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ABSTRACT

The weakly nonlinear dynamics of ‘‘vorticity waves’’ (VW), specific wavelike motions occurring nearshore
in the presence of an alongshore shear current is examined. By means of a standard asymptotic technique starting
with the shallow-water equations, the authors derive the equations governing field evolution due to resonant
interactions for the arbitrary current and bottom profiles and show that the VW interactions occur in the lowest
order. Among them there are always explosive interactions; that is, the resonant triplets where all interacting
waves growing synchronously tend to infinity in a finite time. The explosive instability is studied as a potential
mechanism for VW generation, their main implications being the following: 1) The range of explosively excited
scales appears to be much wider than the domain of linear instability, with the low-frequency cutoff absent; 2)
the explosive instability occurs even when all linear perturbations are damped due to bottom friction, provided
the initial amplitudes of disturbances exceed a certain threshold; and 3) the weakly nonlinear evolution most
likely results in the emergence of strongly nonlinear motions. The dependence of the explosive processes on
the background parameters is analyzed for the simplest model of alongshore current and topography.

1. Introduction

Vorticity or shear waves (VW) are specific wavelike
motions with frequencies in the range of 1023 – 1022

Hz, that is, well below the traditional low-frequency
limit of the infragravity band,1 and wavelengths of the
order 102 m occurring nearshore in the presence of a
strong alongshore current. These motions, manifesting
themselves as intense variations of the longshore com-
ponent of the current velocity, were first observed by
Oltman-Shay et al. (1989) in the 1986 SUPERDUCK
field study. Their frequency dependence on the wave-
number was found to be almost linear, their celerity
closely related to the velocity of the mean current.

The milestone work in the theoretical study of these
motions was done by Bowen and Holman (1989), who
identified the principal mechanism of VW to be potential
vorticity conservation, with the background vorticity
field supplied both by the shear structure of the long-
shore current and the bottom slope. They studied a sim-
plified model with piecewise constant background po-
tential vorticity field and assumed VW to be unstable

1 That is why these motions are often called far infragravity waves
(Mei and Liu 1993).
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modes of the Rayleigh-type boundary value problem
governing the dynamics of linear mean current pertur-
bations. Their analysis was extended by Dodd and
Thornton (1990) who explored a somewhat more re-
alistic model of the mean current and the bottom cross-
shore structure. The numerical analysis performed by
Dodd et al. (1992) by using mean flow and bathimetry
data from the two real beaches at Duck, North Carolina
(SUPERDUCK study) and Santa Barbara, California
[Nearshore Sediment Transport Studies (NSTS)]
stressed the importance of taking into account the in-
fluence of bottom friction on VW dynamics, which re-
sults in a decrease in the span of unstable wavenumbers
and of growth rates. The comparison of numerical sim-
ulation results and field data exhibits good quantitative
agreement at least for SUPERDUCK. The numerical
study was further continued by Putrevu and Svendsen
(1992) and by Falques and Iranzo (1994) who ran a
similar model without the ‘‘rigid-lid approximation’’
and took into account eddy viscosity. The effect of vary-
ing bottom shear stress on the stability of wave-driven
shear current was investigated by Dodd (1994) who
found that the current does not become unstable unless
its offshore shear exceeds some critical value. Thus, all
these theoretical studies were aimed at establishing more
accurately the dependence of linear instability charac-
teristics on various parameters specifying the along-
shore current and topography of the coastal zone.

The experimental data, however, provide a strong mo-
tivation for developing a nonlinear theory as the ob-
served perturbations of horizontal velocity were quite
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large (up to 30 cm s21) and often comparable with the
magnitude of the mean current, thus ensuring the non-
linear character of VW dynamics during most of the
field studies. The only attempt to investigate the non-
linear stage of VW evolution was made by Dodd and
Thornton (1992), who considered self-interaction of the
fastest growing mode in the so-called near-critical con-
dition (when the current shear just slightly exceeds the
threshold due to the bottom friction and thus allows the
unstable modes to develop). Their study showed that
the alongshore current is supercritical; therefore non-
linear saturation of shear instability is expected and dis-
turbances are likely to evolve to a finite, steady ampli-
tude. The resulting amplitude was found to be compar-
atively small (at least ten times smaller than the mean
current). The principal limitation of such an approach
is that it allows one to address only narrowband wave
trains centered near the fastest growing mode, which
might be justified for the comparatively narrow class of
marginally stable situations. Meanwhile, a robust fea-
ture of the motions under consideration, which has not
received an explanation yet, even a qualitative one, is
that the field data indicate no low-frequency cutoff in
VW spectra, while the linear instability analysis (see
Dodd 1994) predicts global low-frequency cutoff below
which the instability does not develop. The aim of the
present work is to develop a weakly nonlinear theory
of VW interactions with the emphasis on the explosive
interactions, which might contribute essentially to VW
generation and dynamics.

