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ABSTRACT

The recent theoretical approach of Visbeck, Marshall, and Jones is used to examine shallow convection and
offshore transport of dense water from an idealized coastal polynya. A constant negative buoyancy flux is applied
in a half-elliptical region adjacent to a coastal boundary, surrounded by a forcing decay region with uniform
width W over which the imposed buoyancy flux decreases smoothly to zero. Initially, the density beneath the
forcing increases linearly with time. A baroclinically unstable front forms at the edge of the forcing region. The
width of the front is imposed by the width of the forcing decay region, provided this distance is larger than the
baroclinic Rossby radius. Baroclinic eddies, whose velocities are inversely proportional to W, develop along the
front and exchange dense water from the forcing region with ambient water, eventually reaching an equilibrium
in which the lateral buoyancy flux by eddies balances the prescribed surface buoyancy flux. The time to reach
equilibrium te and the equilibrium density anomaly re are given by

1/2fWb r0 1/2t 5 b ; r 5 b ( fB Wb) ,e e 01 2B gH0

where B0 is the imposed buoyancy flux, b the offshore width of the constant forcing region, H the water depth,
f the Coriolis parameter, r0 a reference density, and g the gravitational acceleration. Finally, b 5 [p/2a9E(1 2
b2/a2)]1/2, where a is the length of the constant forcing region along the coast, a9 is the efficiency of eddy
exchange, and E is the complete elliptic integral of the second kind. These parameter dependencies are fun-
damentally different from previous results for deep or shallow convection (1/2 power rather than 1/3 or 2/3)
owing to the influence of the forcing decay region. The scalings are confirmed with numerical calculations using
a primitive equation model. Eddy exchange in shallow convection is several times more efficient than in open-
ocean deep convection. Some implications for Arctic coastal polynyas are discussed.

1. Introduction

Recently, we used a numerical model to examine the
formation and subsequent offshore transport of dense
shelf water associated with a shallow coastal polynya
(Gawarkiewicz and Chapman 1995, hereinafter GC).
The effect of brine rejection accompanying ice forma-
tion within the polynya was idealized as a region of
constant negative buoyancy forcing at the surface ad-
jacent to a coastal boundary. The typical response to
negative buoyancy forcing is as follows. The surface
forcing increases the density of the water directly be-
neath it, which then mixes to the bottom (instantly in
the hydrostatic model). For constant buoyancy forcing,
the density within the forcing region increases linearly
with time. A density front forms at the edge of the
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forcing region, which then adjusts toward geostrophy,
generating a cyclonic surface jet and an anticyclonic
bottom jet along the front. The front is baroclinically
unstable, so waves grow and eventually form eddies that
move away from the front, transporting dense water
offshore from the forcing region and replacing it with
lighter ambient water. As a result, the density beneath
the forcing region cannot continue to increase linearly
with time, but rather reaches a maximum and remains
fairly constant despite continued buoyancy forcing. That
is, a nearly equilibrium state is reached in which the
loss of buoyancy through the surface is balanced by the
addition of lighter ambient water to the polynya by ed-
dies.

This response to negative buoyancy forcing was
found to be quite robust. The same basic sequence of
events occurred for a wide range of model parameters.
However, no theory was provided to explain the time
scale for the onset of offshore eddy transport or the
equilibrium density achieved beneath the forcing region
as a function of the various model parameters.

The sequence of events described above is similar in
many respects to the behavior in models of deep con-
vection reported by, for example, Jones and Marshall
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(1993), Maxworthy and Narimousa (1994), Ivey et al.
(1995), Brickman (1995), Coates et al. (1995), and
Whitehead et al. (1996). These studies have examined
the response to negative surface buoyancy forcing (or
the equivalent positive buoyancy forcing at the bottom)
confined within an isolated region (typically a circular
disk). As dense water descends beneath the forcing re-
gion, baroclinic eddies develop around the edge of the
forcing region and exchange dense water from the forc-
ing region with lighter ambient water. Eventually the
eddy exchange balances the buoyancy reduction at the
surface, and an equilibrium state is reached despite con-
tinued forcing.

To understand the dynamics of the equilibrium state,
Visbeck et al. (1996, hereinafter VMJ) have cleverly
applied the ideas of parcel theory to the energetics of
deep convection in a stratified ocean. They considered
the response to surface cooling in a circular region and
assumed that a buoyancy equilibrium exists as described
above; that is, baroclinic eddies carry buoyancy into the
‘‘chimney’’ beneath the forcing as fast as cooling re-
moves buoyancy at the surface. A judicious choice of
approximations and simplifications then produced the
following scales for the time to reach equilibrium tf, the
final depth of the chimney hf, and the equilibrium den-
sity anomaly within the chimney rf:

1/32 2 1/3g r (B r) r N0 0 1/3t 5 ; h 5 g ; r 5 g (B r) ,f f f 01 22 B N g0

(1)

where r is the radius of the cooling region, B0 is the
applied surface buoyancy flux (units of m2 s23), N is
the initial buoyancy frequency, r0 is a constant reference
density, g is the acceleration due to gravity, and g is a
constant that is inversely related to the correlation be-
tween radial velocity variations and density variations.
Basically, g21 is a measure of the efficiency with which
the eddies transport buoyancy. VMJ showed that results
from a variety of numerical and laboratory experiments
are consistent with (1), and they estimated g to be 3.9
6 0.9.

