and then f is applied to
the last generated point to see if we obtain y. If this verification is correct, then Process(, ) outputs
the pre-image it has found and the whole algorithm (including Search) stops. If the verification
fails, then we have a false alarm. Again Process(, ) returns nothing and Search continues as usual.
The details of the algorithm is given below.

5



Algorithm Process(k, u)
1. Look-up u among the end-points of the list L;
2. if not found then return;
3. else
4. let (xi,0, xi,rt) be such that u = xi,rt;
5. set w = xi,0;
6. for j = 0 to rt− k − 2 do
7. w = fj mod r(w);
8. end do;
9. if f(w) = y then “output w” and stop;
10. else return;
11. end if;
end Process.

The description of Process(,) ensures that it does not terminate on a false alarm. This is usually
implicit in previous descriptions of search algorithms appearing in the literature.

The online memory requirement consists in storing the points v0, . . . , vr−1. The total number
of invocations of f in Process(, ) is at most rt in the case a match is found else it is zero. We now
count the total number of invocations of f made in Search(). The total number of invocations made
in Lines 1 to 7 is (r− 1) + (r− 2) + · · ·+ 1 = r(r− 1)/2 and the total number of invocations made
in Lines 8 to 13 is (t− 1)r2. Hence, overall the maximum number of invocations made by Search()
is rt+ r(r − 1)/2 + (t− 1)r2 ≈ tr2.

Note that false alarms (as tested in Line 9 of Process(, )) increases the number of invocations of
f . Each false alarm incurs a cost of rt invocations. It was shown by Hellman [7], that the expected
number of false alarms per table is bounded above by mt(t+ 1)/2N . By the matrix stopping rule
mt2 ≤ N and hence the number of false alarms per table is upper bounded by half. Since there are
r tables and each false alarm incurs a cost of at most rt invocations of f , the total cost due to the
false alarms is at most r2t/2. Hence, as in the case of Hellman’s original method, the false alarms
increase the expected computation by at most 50%.

Table look-ups are only made inside Process(, ). Each call to Process(, ) results in exactly one
table look-up. Since at most r + (t − 1)r = rt calls to Process() are made, the number of table
look-ups is also at most rt.

The idea of the search algorithm is to determine whether one of the wk is present in the table.
For each wk, Search checks if it is in one of columns

Crt−(r−1−k), Cr(t−1)−(r−1−k), . . . , Ck+1.

The checking in Crt−(r−1−k) is done by successively applying (fr−1 ◦ · · · ◦ fk+1) to wk (the initial
value of vk) to obtain the new value of vk. This vk is searched among the set of end-points (column
Crt) of the table. If a match is found, then wk is in column Crt−(r−1−k). If no match is found,
then ψ = fr−1 ◦ · · · ◦ f0 is applied to vk to get the new value of vk and again this is searched in
column Crk. If a match is found, then vk is in column Cr(t−1)−(r−1−k) and if a match is not found,
the procedure is repeated by applying ψ successively to vk to check if wk is in one of the columns
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Cr(t−2)−(r−1−k), . . . , Cr−1−k. More precisely, the test of whether wk is in Crj−(r−1−k) (1 ≤ j ≤ t) is
done by checking if the vk obtained after applying (ψ(t−j) ◦ (fr−1 ◦ · · · ◦ fk+1)) to wk is in Crt.

Suppose it has been determined that (ψ(t−j) ◦ (fr−1 ◦ · · · ◦ fk+1))(wk) ∈ Crt (i.e., wk ∈
Crj−(r−k−1)). Let p = rj − (r − k − 1). Then, for some 0 ≤ i ≤ m− 1, we have

frt−1 mod r(· · · (fp+1 mod r(fp mod r(wk)) · · ·) = xi,rt.

Also, by table construction we have,

frt−1 mod r(· · · (f1(f0(xi,0)) · · ·) = xi,rt.

The two equalities suggest that

wk = fp−1 mod r(fp−2 mod r(· · · (f1(f0(xi,0)) · · ·)).

Note that this might not always hold, giving rise to a false alarm. (If f is a bijection, then this will
always hold.) If the equation holds, then we have

gk(y) = wk

= fp−1 mod r(fp−2 mod r(· · · (f1(f0(xi,0)) · · ·))
= fp−1 mod r(xi,p−1)
= fk(xi,p−1)
= gk(f(xi,p−1)).

Since gk is invertible, this implies y = f(xi,p−1), i.e., xi,p−1 is a pre-image of y under f .
We now argue that if a pre-image of y is indeed present in the table, then it will be found by

the search algorithm. So suppose that xi,j is a pre-image of y, i.e., y = f(xi,j). Let k = j mod r.
Then by definition

xi,j+1 = fj mod r(xi,j) = fk(xi,j) = gk(f(xi,j)) = gk(y).