The linear instability, considered up to now to be the
only mechanism of VW generation, can be most natu-
rally interpreted in terms of the linear interaction of two
eigenmodes of different energy. The concept of negative
energy waves, first developed in plasma physics in the
context of electronic beam instabilities in the early
1950s and later introduced into hydrodynamics by Lan-
dahl (1962) and Benjamin (1963) in their studies of
shear flows over flexible boundaries, plays an essential
role in our work. A formal mathematical definition of
the sign of energy for the VW will be given below.
Basically, a wave has negative energy if exciting it low-
ers the total energy of the system: the amplitude of a
negative energy wave grows when it loses energy in
contrast to the usual positive energy wave (see, e.g.,
Cairns 1979; Craik 1985; Ostrovsky et al. 1986). The
essential point we would like to stress is that the sign
of the wave energy is specified entirely by the linearized
problem. If we consider from this viewpoint any of the
known dispersion relations of VW, we may easily dis-
tinguish the domains of negative and positive energy,
as well as those of unspecified energy sign. A sketch
of a typical VW dispersion curve with marked domains
of different energy sign is depicted in Fig. 1a. [For the
detailed derivation, for a particular example, see section
5 where the simplest model of Bowen and Holman
(1989) is analyzed.] Within the linear theory in the ab-
sence of dissipation, there is no difference in behavior

of waves of positive and negative energy. However, this
difference becomes principal when one considers non-
linear interactions among these waves. It is easy to show
that the VW dispersion relation always permits nonlin-
ear resonant interactions in the lowest order, that is,
three-wave resonant interactions among the wave pack-
ets of frequencies and wavenumbers vi, ki satisfying the
well-known ‘‘resonance conditions’’ (e.g., see Craik
1985)

k 5 k 1 kn l j

v 5 v 1 v . (1)n l j

We can see that among the permitted triads are those
comprising waves of different signs of energy (Fig. 1b)
and those involving waves of the unspecified energy
sign (Fig. 1c).2 It is well known that triad interaction
between waves of different energy sign may lead to the
specific nonlinear instability of VW, namely, the so-
called explosive instability (Craik 1985). Some general
properties of explosive instabilities are well known (e.g.,
Weiland and Wilhelmsson 1977; Craik 1985). Such non-
linear instability is, in a sense, a more powerful mech-
anism for VW generation than the linear one, as the
interacting wave amplitudes become infinite in finite
time rather than growing exponentially as linearly un-
stable modes do. Moreover, even linearly damped waves
can grow explosively provided their initial amplitudes
exceed a certain threshold.

The main goal of our work is to specify the conditions
when the various types of explosive processes can occur
and analyze their main consequences for VW dynamics.

In section 2, we discuss the problem statement start-
ing with the classical shallow-water equations modified
by taking into account bottom friction. Description of
the general weakly nonlinear three-wave resonant in-
teractions of VW is the subject of section 3. The equa-
tions derived obviously have the universal form. The
novelty is accumulated in the specific expressions for
the interaction coefficients, which are valid for arbitrary
mean current and cross-shore depth dependence and
might be used in a number of various problems. In sec-
tion 4, we confine ourselves to the consideration of iso-
lated triads. In section 5, we focus our attention on the
explosive interactions taking as the illustrative example
the simplest model of the physical background, that of
Bowen and Holman (1989), modified by taking into
account weak bottom friction. We show explicitly the
existence of explosive triplets of VW and investigate
the influence of dissipation on their dynamics. In par-
ticular, we estimate the amplitude thresholds necessary
for the explosive instability to commence. The impli-
cations of the results obtained for VW dynamics in gen-

2 In principle, triads including waves of the same sign of energy
might be possible as well; however, we have not found such inter-
actions in the particular models we analyzed.
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FIG. 1. A sketch of typical VW dispersion curves and the
resonant triads. (a) Marked are the regions of waves with pos-
itive (solid line), negative (dotted line), and unspecified (dashed
line) energy; (b) resonant triad for S processes; (c) triads cor-
responding to U processes.

eral, and for the interpretation of SUPERDUCK and
NSTS 1983 field studies, are discussed in section 6.

2. Basic equations

We shall consider finite-amplitude VW dynamics in
the nearshore in the coordinate frame with the x and y
axes directed offshore and alongshore respectively and
the shoreline situated at x 5 0. As the typical timescale
of VW observed in the field experiments was found to
be much smaller than the Coriolis timescale, the influ-
ence of the earth’s rotation on the VW dynamics is
neglected. The total velocity field is assumed to consist
of the mean longshore current and perturbations

u 5 {u(x, y, t), V(x) 1 y(x, y, t)}, (2)*

where V(x) represents the mean steady current and u 5
{u, y} the perturbed velocity field. The basic equations

governing VW dynamics in the nearshore are then the
standard shallow-water equations

m
u 1 Vu 5 2gz 2 u 2 (uu 1 yu ) (3a)t y x x yh

m
y 1 Vu 1 uV 5 2gz 2 y 2 (uy 1 yy ) (3b)t y x y x yh

z 1 Vz 1 [(z 1 h) u] 1 [(z 1 h)y] 5 0. (3c)t y x y

Here z is the free surface elevation, g is gravity accel-
eration, h 5 h(x) is the depth presumed to be uniform
alongshore, while the parameter m represents dissipa-
tion. The dissipative terms can be derived from first
principles by considering the full nearshore momentum
balance. Their particular form used in (3) corresponds
to bottom friction rather than to eddy viscosity and is
based on the standard set of assumptions (e.g., see Dodd
1994). It is known that the main VW features are weakly
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sensitive to the type of dissipation term used, the phe-
nomenological coefficients being the source of the larg-
est uncertainty (Dodd 1994; Thornton and Guza 1986).
So we accept the set (3) as the basic one, supposing in
the further analysis that the dissipation is relatively mild
and, thus, modifies only slightly the nondissipative dy-
namics of linear VW. This assumption proves to be quite
realistic for both SUPERDUCK and NSTS conditions.