VMJ also applied their theory to a weakly stratified
ocean in which the chimney penetrates to the bottom.
This may be understood by considering the initial deep-
ening of the chimney, which follows the well-known
one-dimensional theoretical result [which has recently
been confirmed in laboratory experiments by Ivey et al.
(1995)]

1/2(2B t)0h 5 , (2)
N

where h is the chimney depth and t is time [VMJ’s Eq.
(4)]. If the stratification is weak and/or the water is
shallow, then the chimney may reach the bottom in a
time less than tf, so (1) no longer applies. For this shal-
low case, VMJ showed that the time to reach equilibrium

ts and the equilibrium density anomaly rs are given by

1/32r r02 2 2/3t 5 g ; r 5 g (rB ) , (3)s s 01 2B gH0

where H is the total water depth.
In an attempt to understand the behavior of our shal-

low coastal polynya (GC), we applied (3) but found poor
agreement. We then considered two possible reasons for
the discrepancies. First, the presence of the coastal
boundary may complicate the dynamics by allowing
boundary-trapped motions (e.g., waves or steady cur-
rents) to carry dense water out of the forcing region in
addition to transport by eddies. It is not obvious that
the characterization of the eddies used by VMJ to obtain
(3) will still apply. However, we found no evidence of
boundary-trapped motions transporting significant
amounts of dense water prior to reaching the equilibrium
state (GC), so this explanation was discounted. The sec-
ond possibility stems from the choice of length scales
for the density front. In deriving both (1) and (3), VMJ
assumed the horizontal scale of the density front to be
the baroclinic Rossby radius; Nhf /f for (1) and NH/f for
(3). This assumption is reasonable provided that the
baroclinic Rossby radius is the dominant horizontal
length scale. Indeed, in VMJ and the other previously
cited deep-convection studies, the imposed buoyancy
forcing was spatially discontinuous, that is, uniform
within the forcing region and vanishing outside the forc-
ing region, so the baroclinic Rossby radius is the only
possible horizontal length scale for the front. However,
for weak stratification the baroclinic Rossby radius may
be smaller than other length scales—for example, scales
imposed by spatially varying buoyancy forcing, so the
density front may be wider than the baroclinic Rossby
radius. In our shallow coastal polynya calculations
(GC), the forcing was gradually reduced to zero through
a forcing decay region surrounding the uniform forcing
region. The forcing decay region is intended to represent
variations in ice concentration from a minimum within
the coastal polynya to a maximum outside the polynya.
In general, the length scale of the forcing decay region
is determined by a combination of meteorological forc-
ing and ice dynamics, for example, wind-driven ice ac-
cumulation or temporal variability in the position of the
ice edge. If the scale of the forcing decay region is larger
than the baroclinic Rossby radius, then (3) may not
apply. This is the situation that we explore here.

We apply the approach and ideas of VMJ to shallow
convection in the idealized coastal polynya considered
by GC. A theory is developed in section 2 that accounts
for the imposed length scale of the forcing decay region
and produces new scales for the time to reach equilib-
rium and the equilibrium density anomaly. In section 3,
numerical calculations are used to confirm these scales.
The effects of a forcing decay region on deep-convec-
tion scales are briefly considered in section 4. The re-
sults are summarized and discussed in section 5.
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FIG. 1. Model geometry: uniform negative buoyancy forcing that
decays to zero over a distance W, adjacent to a straight coast (x axis).

2. Theory

As in GC, we idealize the effect of brine rejection
during ice formation within a coastal polynya by ap-
plying a negative surface buoyancy flux within a half-
elliptical region adjacent to a straight coastal boundary
(Fig. 1). The x axis is aligned with the coast, while the
y axis points offshore. The buoyancy forcing is fixed at
B0 within the half-ellipse with principal axes a, b in the
x, y directions, respectively. Surrounding this half-el-
lipse is a forcing decay region of width W in which the
buoyancy flux decreases linearly to zero. Thus, the sur-
face buoyancy flux is zero outside the larger half-ellipse
with principal axes a 1 W and b 1 W.1 The forcing
may be written as

r , 1B , i0

B 5 r . 1, r , 1B (1 2 r )/(1 2 r /r ), i o0 o o i5 r . 1,0, o

(4)

where 5 x2/a2 1 y2/b2 and 5 x2/(a 1 W)2 1 y2/(b2 2r ri 0

1 W)2.
The ocean is assumed to begin at rest with constant

density r0 before the buoyancy forcing is applied at time
t 5 0. The ocean depth H is constant. Following VMJ,
a quasi-steady state is assumed in which the buoyancy
extracted from the surface is balanced by the eddy flux
of buoyancy around the periphery of the forcing region:

0r0 nB dA 5 y r dl dz, (5)EE E $g
2H

where y n represents velocity perturbations normal to the
edge of the forcing region, r is the density anomaly, A
is the surface area, l is the distance along the edge of
the forcing region, and z is the vertical coordinate; the
overbar denotes a time average. For simplicity, we con-
sider here only the buoyancy flux within the constant
flux region (i.e., the inner half-ellipse where B 5 B0 in
Fig. 1). This choice produces simple parameter depen-

1 GC used a slightly different forcing decay region; a cosine taper
whose width varied around the edge of the half-elliptical forcing
region (see their Fig. 1). A region of uniform width with a linear
decrease in forcing is simpler for the present purposes, although con-
ceptually there is no difference. Eddy formation and transport are
qualitatively the same for both forcing functions.

dencies that are easily interpreted but limits the appli-
cation to cases where b is comparable to or greater than
W. The effect of the buoyancy flux over the forcing
decay region is minor and is addressed in the appendix.
As in VMJ, we also assume that y nr is roughly inde-
pendent of z and l, so (5) may be approximated by

r0 nB G(a,b) 5 aHP(a,b)y r, (6)0g

where a is a constant of proportionality (as in VMJ)
that accounts for lateral variations in the eddy flux, G(a,
b) is the area of the buoyancy forcing region, and P(a,
b) is the perimeter of the forcing region. In the present
case of a half-elliptical forcing region, G(a, b) 5 pab/2
and P(a, b) 5 2aE(1 2 b2/a2) where E(m) is the complete
elliptic integral of the second kind (Abramowitz and
Stegun 1965). However, as written, (6) is valid for any
spatially limited forcing region.