Note that Search() sets vk = gk(y) in Line 2. Also, by definition,

xi,rt = (frt−1 mod r ◦ frt−2 mod r ◦ · · · ◦ fj+1 mod r)(xi,j+1)
= (frt−1 mod r ◦ frt−2 mod r ◦ · · · ◦ fj+1 mod r)(gk(y))
= (ψ ◦ · · · ◦ ψ)︸ ︷︷ ︸

l

(fr−1 ◦ · · · ◦ fk+1)(gk(y)).

Here l ∈ {0, . . . , t − 2}. If l = 0, the value of vk passed to Process(, ) on Line 6 is equal to xi,rt.
If l > 0, then after l iterations of the loop starting on Line 8, the value of vk passed to Process()
on Line 11 is equal to xi,rt. Hence, the look-up with vk in Process(, ) on Line 1 will be successful
and hence the value of w on Line 7 of Process(, ) will equal xi,j . Since w is returned, the search is
successful.
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2.3 Distinguished Point Method

The idea of using distinguished points is attributed to Rivest. A point is called distinguished if it
satisfies some simple property, say the first q bits are zero. Rivest’s idea was to generate a row of a
Hellman table only upto a distinguished point. Thus, the rows are of variable lengths. The online
search technique is suitably modified to tackle the DPs. The net effect is that the number of table
look-ups reduces significantly.

We consider the use of the DP method to bring down the number of table look-ups in the
new algorithm. During table preparation, a row is generated for at most rt steps or until a DP is
reached. Thus, the end points of the table are DPs and the rows are of varying lengths. The triples
(start-point, end-point, length) are stored sorted on end-points in the list L. The third component
(length) denotes the number of applications of the fi’s before reaching the end-point which is a DP.
We require a bit vector β[ ]. The new Search() algorithm is as follows.

Algorithm DPSearch(y)
1. for i = 0 to r − 1 do βi = 0;
2. for i = 0 to r − 1 do
3. vi = gi(y);
4. if (vi is DP) then
5. βi = 1; DPProcess(0, vi);
6. end if;
7. j = i+ 1;
8. while (βi == 0) and (j ≤ r − 1) do
9. vi = fj(vi);
10. if (vi is DP) then
11. βi = 1; DPProcess(j − i, vi);
12. end if;
13. j = j + 1;
14. end do;
15. end do;
16. for i = 0 to t− 2 do
17. for j = 0 to r − 1 do
18. k = 0;
19. while (βj == 0) and (k ≤ r − 1) do
20. vj = fk(vj);
21. if (vj is DP) then
22. βj = 1; DPProcess(r − j + ir + k, vj);
23. end if;
24. k = k + 1;
25. end do;
26. end do;
27. end do;
28. return “failure”.
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end DPSearch.

The basic idea of the search technique is the following. As before let wk = gk(y), i.e., the initial
value of vk. The algorithm starts r (parallel) searches starting from the points w0, . . . , wr−1. On
wk, we successively apply fk+1 mod r, fk+2 mod r, . . . . After each application, we check whether a DP
has been obtained. If a DP has been obtained, then we discontinue the chain starting at wk and
process vk.

The new DPProcess(k, u) algorithm is the following. The changes are lesser. We only have
to tackle the variable length rows. As before, the first input to DPProcess(, ) is the number of
applications of the fi’s that have already been applied to obtain u.

Algorithm DPProcess(k, u)
1. Look-up u in the list L;
2. if not found then return;
3. else
4. let (xi,0, xi,l−1, l) be such that u = xi,l−1;

here l is the length of the row starting at xi,0;
5. set w = xi,0;
6. for j = 0 to l − k − 1 do
7. w = fj mod r(w);
8. end do;
9. if f(w) = y then “output w” and stop;
10. else return;
11. end if;
end DPProcess.

The online memory requirement is to store the elements v0, . . . , vr−1, which is r elements as before.
The maximum number of invocations of f (ignoring false alarms) is ≈ tr2 as before. The advantage
is that the number of table look-ups reduce substantially from rt to r. This is because, we perform
at most one table look-up for each of v0, . . . , vr−1. For each vi, we apply the fi’s iteratively until a
DP is reached. Only then is a table look-up performed. Also the bit βi is set to one and vi is not
processed thereafter by DPSearch().

The search algorithm using DP is similar to the search algorithm without DP. There are two
main differences. First, the rows are of variable lengths and each row ends in exactly one DP.
Second, there are r parallel searches starting at points w0, . . . , wr−1. If any of these searches end
in a DP which is not among the end-points of the table, then we discontinue the corresponding
search. The correctness of the search algorithm will follow, if we can only argue that none of the
discontinued searches could have led to a pre-image.