The scalings

{u, y} 5 V {u9, y9}, V 5 V V90 0

z 5 z z9, h 5 h h90 0

x0(x, y) 5 x (x9, y9), t 5 t9 (4)0 V0

are now introduced, where V0 is the typical magnitude
of the mean current velocity, say its maximum value in
the nearshore, x0 is the typical mean current cross-shore
width, h0 is the typical depth within the current domain,
and where primed quantities are nondimensional. With
scaling (4) the nondimensional equations of motion take
the form

gz mx u0 0u 1 Vu 5 2 z 2 2 (uu 1 yu )t y x x y2V V h h0 0 0

(5a)

gz mx y0 0y 1 Vu 1 uV 5 2 z 2 2 (uy 1 yy ),t y x y x y2V V h h0 0 0

(5b)

where primes have been dropped for convenience. The
Eqs. (5a–c) indicate that the proper scale of the free
surface elevation z is

2V0z 5 . (6)0 g

The nondimensional continuity equation with (6) taken
into account is

(hu) 1 (hy) 5 2 F[z 1 Vz 1 (zu) 1 (zy ] (5c)x y t y x y)

where the parameter

2V0F 5 (7)
gh0

is the Froude number, typically much smaller than unity
for real field conditions.

Thus, the problem, in principle, contains three non-
dimensional parameters, namely, the Froude number F,
the ratio of the advective timescale x0/V0 to the frictional
time scale h0/m

mx0e 5 , (8)
h V0 0

and the amplitude parameter en, which represents the
ratio of the typical velocity perturbation magnitude to
the typical magnitude of the mean current velocity. The
dynamics of the system depends, of course, on their
comparative values. Here we shall study probably the
most interesting case when the effects of nonlinearity,
friction, and divergence are all of the same order of
smallness, that is,

en 5 F 5 e K 1, (9)

and shall look for the solutions to the Eqs. (5a–c) in
the form of power series in e

`

nu 5 e uO n
n51

`

ny 5 e yO n
n51

`

nz 5 e z . (10)O n
n51

For future use we also define the material derivative
operator Dt,

Dt [ ]t 1 V(x)]y (11)

and its formal derivative with respect to the cross-shore
variable

Dt [ V · ]y.p p] ]x x (12)

In the first order in e the motion is nondivergent;
therefore, it is convenient to describe the motion via the
streamfunction, introduced by setting

hu 5 2(D F)1 t y

hy 5 (D F) . (13)1 t x

Cross differentiating (3a9), (3b9) to exclude surface el-
evation z, we obtain a linear self-conjugate equation for
the function F

2 9D F9 Ft yy21 D 5 0. (14)t1 2h h

Hereinafter, prime denotes the derivative with respect
to cross-shore variable x. The surface elevation turns
out to be unambiguously related to F through (3b9)

2D F9t 5 2z . (15)yh

The effects of the divergence contribution in (39) are
second order in e. To describe them, we introduce two
auxiliary functions C(x,y,t) and S(x,y,t), the velocity
perturbation components are expressed in their terms as

hu 5 2(D C)2 t y

hy 5 (D C)9 1 S. (16)2 t
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The second-order terms of the continuity equation (5c)
lead to the relation between the first-order free-surface
elevation z1 and the new function S:

Sy 1 Dtz1 5 0. (17)

Thus, S is also unambiguously expressed in terms of
the first-order streamfunction [see (15)].

3. Nonlinear resonant interactions of VW: General
consideration

From the general theory viewpoint, all the diverse
problems for the dynamics of weakly nonlinear waves
in any medium can be reduced to a rather limited number
of universal equations with more or less known prop-
erties. To start the study of weakly nonlinear dynamics
for a particular type of motions, one should first specify
the types of resonances permitted. The specifics of a
particular medium lies just in the dispersion relations
and in the particular expressions for the interaction co-
efficients. Examining the linear dispersion relations
known from the aforementioned studies, it is easy to
see that three-wave resonant interactions of VW are
permitted to occur and therefore are expected to dom-
inate the weakly nonlinear dynamics. The aim of this
section is to derive simplified equations describing the
dynamics. The particular choice of equations to be de-
rived is dictated by the physical problem of interest and
will be discussed below. First, we derive the most gen-
eral equations.

The standard way to obtain the governing equations
is to represent the perturbation field, as a superposition,
to first order, of free quasi-harmonic waves

n n nF(x, y, t) 5 A f (x)exp{iky 2 iv t} 1 c.c.O k k k
k,n

n nˆz 5 z exp{iky 2 iv t} 1 c.c.O1 k k
k,n

n nˆS 5 f exp{iky 2 iv t} 1 c.c., (18)O k k
k,n

permitting the amplitudes of harmonics to vary slow-nAk

ly with time and space. According to (14), the mode
function (x) is then the solution of the linear boundarynfk

value problem

2 9s f9 f
2 22 s k 5 0 (19a)1 2h h

f 5 0, x 5 0 (19b)

f → 0, x → `, (19c)

where s(x) 5 v 2 kV(x) is the local Doppler frequency
of the wave. The boundary condition f(0) 5 0 implies
that there is no flux normal to the beach, while f(`) 5
0 is the condition for a wave to be trapped nearshore.