The general scenario is that a surface-to-bottom front
forms along the edge of the forcing region. The front
adjusts toward geostrophy before baroclinic instability
sets in. We expect that the velocity within the eddies
will, at least initially, be approximately equal to the
geostrophic velocity along the front. The thermal wind
balance implies

n a]y ]y g ]r
ø 5 2 ,

]z ]z r f ]n0

where ya is the velocity along the edge of the forcing
region, n is directed normal to the edge of the forcing
region, and f is the (constant) Coriolis parameter. This
is consistent with VMJ, who found that parcel theory
leads to velocity and density fluctuations that are in
thermal wind balance. The surface and bottom frontal
velocities are nearly equal and opposite (GC), so ]y n/
]z ø 2y n/H. The horizontal scale of the density front
depends on the relative sizes of the baroclinic Rossby
radius, R 5 (grH/r0)1/2/f, and the imposed length scale
W. From GC, the maximum baroclinic Rossby radius
achieved during the numerical calculations is typically
quite small, less than 5 km. Therefore, for W *5 km,
W should set the horizontal scale in the thermal wind
balance (]r/]n ø 2r/W) to obtain

gHr
ny ø . (7)

2r fW0

Substitution of (7) and the definitions of G and P into
(6) yields

2r pab gH0 2 2 2B 5 a9 2aE(1 2 b /a )r , (8)0g 2 2r fW0

where a9 is a new proportionality constant that accounts
for both the spatial variations in eddy flux and the im-
perfect correlation between y n and r. Equation (8) can
be rearranged to provide an estimate for the equilibrium
density anomaly
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r0 1/2r 5 b ( fB Wb) , (9)e 0gH

where b 5 [p/2a9E(1 2 b2/a2)]1/2.
According to (2), the time required for the dense water

to reach the bottom should be tb 5 N2H2/2B0. Obviously,
tb 5 0 when N 5 0, as assumed here. More generally,
if N is small enough that tbf K 1, then the dense water
essentially reaches the bottom instantly, mixing with and
increasing the density of the entire water column. Con-
sequently, the density anomaly beneath the forcing re-
gion initially increases linearly with time (GC, VMJ) as

r B t0 0r 5 . (10)
gH

Combining (9) and (10) produces an estimate for the
time to reach equilibrium

1/2fWb
t 5 b . (11)e 1 2B0

It is important to recognize immediately the funda-
mental difference in parameter dependence between (9),
(11), and (3). That is, the exponents in (9) and (11) for
both te and re are 1/2 whereas the exponents in (3) are
1/3 for ts and 2/3 for rs. This indicates that, relative to
VMJ’s results, the shallow coastal polynya has a weaker
dependence on buoyancy forcing B0 but a stronger de-
pendence on the size of the forcing region b. [Note that
b is analogous to r in (3). They are identical for a circular
forcing region, for which a 5 b 5 r and E(0) 5 p/2.]
The behavioral difference stems from the choice of hor-
izontal length scale in the thermal wind balance (7). We
chose W for this scale, but if W were replaced in (7) by
the baroclinic Rossby radius, R, then the equivalent of
(3), applied to a half-elliptical forcing region, would be
recovered. In the next section, scalings (9) and (11) are
tested using numerical calculations like those of GC.

3. Numerical calculations
a. Model description

The numerical calculations used to test the parameter
dependencies (9) and (11) are only slightly modified
from those of GC. We use the semispectral primitive
equation model (SPEM), described in detail by Haid-
vogel et al. (1991), to solve the following hydrostatic
and Boussinesq momentum, density, and continuity
equations:

1
u 1 uu 1 yu 1 wu 2 fy 5 2 p 1 (A u ) 1 F (12)t x y z x V z z ur0

1
y 1 uy 1 yy 1 wy 1 fu 5 2 p 1 (A y ) 1 F (13)t x y z y V z z vr0

p 5 2rg (14)z

r 1 ur 1 yr 1 wr 5 (K r ) 1 F (15)t x y z V z z r

u 1 y 1 w 5 0. (16)x y z

In this system (u, y, w) represent the (x, y, z) components
of the velocity, p is the pressure, AV is the vertical eddy
viscosity, KV is the vertical eddy diffusivity, and r, r0,
f, g, and t have been previously defined. The variables
Fu,v,r represent dissipative functions that are required for
numerical stability. Subscripts x, y, z, and t denote partial
differentiation.

The system (12)–(16) is approximated using finite
differences in the horizontal, a stretched vertical (sigma)
coordinate to handle variations in the bottom topogra-
phy, and a high-order spectral approximation (an ex-
pansion in modified Chebyshev polynomials) to rep-
resent the vertical flow structure. A leapfrog-trapezoidal
time-stepping scheme is used with an occasional trap-
ezoidal step correction. Haidvogel et al. (1991) give
further model details.