Let w0, . . . , wr−1 be the intial values of v0, . . . , vr−1 respectively (set by DPSearch in Line 3).
Suppose the search starting at wk ends in a DP which is not among the set of end-points of the
table. Then there cannot be any xi,j in the table such that k = j mod r and y = f(xi,j). To see
this first note that by table construction, the row containing xi,j ends in a DP. Also,

wk = gk(y) = gk(f(xi,j)) = fk(xi,j) = fj mod r(xi,j) = xi,j+1
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i.e., the next element after xi,j in the ith row is wk and hence the search starting at wk will end in
the DP of the ith row. By an extension of this argument, if all the searches starting at w0, . . . , wr−1

end in DPs which are not in the end-points of the table, then there is no pre-image of y in the
table.

2.4 Parallelism

Practical implementations of TMTO will require some amount of parallel processing. Hence, it is
important to identify the inherent parallelism present in the algorithms.

The table preparation stage can be fully parallelised in the sense that the generation of two
distinct rows require no interaction and can be done in parallel.

During the online search, we consider the r different searches starting at the points w0, . . . , wr−1.
These searches are independent of each other and can be carried out in parallel for both the methods
with and without DP. Thus, if we have r processors, then we can keep these busy for the entire
search computation algorithm.

3 TMTO Curve

Suppose we have to find the pre-image of one of the D distinct points y1, . . . , yD. This constitutes
a set of size at least D of pre-images (we say at least, since each yi may have more than one
pre-image). Based on Conjecture 1 in Section 2, we assume the set of domain points covered by a
single table with size m× (rt+ 1) to be mrt

r1/2 . To cover mrt points, we construct r1/2 many random
tables with size m × (rt + 1) each. If mrt = N/D, then by the birthday bound, with constant
probability of success, we have an intersection between the set of pre-images covered by the table
and the set of possible pre-images of y1, . . . , yD. Hence, the method will find a pre-image for at
least one of the yi’s.

The memory required for storing the pairs of points does not depend on D. Also the runtime
memory of r points can be reused for each data point. Hence, this also does not increase with
D. On the other hand, the online time (the number of invocations of f and the number of table
look-ups) increases linearly with an increase in the number of data points. We now define the
following parameters and constraints.

N = 2n (size of search space);
P = r1+ 1

2mt (pre-computation time);
M = r

1
2m (fixed memory size);

Mr = r (runtime memory);
T = tr2+ 1

2D (number of invocations of f);
Tt = tr1+ 1

2D (number of table look-ups without DP);
TDP = r1+ 1

2D (number of table look-ups with DP);
mt2 = N (constraint in Conjecture 1).

Note that for a feasible attack, we should have M,Mr, T,Tt,TDP < N .
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In previous TMTO algorithms, the parameter Mr was not present. In this algorithm, we have
to take this into consideration. In general, the total coverage of distinct points in all the tables is

1
r1/2 times mrt, i.e., the coverage drops by a fraction of r

1
2 . Hence, we will not choose r to be too

large and certainly assume that m > r. Hence, the online memory will be less than the memory
required to store the tables. Thus, if we perform the analysis only using M , then the actual memory
requirement is at most twice M . Since we ignore constants (and logarithmic factors) in the analysis,
this does not affect the asymptotic nature of the analysis.

Solving from mrt = N/D, mr
1
2 = M and T = tr

5
2D we get,

m =
N

1
4M

3
4

T
1
4

; r =
(
MT

N

)1/2

; t =
N

5
4

DM
5
4T

1
4

. (5)

Substituting the values of m and t in mt2 = N we have T 3M7D8 = N7. The condition r ≥ 1 must
hold, i.e., N ≤ MT . We can now write the following relations the first one of which is usually
called the TMTO curve.

T 3M7D8 = N7;
N ≤ MT.

}
(6)

Note: Assuming the coverage to be mrt
rα , the tradeoff curve is T 2−αMα+3D2(1+2α) = Nα+3

3.1 Comparison

The original TMTO curve TM2 = N2 is due to Hellman [7] for the case D = 1. We will call
this the Hellman curve. Later Oechslin [10], described a method for reducing the online runtime
by one-half. TMTO was applied to stream ciphers by Babbage [1] and Golić [6]. This is actually
the birthday attack and the curve obtained was MT = N and T = D. We will call this the BG
curve. (BS [2] writes the last condition as 1 ≤ T ≤ D, which is achieved by ignoring some of the
data during the online phase. However, this is misleading, since the table contains N/D points and
if we ignore some of the online data, then the birthday bound no longer applies and the success
probability goes down.)