From (19) the orthogonality relation for eigenfunc-
tions (x) is easily found to benfk

` s 1 sn m 2(f9f9 1 k f f ) dx 5 J d , (20)E n m n m n nmh0

where dnm is the Kronecker delta. Besides, hereinafter
we use a joint mode index n 5 (n, kn). Both the first-
order free-surface elevation z1 and S function are lin-
early related to the first-order streamfunction, and their
Fourier components and are found to be given byˆ ˆz f
the expressions

2i s
ẑ 5 2 f9An n nk h

3i s
f̂ 5 2 f9A . (21)n n n2k h

The slow temporal evolution of a harmonic amplitude
An occurs owing to nonlinear resonant interaction with
other harmonics, linear dissipation, and divergence ef-
fects. For simplicity we confine ourselves to the study
of spatially uniform wave trains; that is, we allow the
amplitudes to depend on ‘‘slow’’ time t 5 et only. To
obtain the governing equations, we represent the sec-
ond-order streamfunction C as superposition of linear
harmonics with space–time-dependent amplitudes cn(t,
x) and by substituting (18) and (21) into (5a–c) obtain,
to the second order in e, the inhomogeneous boundary
problem for cn:

2 2 49 9 9 9s c9 s c 1 s f9 sf9 sf sf9 sfn n n n n n n2 2 2 ˆ2 k 5 2 A 2 2i 2 k ] A 2i 2 k A 2 (N[F]) (22)n t n n k2 2 2 21 2 1 2 1 2 1 2[ ] [ ]h h k h h h h h

f 5 0, x 5 0

f → 0, x → `,

where (N[F])k is the corresponding Fourier component
of the nonlinear operator, which is specified below.

Multiplying (22) by fn and integrating over space do-
main 0 , x , `, we obtain the solvability condition
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`

ˆ(J ] 1 I 2 iL )A 5 2i f (N[F]) dx, (23)n t n n n E n k

0

with the coefficient Jn determined through (20) and In

and Ln having the form

` sn 2 2 2I 5 [(f9) 1 k f ] dxn E n n2h0

` 91 s9
22 f dx (24)E n21 22 h

0

2` 21 s f9n nL 5 dx. (25)n E2 1 2k h0

Since the nonlinearity is quadratic, only those harmonics
that satisfy the well-known ‘resonance conditions’ (e.g.,
see Craik 1985)

k 5 k 1 kn l j

v 5 v 1 v (26)n l j

contribute to the kth Fourier component of the nonlinear
operator (N̂[F])k

99 9(s f )9 s f (s f )9 (s f )9 s f s f s f (s f )9j j l l j j l l j j l l l l j j2ˆ(N[F]) 5 i 2 k 1 k 1 k k k 2 k A A .Okn l l n l j l j l5 1 2 1 2 6[ ] [ ]h h h h h h h hk ,kl j

(27)

The equations are quite general. Any initial distri-
bution of the wave field can be decomposed into the
set of harmonics (18) with the desired accuracy, and
the field dynamics at timescales e21 will be adequately
described. It is easy and worthwhile to trace the con-
tributions to the field dynamics due to different factors.
For example, the effects of friction are accumulated in
the In terms. It is obvious that adopting a different
model for dissipation will result only in changing the
particular values of the coefficients In. If we put vis-
cosity to zero, the system becomes Hamiltonian. The
influence of nondivergence is accumulated in Ln and
results in an O(e) correction to the dispersion curve.
The nontrivial dynamics is caused by nonlinear terms
due to the resonant interactions grouped on the rhs.
Although it is difficult to infer any direct conjectures
from these equations in their general form, they are
nonetheless of interest. Their first advantage compared
to the shallow-water equations is rather obvious: They
are much simpler and more convenient for numerical
simulation. Second, in situations where the initial field
distribution could be well approximated by a few nar-
rowbanded packets, the system could be drastically
simplified in a straightforward manner. An analysis of
the most simple system of this kind will be the subject
of the next section.

4. Explosive processes

The key concept about explosive processes is that
of wave energy. We define energy E due to a harmonic
wave perturbation of amplitude A as E 5 sgn J zAz2,
the expression for J given by (20). The interaction
among the waves with the same sign of energy results
in spreading of wave energy among different wave
components. In the absence of dissipation, neither the
energy of the field composed of an arbitrary number

of harmonics nor a particular wave amplitude can grow
infinitely with time. On the contrary, in the process of
resonant interaction among waves of different energy
signs, the conservation of the wave field energy does
not necessarily imply a limitation on the growth of
wave components. Growth of waves of different energy
can occur without violating the conservation of energy.
Provided some special conditions specified below are
fulfilled, all waves can grow synchronously, resulting in
the so-called explosive interaction, which changes the
picture of the field evolution drastically.

Two qualitatively different types of explosive pro-
cesses are possible: those involving only waves linearly
stable in the absence of dissipation and those embracing
two stable (in the same sense) waves and one unstable
wave. We shall refer to them as ‘‘S’’ and ‘‘U processes’’
for brevity (see Figs. 1b and 1c, respectively).

a. Dynamics of an isolated triad: Explosive S
processes

To elucidate the new mechanism of instability, we
start by considering the elementary processes involving
only linearly stable waves, that is, S processes. For sim-
plicity, we study a single resonant triad satisfying (26).
Straightforward calculations yield the classical equa-
tions of three-wave resonant interaction

(] 1 y )a 5 s a a cos Qt j j j n l

(] 1 y )a 5 s a a cos Qt l l l n j

(] 1 y )a 5 2s a a cos Qt n n n j l

a a a a a aj l n l j n] Q 5 D 1 s 2 s 2 s sin Q,t n j l1 2a a an j l

(28)
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where Q and D are the phase difference and the phase
mismatch; correspondingly

Q 5 un 2 uj 2 ul D 5 dn 2 dj 2 dl,

where ai, ui are the normalized real amplitude and phase
of the complex amplitudes An

1
A 5 ÏzJ J z a exp{iu },(n j l n nP

(n, j, l 5 1, 2, 3). (29)

The dissipation coefficients and the mismatches are giv-
en by the expressions

I Li iy 5 , and d 5 , (30)i iJ Ji i

and si stands for the sign of the normalizing coefficient
Ji.