The model domain is a high-latitude, uniformly ro-
tating (f 5 1.3 3 1024 s21), straight channel with a
coastal wall at y 5 0 and an offshore (solid) wall at y
5 75 km. The channel is 150 km long with periodic
boundaries at the ends (x 5 275 km and x 5 75 km).
The channel is wide enough and long enough so that
the boundaries do not significantly influence the evo-
lution of the dense water during the time of interest
here. The ocean has constant depth H 5 50 m. There
is no flow through the bottom, and a rigid lid is assumed
at the surface (i.e., w 5 0 at z 5 0). The numerical grid
is uniform in the horizontal with 74 along-channel and
37 across-channel grid points; that is, Dx 5 Dy 5 2.08
km. This is about half the resolution of GC’s calcula-
tions, however, comparisons with finer resolution show
only minor differences. Nine Chebyshev polynomials
are used to resolve the vertical structure. The model
time step is 288 s.

Both surface and bottom stress are set to zero: AVuz

5 AVyz 5 0 at z 5 0,2H. Buoyancy forcing is applied
by setting KVrz 5 r0B/g at the surface, where B is given
by (4). There is no density flux through the bottom: KVrz

5 0 at z 5 2H. Typical lengths for the forcing region
are a 5 30 km, b 5 10 km, and W 5 10 km. These
will, of course, be changed to test (9) and (11). The
maximum buoyancy flux ranges from B0 5 1 3 1027

to 16 3 1027 m2 s23. (B can be converted to a density
flux as Q 5 r0B/g.) For comparison, the seasonally av-
eraged haline buoyancy flux in polynya zones within
the western Arctic is estimated to be 2.7 3 1027 m2 s23

(Cavalieri and Martin 1994).
As in GC, the vertical mixing coefficients are ap-

proximated using a Richardson-number-dependent
scheme:

0.0049
A 5 0.0001 1 (17)V 1/2(1 1 0.3Ri)

0.0049
K 5 0.0001 1 , (18)V 3/2(1 1 0.3Ri)

where the units are meters squared per second and the
Richardson number is defined by
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FIG. 2. Maximum surface velocity in the frontal region versus time
for W 5 10 and 20 km (solid curves). Other model parameters are
set at B0 5 4 3 1027 m2 s23, a 5 30 km, b 5 10 km, and H 5 50
m. Geostrophic estimates from (7) are shown for comparison (dashed
curves).

FIG. 3. Average density anomaly in the forcing region as a function
of time for various buoyancy fluxes, B0 5 1, 2, 4, 8, and 16 (31027

m2 s23) and other parameters set at a 5 30 km, b 5 10 km, W 5 10
km, and H 5 50 m. The dashed lines represent the linear increase
in r with time given by (10) for each case.

2gr /rz 0Ri 5 . (19)
2 2(u ) 1 (y )z z

Additional vertical mixing of density is applied in the
form of instantaneous vertical convective adjustment
whenever the water column becomes statically unstable
(i.e., when lighter water appears under heavier water).
Lateral diffusion of both momentum and density is nec-
essary for numerical stability. We apply Laplacian sub-
grid-scale mixing with constant mixing coefficients (i.e.,
Fu,v 5 nu¹2u, y; Fr 5 nr¹2r) while using the smallest
mixing coefficients allowable, nu 5 50 m2 s21 and nr 5
5 m2 s21.

Each calculation begins from rest. The fluid in the
channel is initially homogeneous with r 5 0. At time
t 5 0, the surface buoyancy flux is applied and held
fixed for a time equivalent to 2te for the particular pa-
rameter choices, typically between 7 and 40 days of
simulation time.

b. Testing the scales

To test (9) and (11), we have made numerous nu-
merical calculations with different combinations of B0,
a, b, W, and H. We have not varied r0 (5 1000 kg m23)
or f because they typically change by only a small frac-
tion in the ocean (limiting ourselves to mid and higher
latitudes for f), whereas the other parameters may easily
change by a factor of 2 or more.

We first tested our assumption that the width of the
forcing decay region determines the horizontal scale of
the frontal density gradient and, hence, the alongfront
geostrophic velocity used to estimate y n. Figure 2 shows
the maximum surface velocity in the frontal region as
a function of time for two choices of forcing decay
width, W 5 10 and 20 km (solid curves) along with the

geostrophic estimate (7) (dashed curves). Other param-
eters are set at B0 5 4 3 1027 m2 s23, a 5 30 km, b 5
10 km, and H 5 50 m. In both cases, the model velocity
closely follows the geostrophic estimate but is slightly
weaker because of the small horizontal viscosity in the
numerical calculations, which smooths the flow fields a
bit. Nevertheless, the model velocities are clearly pro-
portional to W21 as assumed, and (7) provides a good
estimate for y n until eddy exchange begins (about day
9 for W 5 10 km).

The clearest and perhaps most convincing test of (9)
and (11) is to vary the buoyancy flux B0 because this
tests the square root dependence in (9) and (11) without
the complication of altering b. Figure 3 shows the den-
sity anomaly within the forcing region (averaged over
an area extending 4 km from the coast and stretching
42 km along the coast) as a function of time for buoy-
ancy fluxes ranging from B0 5 1 3 1027 to 16 3 1027

m2 s23. Other parameters are fixed at a 5 30 km, b 5
10 km, W 5 10 km, and H 5 50 m. As expected, the
qualitative behavior is identical in each case. Initially,
the density anomaly increases linearly with time (dashed
lines), consistent with (10). When baroclinic eddies be-
gin transporting dense water offshore, the density anom-
aly breaks away from the linear increase and then varies
about a quasi-steady value.