Hellman attack in the presence of multiple data was analysed by Biryukov and Shamir [2].
They obtained the curve TM2D2 = N2 with 1 ≤ D2 ≤ T . We will call this the BS curve. (For
the BS curve, r = t/D, T = t2, M = mr = mt/D and mt2 = N . Using the last two equations,
t = N/(MD) and r = t/D = N/(MD2). Since r ≥ 1 must hold, we have MD2 ≤ N . Also, since
TM2D2 = N2, we have N/(MT ) = (MD2)/N ≤ 1, i.e., MD2 ≤ N ≤ MT . The last inequality is
not explicitly mentioned in the literature.) In the presence of multiple data the rainbow method is
inferior than the Hellman method (see [4]). For D = 1, the BS curve reduces to the Hellman curve.
Also, a direct comparison of the BG and BS curves is not possible since in the BG curve, T = D
and in the BS curve T ≥ D2.

We do not perform a direct comparison to the BG method, since (as for the BS method) the two
methods hold for different ranges of T and D. We next compare to the BS curves. For comparison,
we fix the values of N and D, i.e., the size of the search space and the amount of available data
are fixed.
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Substituting T = M and D = Na where 0 < a < 1 in the new curve, we get T = M =
N

7−8a
10 = Tnew (say) whereas from BS curve we get T = M = N

2(1−a)
3 = TBS (say). If a > 1

4 , then
Tnew < TBS . Hence, we conclude that the trade-offs obtained from the new curve is better than
the BS curve when the number of data points D > N

1
4 .

4 Conclusion

In this paper, we have described a new time/memory trade-off algorithm to invert one-way func-
tions. Our algorithm can use multiple data and satisfies the TMTO curve T 3M7D8 = N7 based on
a conjecture. We show that the trade-offs of the new algorithm is better than the curve obtainable
from the Biryukov-Shamir [2] trade-off TM2D2 = N2 for D > N1/4. We also consider the number
of table look-ups and show that the use of the DP method of Rivest can be combined with the new
search algorithm to considerably bring down the required number of table look-ups.
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A Previous Constructions

In this section, we provide brief descriptions of the Hellman [7] and the rainbow construction of
Oechslin [10]. This will help in understanding our construction. As before, let f : {0, 1}n → {0, 1}n

be the one-way function to be inverted and N = 2n. Elements of {0, 1}n are called points. This f is
assumed to behave like a random function and for simple output modification functions g0, . . . , gr−1,
we define fk = gk ◦ f .

A.1 Hellman Method

Each of the functions f0, . . . , fr−1 is used to construct one table. Thus, there are r tables
M0, . . . ,Mr−1, where each Mk is an m× (t+ 1) matrix.

We describe the construction of Mk. Let xk
0,0, x

k
1,0, . . . , x

k
m−1,0 be a set of points chosen inde-

pendently and uniformly at random from {0, 1}n. These m points form the first column of Mk.
The other entries of Mk are obtained using the rule

xk
i,j+1 = fk(xk

i,j) (7)

where 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ t− 1. Thus, each row is a chain of the form

xk
i,0; x

k
i,1 = fk(xk

i,0); x
k
i,2 = fk(xk

i,0); · · · ; xi,t = fk(xk
i,t−1).

For the table Mk, the pairs of points (xk
i,0, x

k
i,t) are stored sorted on the second components. The

first component is called a start-point and the second component is called an end-point.
During the online phase, a point y is given and we have to find an x such that f(x) = y. The

search algorithm is as follows. It successively searches in the tables M0, . . . ,Mr−1. The search
in the table proceeds as follows. First apply gk to y to obtain wk. Then apply fk repeatedly a
maximum of t times to wk. After each application of fk, perform a look-up among the end-points
of Mk. If a match is found, then go to the corresponding start point and keep on applying fk until
wk is reached. The previous point visited is a possible pre-image of y which can be easily verified.

A.2 Rainbow Method

In 2003, Oechslin [10] described a different construction method. In Oechslin’s method, a single
m×(t+1) table coversN points in the following manner. In this case, we use t functions f0, . . . , ft−1,
where fk = gk ◦ f and g0, . . . , gt−1 are output modification functions as described above for the
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Hellman method. The first column is a set of random points x0,0, . . . , xm−1,0. The ith row of the
table is formed as follows.

xi,0; xi,1 = f0(xi,0); xi,2 = f1(xi,1); · · · ; xi,t = ft−1(xi,t−1).

Each such chain is called a rainbow chain and the method the rainbow method. The set of pairs
(xi,0, xi,t) is stored sorted on the second component.

During the online phase, the search for a pre-image of y is carried out in the following manner.
Define wk = gk(y). First, wt−1 is searched among the end-points of the table; then ft−1 is applied
to wt−2 and a look-up is performed among the end-points of the table; next ft−2, ft−1 is applied to
wt−3 and a look-up is performed. If the look-up for wk is successful, then we go to the corresponding
start-point and generate the chain until wk is reached. The point visited prior to wk is a possible
pre-image, which is again easily verified by applying f to it.
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