Thus, in general, the dissipation due to the effect of
bottom friction on the VW dynamics and mismatch
caused by the surface motion varies for different space–
time harmonics because of the bottom cross-shore vari-
ability. This greatly hampers the investigation of the
triad (28) dynamics as no analytical solution is available
in this case. The coupling coefficient P is common for
all members of the resonant triad in accordance with
the general theory (e.g., Weiland and Wilhelmsson
1977; Craik 1985) regardless of the particular type of
bottom profile. The explicit expression of the coefficient
is found to be

`1
P 5 dxE2 0

2 9V9
3 2k k k f f fj l n j l n5 1 2[ ]h

91 V9
1 (k k f f s f9j l j l n n1 2h h

1 k k f f s f9j n j n l l

1 k k f f s f9) . (31)l n l n j j 6
The set (28) was intensively studied, the equations

becoming exactly solvable in the absence of dissipative
terms [both the partial differential equations (PDE) gov-
erning spatially localized wave packets (Zakharov and
Manakov 1975; Kaup et al. 1979) and ordinary ones
(ODE) governing spatially uniform wave trains]. This
solvability is not the case for triplets with dissipation
unless all dissipative terms are equal. Still the general
features of their dynamics were studied in a number of
numerical experiments (e.g., see Weiland and Wilhelms-
son 1977). Here we only sketch the main results for the
simplest, that is, spatially uniform, case.

If dissipation is absent (all ni [ 0), the system (28)

is conservative and subject to various conservation laws
including the so-called Manley–Rowe relations

2 2] (s a 2 s a ) 5 0t j j l l

2 2] (s a 1 s a ) 5 0. (32)t n n j,l j,l

If the coefficients Ji for all triad members have the
same sign, the second relation (32) imposes a restriction
on the amplitude growth. The energy exchange among
different harmonics results in the growth of aj, al and
simultaneous decrease of an or vice versa. This type of
interaction is called ‘‘decay,’’ and its output is slow
periodical changes of wave amplitudes. On the contrary,
when the signs of the coefficients Jj, Jl are the same and
opposite to that of Jn, all three wave amplitudes can
grow simultaneously as it follows from (32). This means
that, only if the wave with maximum eigenfrequency
has energy of sign different from that of two other triplet
members, the negative energy wave loses energy and
grows in amplitude, while positive energy waves acquire
energy and also grow. All amplitudes tend to become
infinite in finite time, that is, they grow faster than ex-
ponentially. This type of nonlinear resonant interaction
is called ‘‘explosive.’’ Another conservation law fol-
lowing from (28) and governing the phase difference Q
dynamics in the process of interaction is

D
2a a a sin Q 1 s a 5 G , (33)j l n j j j2

where Gj is a constant. Hence, while all wave amplitudes
ai grow to infinity in the process of explosive interaction,
the phase difference Q diminishes to zero. This effect
is called ‘‘phase locking.’’

Though Manley–Rowe relations do not hold in a non-
conservative medium, the principal result remains in-
tact: The explosive instability in the system (28) always
occurs when the initial harmonic amplitudes exceed
some threshold value depending on the dissipation
strength and the value of phase mismatch D. Obviously
this singular growth is limited by the physical factors
lying beyond the framework of weakly nonlinear mod-
els: either by the next order nonlinear terms correspond-
ing to four-wave interaction or by nonlinear dissipation.
The saturation does not occur within the weakly non-
linear stage of instability unless the three-wave inter-
action coefficient contains some external small param-
eter, while the four-wave one does not (see Romanova
and Shrira 1988). If this is not the case, the final state
has interacting amplitudes of the order of unity, which
means wave breaking or intense vortex formation are
the most likely outcome of the explosive instability pro-
cess.

Here we restrict our consideration to the initial stage
of instability when weakly nonlinear theory does hold.
Within its framework one could hope to find out how
the explosion time, amplitude threshold, and the insta-
bility domain in wavenumber space depend on the set
of ‘‘external’’ parameters. The answers can be derived
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FIG. 2. Depth–longshore current profiles for the illustrative exam-
ple.

for any specific model of the nearshore zone. A partic-
ular example will be given below in section 5.

b. Nonlinear dynamics of linearly unstable waves
(U-processes)