Figure 4 shows the same results as in Fig. 3, after
scaling both time and density anomaly based on (9) and
(11):

1/2B gH0 21/2t̃ 5 t ; r̃ 5 r ( fB Wb) .01 2 1 2fWb r0

The curves overlay fairly closely, especially where they
break away from the linear increase of density anomaly
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FIG. 4. As in Fig. 3 but after scaling both time and density anomaly
based on (9) and (11): 5 t(B0/fWb)1/2 and 5 r(gH/r0)(fB0Wb)21/2.t̃ r̃
The dashed line represents a linear increase in with .˜r̃ t

FIG. 6. Plan views of density anomaly at the bottom at various
times for intermediate buoyancy forcing B0 5 4 3 1027 m2 s23 and
other parameters set at a 5 30 km, b 5 10 km, W 5 10 km, and H
5 50 m. Contours are 0.1 to 1.0 by 0.1 kg m23.

FIG. 5. As in Fig. 4 but using the VMJ scalings: s 5 t(B0/b2)1/3t̃
and s 5 r(gH/r0)(B0b)22/3. Note that the axes have different scalesr̃
than in Fig. 4.

with time. There is indeed some variability, which in-
creases for *7, but Fig. 4 indicates that the dependencet̃
on B0 in (9) and (11) is correct.

For comparison, Fig. 5 also shows the results from
Fig. 3, but after applying the VMJ scales (3) with b
replacing r:

1/3B gH0 22/3t̃ 5 t ; r̃ 5 r (B b) .s s 021 2 1 2b r0

The curves clearly do not overlay as well as in Fig. 4.
The equilibrium densities vary by about 100%, con-
firming that the new scalings leading to (9) and (11) are
more appropriate for cases in which the forcing decay
region is larger than the baroclinic Rossby radius.

The scaled equilibrium density anomaly in Fig. 4 is
equal to b and can be estimated by averaging for 6r̃
# # 7 to obtain b 5 5.7 with an estimated uncertaintyt̃
of about 60.2. From the definition of b, this implies
that the eddy exchange efficiency is (with b/a 5 1/3)

a9 5 p/2b2E(1 2 b2/a2) 5 0.043.

The variability in at larger results from the presence˜r̃ t
of only a small number of baroclinic eddies and their
interactions. That is, only about four to five eddies form
along the front at the edge of the forcing region (e.g.,
Fig. 6), so each eddy must carry a large fraction of the
buoyancy to be exchanged in the equilibrium. Thus, the
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FIG. 7. Scaled density anomaly versus scaled time for various˜r̃ t
combinations of parameters. In each panel, the standard parameters
(B0 5 4 3 1027 m2 s23, a 5 30 km, b 5 10 km, W 5 10 km, and
H 5 50 m) are used except for the parameter noted. The thin solid
line represents a linear increase in until equilibrium at 5 b, wherer̃ r̃
b is estimated in each case using a9 5 0.043 (based on Fig. 4 and
the definition of b). In (a) and (d), b 5 5.7; in (b) and (c), b 5 5.2.

balance in (5) is approximate at any given time, de-
pending on the details of the eddy field. This kind of
eddy variability (between calculations or within a single
model run) can, therefore, lead to temporal changes in
the density anomaly within the forcing region. In other
words, a statistical equilibrium is poorly approximated
with so few eddies. In light of this, the degree to which
the curves overlay in Fig. 4 is remarkable.

Variations of the other parameters are now considered
individually and the results compared in Fig. 7 to the
expected equilibrium behavior (thin line), that is, linear
increase in with until 5 b. In each case, b is˜r̃ t r̃

estimated by assuming that the eddy exchange efficiency
a9 is independent of model parameters.

The simplest parameter dependence occurs for the
water depth H. According to (11), the time to reach
equilibrium is unaffected by H, while the equilibrium
density anomaly in (9) is inversely proportional to H.
The coefficient b is independent of H, so b 5 5.7. Figure
7a shows the result for a deeper shelf, H 5 100 m, with
the standard parameters: a 5 30 km, b 5 10 km, W 5
10 km, and B0 5 4 3 1027 m2 s23. The scaled density
anomaly follows close to the expected result with small
variations at larger , clearly verifying the parametert̃
dependence.

The length of the forcing region a appears in (9) and
(11) only within the argument of the elliptic integral in
b. Furthermore, for a $ b, the argument of the elliptic
integral varies between 0 and 1, for which E varies
between p/2 and 1. This implies a maximum possible
change in b of about 25%. Figure 7b shows the response
for a shorter forcing region, a 5 15 km, and otherwise
standard parameters: b 5 10 km, W 5 10 km, H 5 50
m, and B0 5 4 3 1027 m2 s23. For a 5 15 km, E increases
by 18%, so the expected equilibrium occurs at b 5 5.2.
The close agreement with the expected result verifies
the dependence of te and re on a through b in (9) and
(11).

The offshore extent of the forcing region b appears
in (9) and (11) both within the square roots and in the
argument of E in b. Figure 7c shows the response for
a wider forcing region, b 5 20 km, and otherwise stan-
dard parameters: a 5 30 km, W 5 10 km, H 5 50 m,
and B0 5 4 3 1027 m2 s23. For this choice, the aspect
ratio of the forcing region b/a is identical to the shorter
polynya case (Fig. 7b), so E again increases by 18%
over the standard case, yielding b 5 5.2. Figure 7c
shows that the dependence in (9) and (11) is correct.

Finally, Fig. 7d shows the response for a wider forc-
ing decay region, W 5 20 km.2 Other parameters are
set at a 5 30 km, b 5 10 km, H 5 50 m, and B0 5 4
3 1027 m2 s23. The coefficient b is independent of W,
so b 5 5.7. The scaled density anomaly follows the
expected result nearly perfectly for # 7, again veri-t̃
fying (9) and (11). The decrease in at larger occurs˜r̃ t
when the eddies reach the boundaries of the longer mod-
el domain and does not represent a fundamental change
in eddy behavior.

The agreement in Fig. 7d is particularly useful for
validating the new estimates (9) and (11) and thereby
the importance of W, because the VMJ scales are in-
dependent of W. That is, according to (9) and (11),
doubling W produces a 41% increase in both re and te,
whereas the VMJ scales, being independent of W, pre-

2 With W 5 20 km the eddies reach the periodic boundaries of the
standard model domain before the equilibrium state is reached. There-
fore, we extended the model domain to 200 km for this calculation,
while keeping the same horizontal resolution.



562 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

dict no change in either re or te. Therefore, Fig. 7d shows
clearly that (9) and (11) are more appropriate for the
present configuration.

4. Deep convection with a forcing decay region

Our primary interest here is the dynamics of shallow
convection, but the ideas introduced in section 2 can
also be applied to the problem of deep convection. In
particular, new scalings can be derived using the ap-
proach of VMJ, but now considering a circular forcing
region that is surrounded by a forcing decay region
whose width W is larger than the baroclinic Rossby
radius.

We start with (6) and take a 5 b, so G 5 pb2 and
P 5 2pb. For deep convection, the eddy flux occurs
over the depth of the chimney h rather than the total
water depth H, so (6) becomes

r0 nB b 5 2ahy r. (20)0g

The density at the base of the chimney is given by the
definition of the buoyancy frequency

r 5 r0N2h/g, (21)

and h increases in time according to (2). The geostrophic
velocity is estimated from the thermal wind balance
within the forcing decay region, where the depth of
convective penetration depends on the local buoyancy
forcing. That is, the local chimney depth is

1/2(2Bt)
,h 5 , (22)

N

where B 5 B0(b 1 W 2 r)/W; that is, B decreases
linearly with radius r from B 5 B0 at r 5 b to B 5 0
at r 5 b 1 W. The geostrophic velocity may then be
approximated as

, , 2 , ,gh ]r N h ]h
ny ø 2 5 2 , (23)

2r f ]r 2 f ]r0

where (21) has been applied locally. Substitution of (22)
into (23) produces

B t0ny ø , (24)
2 fW

which can then be substituted into (20), along with (21)
and (2), to obtain an estimate for the time to reach
equilibrium

1/22g fWbdt 5 , (25)d 1 22 B0

where gd 5 (2/a9)1/4. Equation (25) can be used with
(2) and (21) to provide estimates of the equilibrium
density and chimney depth:

1/4r N ( fB Wb)0 01/4r 5 g ( fB Wb) ; h 5 g . (26)d d 0 d dg N

The primary effect of the forcing decay region is
analogous to the shallow convection case; the depen-
dence of the equilibrium quantities on B0 and b is weak-
ened relative to (1), and W is introduced into the scaling.
We have made one numerical calculation of deep con-
vection with a forcing decay region, which verifies both
(2) and (24), but we have not made a systematic study
of the parameter dependencies. Indeed, a detailed ex-
amination of the implications of the changes in the equi-
librium scales is beyond the scope of this paper, but the
results suggest that spatial variations in atmospheric
forcing may play an important role in deep-convection
processes and should be explored in future studies.

5. Summary and discussion

The numerical calculations described in section 3
strongly support the theory developed in section 2,
which produced the relationships (9) and (11). The basic
dynamics assumed by VMJ for open-ocean deep con-
vection also apply to the case of a shallow coastal po-
lynya despite the presence of the coastal boundary. That
is, a constant negative surface buoyancy flux applied
over a spatially limited region eventually leads to buoy-
ancy equilibration in which baroclinic eddies exchange
dense water with ambient water efficiently enough to
balance the surface flux. However, there is one important
difference. The horizontal scale of the density front gen-
erated around the edge of the shallow coastal polynya
appears to be determined by the spatial scale of vari-
ability of the buoyancy forcing and not the baroclinic
Rossby radius. In the present case, this scale is the width
of the forcing decay region over which the buoyancy
forcing vanishes. This single change from VMJ’s theory
produces a fundamental difference in the dependence of
the equilibrium state on the various model parameters;
that is, square root dependence rather than 1/3 and 2/3
powers [compare (9) and (11) with (3)].

Two conditions must be met for (9) and (11) to apply.
First, the forcing decay scale must be larger than the
baroclinic Rossby radius. Otherwise, the front will
slump during geostrophic adjustment to the scale of the
baroclinic Rossby radius. For example, the laboratory
experiments of Maxworthy and Narimousa (1994), Ivey
et al. (1995), Brickman (1995), Coates et al. (1995), and
Whitehead et al. and the numerical calculations of Jones
and Marshall (1993) all used a vanishingly small forcing
decay region, so the frontal width was naturally the
baroclinic Rossby radius. In each case, the behavior was
consistent with the analysis of VMJ rather than (9) and
(11). In contrast, we always choose W larger than the
baroclinic Rossby radius in the shallow coastal polynya,
consistent with (9) and (11). Second, the water must be
shallow enough that rotation does not play a role in the
sinking of dense plumes. That is, the dense water formed
by the buoyancy forcing must sink to the bottom very
rapidly. A measure of the importance of rotation during
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FIG. 8. Contours of re from (9) over a range of B0b and W with b
5 5.7, H 5 50 m, r0 5 1000 kg m23, and f 5 1.3 3 1024 s21. The
thin dashed box in the lower left encloses values typical of Arctic
coastal polynyas. The solid dot shows the standard parameter choices
(B0 5 4 3 1027 m2 s23, a 5 30 km, b 5 10 km, and W 5 10 km).