Linearly stable space–time harmonics (18) act as el-
ementary excitations and their response to external forc-
ing is prescribed by their energy sign, which in this case
is quite definite. If one considers the dynamics of lin-
early unstable modes, the elementary excitation consists
of a pair of modes with the same real part of the fre-
quency but with imaginary parts of opposite sign. These
unstable waves do not possess a definite energy sign
(Ignatov 1989). Nonlinear triad interactions involving
such pairs, with resonant conditions satisfied only for
real parts of v

k 5 k 1 kn l j

Rev 5 Rev 1 Rev (34)n l j

are governed by more complex equations than (28),
these being nonintegrable in principle though they have
some conservation laws. We do not present these equa-
tions, as they are fairly difficult to treat. The resonant
interactions of this type have been studied in plasma
physics; however, not too much can be stated in quan-
titative terms. The main qualitative conclusion relevant
to our context is that explosive processes are always
plausible for the triad (34) though it is no longer possible
to obtain any explicit estimations of the explosion time
and the amplitude threshold (Ignatov 1984). The con-
dition for three-wave resonance for U processes (34)
involve only the real parts of eigenfrequencies and are
not exact in a sense. However, they can still be consid-
ered as such provided the initial amplitudes of inter-
acting waves are sufficiently large, while linear growth
rates are sufficiently small. From the viewpoint of the
general theory of nonlinear resonant interactions, the
resonance should be exact within the accuracy of the
small amplitude parameter O(e). If the ratio of linear
growth rate to eigenfrequency is of the same order, the
resonance (34) is as accurate as (26). Therefore, U pro-
cesses occur only for the waves with amplitudes of the
order of Imv/Rev; that is, they come into play only
after a period of initial perturbation growth due to linear
instability.

5. An illustrative example

To exemplify the general theory discussed above we
choose the simplest model of the physical background,
that of Bowen and Holman (1989). Their model neglects
free-surface movements. The latter assumption is valid
when the Froude number is sufficiently small (F K e),
which is possible in real conditions. As we have shown
in section 3, taking into account the free-surface effects
results in a slight correction to the dispersion relation

and does not affect the nonlinear terms; therefore it is
not essential for the estimates that we intended to derive
in this section. Here we show that explosive triplets do
exist within a realistic range of model parameters and
outline the span of unstable wavenumbers, and their
dependence on the basic current geometry.

The mean current velocity cross-shore dependence is
taken to be of the form (see Fig. 2)

21d x,
 0 # x # d (region 1)
 21

(35)(1 2 d) (1 2 x),V(x) 5 
d # x # 1 (region 2)

0,
1 # x , ` (region 3),

while the bottom is presumed to be flat: h(x) 5 1 in
nondimensional units.

The linear problem (19) is easily solved and its so-
lution is

sinh(kx 2 vd) cosh(kx 2 vd)A 1 B (region 1)
kx 2 vd kx 2 vd

sinh[k(x 2 1) 1 v(1 2 d)]D
k(x 2 1) 1 v(1 2 d)f 5 

cosh[k(x 2 1) 1 v(1 2 d)] 1 E (region 2)
k(x 2 1) 1 v(1 2 d)

F exp[k(1 2 x)]. (region 3)
(36)
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The solutions (36) obtained should be matched at the
boundaries of the regions 1–3 (at x 5 d and x 5 1),
where the jumps of background vorticity are present,
subject to matching conditions, these being the conti-
nuity of the eigenfunction and its first derivative

[f] 5 0, [f9] 5 0 at x 5 d, x 5 1. (37)
Here square brackets are used to designate the jump of

the value inside at the given point. Four matching con-
ditions (37) plus the boundary condition at the coast (19b)
constitute the set of five equations specifying four am-
plitude constants and eigenfrequency v for any wave-
number value k, the fifth amplitude, say A, being free in
the linear problem. Performing the necessary calcula-
tions, we obtain the linear dispersion relation for VW:

1 1
v cosh(k) 1 sinh(kd)cosh[k(1 2 d)]1 2v 2 k d(1 2 d)

1 1 1
5 2 v sinh(k) 1 sinh(kd)sinh[k(1 2 d)] . (38)1 21 21 2 d v 2 k d(1 2 d)

Obviously, (38) represents a quadratic equation with
respect to v and coincides with that obtained by Bowen
and Holman (1989). The corresponding dependence of
Rev on wavenumber k for the mean current backshear
parameter d 5 0.3 is shown in Fig. 3, with the region
of negative energy waves (those with J , 0) marked.
Also shown are the explosive triads of the S type rep-

resenting two different families. Fixing the arbitrary
Xmultiplicative constant A,

d
A 5 cosh(vd), (39)

d 2 1

we obtain the explicit expressions for the other ampli-
tude coefficients depending on wavenumber k, wave
frequency v, and backshear parameter d:

d
B 5 sinh(vd)

d 2 1

1 1
D 5 cosh[(1 2 d)v 2 k] 1 sinh(kd)cosh[(1 2 d)(v 2 k)]

v 2 k d(1 2 d)

1 1
E 5 sinh[k 2 (1 2 d)v] 2 sinh(kd)sinh[(1 2 d)(v 2 k)]

v 2 k d(1 2 d)

1 1 1
F 5 sinh(k) 1 sinh(kd)sinh[k(1 2 d)] . (40)5 6v(1 2 d) v 2 k d(1 2 d)

With the dispersion equation solved and the eigen-
functions of the triad members found, the normal-
izing coefficients J, I and the coupling coefficient P
could be easily calculated for a chosen resonant triad.
A particular advantage of the model is that for an
arbitrary mean current profile accounting for the dis-
sipation is extremely simple, namely, the dissi-
pation equally affects all space–time harmonics of
VW due to the absence of cross-shore depth vari-
ability. This simplification is closely related to the
particular form of bottom friction (1) and is not like-
ly to hold for a different type of dissipation. Thus,
all normalized friction coefficients ni in (30) are
equal to each other and, in our scaling, to unity. The
set of equations (28) governing the evolution of a

triad composed of linearly stable waves then reduces
by means of the nonlinear ansatz

U (T) 5 a exp{t}i i

T 5 1 2 exp{2t} (41)

to an equivalent set of equations without dissipation

] U 5 s U U cos QT j j n l

] U 5 s U U cos QT l l n j

] U 5 2s U U cos QT n n j l

U U U U U Uj l n l j n] Q 5 s 2 s 2 s sin Q. (42)T n j l1 2U U Un j l
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FIG. 3. Real part of wave frequency vs wavenumber for d 5 0.3.
Regions of positive and negative energy waves (those with J . or
, 0) are marked. Explosive resonant triplets OA 1 AB 5 OB and
OD 1 DF 5 OF are representatives of two different families.