sinking is the natural Rossby number, defined by Max-
worthy and Narimousa (1994) as

1/2B l0 rotRo* 5 5 .
2 31 2H f H

Here lrot is the length scale over which rotation becomes
important in the sinking convective cells (Jones and Mar-
shall 1993). Rotation is important when Ro* , 1. Most
studies of convection, including those cited above, con-
sider cases with Ro* K 1 with only a few cases in which
Ro* approaches one. On the other hand, the shallow coast-
al polynya calculations presented here cover the range 2
, Ro* , 17, so rotation has little effect during the sinking
process and (9) and (11) should apply.

On Arctic shelves the baroclinic Rossby radius is typ-
ically only a few kilometers, usually smaller than the
scales of variability in forcing. Arctic shelves are also
shallow enough that Ro* . 1 in a typical coastal po-
lynya, so dense water should sink to the bottom rapidly.
Together these imply that (9) and (11) may provide a
reasonable description of the response in Arctic coastal
polynyas and are probably more appropriate than (3).
Thus, the forcing decay region, or ice concentration gra-
dient region, is of fundamental importance in the dy-
namics of the flow field that develops, and its scale
affects the timescale over which eddies develop as well
as the equilibrium density anomaly attained.

The parameter dependencies in (9) and (11) can be
understood on physical grounds. For example, stronger
buoyancy forcing (larger B0) leads to a faster increase
in density anomaly, producing a larger density anomaly
by the time equilibrium is reached, so te decreases while
re increases. A deeper shelf (larger H) means a slower
increase in density but also weaker geostrophic currents
and, hence, weaker eddy velocities. These effects com-
pensate so that te is unaffected. If te is unchanged, then
re must decrease because the same buoyancy change is
mixed over a greater depth. Both te and re are strongly
dependent on the width of the forcing region b, but
nearly independent of the length of the forcing region
a, which only minimally changes the elliptic integral
and hence b. This is reasonable because the equilibrium
is reached by the cross-shelf exchange of dense water
with ambient water; that is, eddy exchange must redis-
tribute water across the entire polynya to the coast be-
fore an equilibrium can be achieved. Therefore, a wider
forcing region (larger b) represents a greater cross-shelf
distance for exchange, so it takes longer to reach equi-
librium and both te and re increase. On the other hand,
the length of the forcing region does not alter the cross-
shelf exchange as long as eddies form along the entire
length of the forcing region, so te and re are hardly
affected. Finally, a wider forcing decay region (larger
W) implies weaker horizontal density gradients intro-
duced by the forcing. This leads to weaker geostrophic
velocities and subsequently slower exchange by the ed-
dies, thereby increasing both te and re.

The standard parameters used here are loosely based
on observed values over Arctic shelves. The range of B0

considered includes the mean value reported by Cavalieri
and Martin (1994) for the western Arctic, B0 5 2.7 3
1027 m2 s23, corresponding to a heat loss of 500 W m22

from the polynya waters to the atmosphere. The polynya
length scales (H, a, b, and W ) are based on estimates
from Pease (1987) and Schumacher et al. (1983). Using
the standard parameters in (9) and (11), and b 5 5.7
estimated from Fig. 4, suggests that the seasonally av-
eraged buoyancy flux produces a maximum density
anomaly of re 5 0.69 kg m23 after te 5 14.5 days. An
estimate of the interannual variation in B0, based on nine
years of data from Cavalieri and Martin (1994), suggests
that salt production accompanying ice formation within
polynyas of the western Arctic varies by roughly 15%.
Individual regions may experience variations as large as
50% of the mean. From (9), a 50% change in B0 produces
only a 22% change in re. On synoptic times scales, the
local buoyancy flux may be as much as three times the
seasonal average (e.g., Cavalieri and Martin 1994), in-
creasing re to 1.2 kg m23. The time to reach equilibrium
decreases to 8.4 days, which is not inconsistent with some
events reported by Cavalieri and Martin (1994; see, e.g.,
their Fig. 4). These estimates of re also fall close to the
range of density anomalies associated with observed sa-
linity elevations reported by Cavalieri and Martin (1994),
which range from 1 to 2 psu, or 0.8 to 1.6 kg m23. Of
course, the sensitivity of the equilibrium density anomaly
to the water depth H makes these estimates rather ap-
proximate.

Figure 8 summarizes the dependence of re on the
model parameters. The axes cover extreme values of the
parameters showing the wide range of possible density
anomalies, but typical values are found in the lower left
corner (B0b # 0.015 m3 s23, W # 20 km), ranging from
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FIG. 9. As in Fig. 6 but with W 5 20 km. Contours are 0.1 to 1.4
by 0.1 kg m23.

0.5 to 2 kg m23. It is important to remember that the
strongest parameter dependence in (9) occurs for the
water depth because re } 1/H. That is, the values in Fig.
8 would double if the coastal polynya were over a shelf
25 m deep, in which case the seasonally averaged forc-
ing defined above would produce a density anomaly of
re 5 1.38 kg m23. This sensitivity to water depth, cou-
pled with the fact that many Arctic shelves are quite
shallow over large offshore distances relative to the po-
lynya scale b, suggests that regional differences in geo-
morphology may play an important role in the produc-
tion of dense water masses. The sensitivity to the forcing
decay scale is also important, with re doubling for an
increase in W from 10 to 40 km. However, this scale
has not been closely examined in observations and bears
further investigation.