FIG. 4. Inverse interaction coefficient zJnJjJlzP21 versus wavenum-Ï
ber of resonant harmonic.

Given the initial harmonics amplitudes Ui (0), (42) can
be solved analytically and the amplitude slow time de-
pendence can be found explicitly in terms of elliptic
functions (Weiland and Wilhelmsson 1977; Craik 1985).
The exact solution could also be presented for the spa-
tially localized wave trains governed by the PDE ana-
logue of (42). Here we mention that, in the generic case,
the amplitudes grow faster than exponentially and de-
velop a singularity in finite time T` depending on initial
amplitudes and phases. In the simplest case, that of equal
initial amplitudes and zero initial phase difference, this
relationship has the form

1
T 5 . (43)` U (0)i

For the ‘‘explosion time’’ in the system (28) we,
therefore, obtain the expression

t` 5 2ln(1 2 T`). (44)

As the logarithmic argument must be positive, we con-
clude that the explosive instability in the system with
dissipation develops only if the initial amplitudes are
larger than the threshold value, which in our scaling is
unity. Alongshore and cross-shore velocity perturba-
tions corresponding to nth harmonic in dimensional
units are found to be

ÏzJ J J zx s f n j l0 n nu 5 2m k a exp{i(k y 2 v t)} 1 c.c.n n n n nh PÏzJ z0 n

ÏzJ J J zx (s f )9 n j l0 n ny 5 2im a exp{i(k y 2 v t)} 1 c.c.n n n nh PÏzJ z0 n

(45)

Equations (45) indicate that the velocity perturbation
amplitude depends both on the nearshore environment
features, such as dissipation strength, depth, or mean
current cross-shore width, and on the spectral charac-
teristics of the corresponding harmonic. Most of the
latter dependence is accumulated in the normalized in-
teraction coefficient P/ zJnJjJlz, which is a single-pa-Ï
rameter function and varies significantly through the
span of wavenumbers of nonlinearly unstable VW. The
dependence of the inverse coefficient ( zJnJjJlzP21) onÏ
the smallest triplet wavenumber kj is plotted in Fig. 4
for two families of explosive triads of VW. The back-
shear parameter d was taken to be equal to 0.3, which
is close to the experimentally observed values. Sub-
stantial variability of the coefficient leads to a broad
range of amplitude thresholds for explosive instability,
and therefore the real wave field is most likely to exhibit
that part of the spectrum with smaller threshold values.
The main properties of the explosive instability are
closely, though implicitly, related to the mean current
backshear. The most sensitive is the span of nonlinear
instability in wavenumber space. The boundaries of the
regions of linear and nonlinear instability in k–d space
are depicted in Fig. 5. Evidently, the influence of an
increasing current backshear on the span of wavenum-
bers of unstable VW is opposite for linear and nonlinear
instability: the former extends with the growth of d,
while the latter constricts. The conclusions thus made
concern the S processes only, which alone are significant
at the initial stage of perturbation growth. Thus, one
might expect the linear instability to prevail for currents
with strong backshear in the initial period.

Obviously, for the later stage nonexact resonance in-
volving linearly unstable waves (34) should be taken
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FIG. 5. Stability diagram in k2d space. Darkest shading represents region of linear instability.

into account. Their main effect is that the span of in-
stability expands in small wavenumber region down to
zero as the dispersion curves indicate and, we stress this
point, they are possible at any value of the mean current
backshear. The absence of the S processes at high values
of backshear does not mean that the current becomes
more stable. The total domain of instability (linear plus
nonlinear) expands with increase of backshear.

As for other environmental parameters, their influ-
ence is quite evident from (45): smaller dissipation and
current width and larger depth moderate the amplitude

threshold and so make explosive processes more plau-
sible. The direct calculations of the amplitude threshold
for velocity perturbations via (45) based upon the mea-
sured data for depth, mean current width and backshear,
and friction coefficient yield values in the range 7–15
cm s21 for SUPERDUCK and 4–11 cm s21 for NSTS.
Though large, these values seem to be realistic and the
initial velocity perturbations of such magnitude could
be spontaneously generated by some inhomogeneity in
the flow to trigger explosive S-type instability even in
the absence of linear instability.
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6. Discussion

The above consideration within the framework of
weakly nonlinear theory certainly shows that explosive
processes can occur. Although the role of explosive in-
teractions in the dynamics of vorticity waves is difficult
to quantify at the present time, it is already possible to
formulate some robust qualitative conclusions on the
role of explosive processes in VW dynamics, which
might be verified experimentally.

The most robust and easily detectable consequence
of the explosive instability is the expansion of the in-
stability range in k space: there is no low-frequency
cutoff while the high-frequency bound is also noticeably
shifted upward compared to the linear limit. This con-
clusion seems to resolve the difficulty of the linear the-
ory formulated by Dodd (1994) who found theoretically
on the basis of linear instability analysis that a global
frequency cutoff exists below which instability does not
develop, in contrast with the results of measurements
where no cutoff was detected.

The difference between exponential and explosive
growth seems to be difficult to detect not only in field
data but in laboratory experiments as well. The problem
is that, if in a laboratory experiment the initial ampli-
tudes just slightly exceed the threshold, then the explo-
sion time will be logarithmically large according to (43)
and no peculiar features of explosive process could be
registered during the relatively small observation time
typical for the laboratory experiments (e.g., see Reniers
et al. 1994). To make the decisive conclusion, one
should investigate situations where all linear modes are
damped by introducing calibrated incoming perturba-
tions as is common in experiments on boundary layer
instability. The growth is expected to start upon ex-
ceeding a certain threshold. The distinction of ‘‘growth
versus damping’’ is obviously much easier to detect.

From the point of view of field observations, the dis-
tinction between the two types of explosive processes
discussed here looks rather subtle, but still detectable.
The S processes are expected to be more important for
smaller backshear. The data on the mean current cross-
shore profiles obtained during both SUPERDUCK and
NSTS studies ensure that, at least in some runs, the
backshear was sufficiently small, which is crucial for
the existence of these explosive triads. The parameter
d was in the range 0.25–0.4 sometimes being as small
as 0.15 (see Thornton and Guza 1986; Oltman-Shay et
al. 1989). In these conditions, the S processes allow, in
principle, the instability to develop starting from the
primordial noise in the spectral range different from that
of linear instability. A particular feature of this extension
of the instability domains is the shift of the high-fre-
quency cutoff. For the flows with the strong backshear,
with d exceeding the critical value 0.39, these processes
disappear. The absence of S-processes at higher values
of backshear does not mean that the current becomes
more stable, it means just the disappearance of a par-

ticular type of explosive instability and the prevalence
of linear instability. The U processes involving linearly
unstable waves are always present although being con-
fined to a smaller domain in k space. They amplify the
growth of already growing perturbations. Their main
contribution is extension of the instability domain down
to zero frequency. We note that despite the disappear-
ance of explosive instability at large values of backshear,
its increase leads to the enhancement of instability
strength and expansion of its total (both linear and non-
linear) domain in Fourier space.

The classical theory of nonlinear resonant interac-
tions, including the explosive ones, is a weakly nonlin-
ear theory and is valid only if the medium under con-
sideration is weakly unstable. To be precise, the growth
rates of interacting waves due to linear instability should
be small in comparison with their eigenfrequencies. Yet
the results of both Bowen and Holman (1989) and Dodd
and Thornton (1990) indicate that already at d ø 0.5
the imaginary and real parts of linear VW eigenfre-
quencies become comparable in magnitude. Under such
conditions there is no sense in studying weakly nonlin-
ear wave dynamics as the motions become strongly non-
linear within a few wave periods unless there is very
strong friction. In situations characterized by strong
backshear and strong, O(1), dissipation there is a room
for weakly nonlinear regimes, but of quite different
types without explosive processes playing a noticeable
role. In such regimes one may expect formation of a
narrowband wave field subjected to cubic self-interac-
tion of the Ginzburg–Landau type. It seems that such
regimes, along with some strongly nonlinear ones, were
reproduced in the quite recent extensive direct numerical
study by Allen et al. (1996).3

One of the main qualitative conclusions of the present
study is that the explosive processes of both types
strongly amplify either primordial background noise or
linearly growing perturbations and, once activated, lead
inevitably to strongly nonlinear motions. These devel-
oped motions are most likely to be more adequately
described in terms of vortices rather than waves. This
point of view is indirectly supported by the quite recent
results of direct numerical simulation by Deigaard et al.
(1994), where formation of vortices was found to be
one of the typical outcomes of the shear instability.

It should be mentioned that the theory we propose
does not exclude the existence of other nonlinear mech-
anisms of VW generation; for example, the processes
described by Shemer et al. (1991) may contribute by
creating initial perturbations. The absence of a low-fre-

3 The authors are grateful to J. Allen for the possibility to read the
manuscript before its publication. We became aware of his study upon
accomplishing and submitting the present work. This, along with the
fact that the models of nearshore zones used by Allen et al. (1996)
and us are different, makes any immediate intercomparison of the
results rather difficult.
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quency cutoff might be alternatively interpreted as the
manifestation of the inverse cascade of 2D turbulence,
although the relatively regular character of the motion
at first sight contradicts this viewpoint. Still, summa-
rizing, we consider the explosive interactions to be an
important intermediate process in the evolution of near-
shore current instability. To quantify their importance,
much yet remains to be done. The theoretical models
should first take into account realistic mean current pro-
files and the cross-shore depth variability — the easiest
part of the problem. We already can say, for instance,
that barred beaches have wider domains of explosive
instabilities. Second, one should handle realistic noisy
initial distributions, which may be far from being a set
of narrowband wavetrains; this situation requires the
investigation of the interactions among multiple reso-
nant triads simultaneously, both explosive and nonex-
plosive ones. The latter problem is quite general and
complicated and has not been solved yet. All this in-
evitably implies a heavy emphasis on numerical simu-
lation in further studies of the VW explosive processes.
We also hope that progress with laboratory experiments
will supply the data allowing decisive judgements in the
near future.
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