One conclusion from Fig. 8 is that typical variations
in the buoyancy flux apparently do not have a large
effect on the maximum density anomaly of water formed
in a coastal polynya. This implies that dense water pro-
duction from coastal polynyas may depend more on the
ambient density of shelf water when the freezing season
begins than on the surface buoyancy flux. This is con-
sistent with Melling’s (1993) conclusion that the inter-
annual variability in dense water production over the
Mackenzie Shelf is strongly influenced by variations in
the autumn salinities before freezing begins. According
to our scaling, if autumn salinities near the coast are
lower than the mid and outer shelf densities by enough
to decrease the density by 0.5–1.0 kg m23, then typical
surface buoyancy fluxes due to brine rejection may be
insufficient to raise the density beyond the midshelf val-
ues. Thus, dense water formation may be inhibited for
that entire season, perhaps partially explaining the in-
termittency of dense water observations.

The equilibrium density anomaly (9) can be used to
estimate typical velocities within the baroclinic eddies as
well as the maximum baroclinic Rossby radius. From (7),

1/2
b B b0ny ø (27)1 22 fW

which, for the standard parameters, yields a reasonable
value of 0.11 m s21. Using (9), the baroclinic Rossby
radius at equilibrium is

1/2 1/4gr H B Wbe 01/2R 5 5 b . (28)e 2 31 2 1 2r f f0

For the standard parameters, Re 5 4.9 km. More im-
portantly, the baroclinic Rossby radius is rather insen-
sitive to the model parameters, changing only as the 1/4
power, so it is unlikely to become much larger than
about 5 km. Even a factor of 10 increase in B0, W, or
b would only increase Re to 8.7 km. The implication is
that the forcing decay scale is likely to be larger than
the baroclinic Rossby radius regardless of the sizes of
the other parameters. This supports the idea that spatial
variations in the forcing probably determine the hori-

zontal scale for density variations in Arctic polynyas,
and not the baroclinic Rossby radius. Interestingly, the
baroclinic Rossby radius appears to determine the size
of the eddies produced by the frontal instability. Figure
9 shows contours of density anomaly at the bottom for
W 5 20 km and otherwise standard parameters. Times
are chosen to be nearly equivalent in scaled units to
those in Fig. 6. The initial size of the growing eddies
is quite similar for both cases, although nonlinear pro-
cesses tend ultimately to produce somewhat larger ed-
dies for W 5 20 km. Thus, (28) suggests that the size
of eddies over Arctic shelves should be fairly uniform
with diameters in the range 20–25 km, consistent with
our numerical calculations as well as observations (e.g.,
Manley and Hunkins 1985).

VMJ estimated the efficiency of eddy exchange a9
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FIG. 10. As in Fig. 7, using the standard parameters (B0 5 4 3
1027 m2 s23, a 5 30 km, b 5 10 km, W 5 10 km, and H 5 50 m)
but over a uniformly sloping shelf with linear bottom friction.

FIG. 11. As in Fig. 6 but over a uniformly sloping shelf with linear
bottom friction. Contours are 0.08 to 0.8 by 0.08 kg m23.

for open-ocean deep convection to be about the same
as that previously estimated for the atmosphere; a9 5
0.008 6 0.005. For our shallow coastal polynya cal-
culations, the eddy exchange efficiency was found to
be a9 5 0.043. This is more than five times the effi-
ciency of the deep-convection eddies, implying that the
shallow coastal polynya is generally a more efficient
place to exchange dense water with the surrounding
water than a deep-convection chimney. We hasten to
point out, however, that any efficiency estimate is very
rough because it may change as the dynamics change.
For example, we have considered the simple case of a
uniform depth shelf without bottom friction, whereas
GC included both a sloping bottom and bottom friction.
Adding both effects does not change the behavior qual-
itatively, but does change the efficiency of eddy ex-
change. Figures 10 and 11 show the response for the
standard calculation (a 5 30 km, b 5 10 km, W 5 10
km, and B0 5 4 3 1027 m2 s23), but over a gently sloping
bottom with depth increasing uniformly from 50 m at
the coast with a slope of 0.001 and with linearized bot-
tom friction (AVuz 5 r̂u and AVyz 5 r̂y at the bottom
with r̂ 5 5 3 1024 m s21). The qualitative behavior is
identical, but the eddies move offshore considerably
faster, reducing b to about 3.5 and implying an increased
eddy efficiency of a9 5 0.114. Physically, the bottom
slope introduces a gravitational component to the off-
shore acceleration of the dense water. This leads to faster
offshore movement of the eddies (compare Fig. 11 with
Fig. 6), hence more rapid exchange and smaller equi-
librium density anomaly. Otherwise, the basic parameter
dependence (9) and (11) still applies.

Finally, we have made numerous idealizations in our
representation of an Arctic polynya in order to simplify
the dynamics. Most notably, we have assumed a forcing
whose size, shape, and strength remain fixed in time.
However, numerous studies (e.g., Schumacher et al.

1983; Pease 1987) have shown that coastal wind-driven
polynyas are highly time-dependent features that in-
volve repeated opening and closing of the ice cover due
to synoptic wind and thermodynamic forcing. Our sim-
ple forcing is intended to represent a typical polynya
size with seasonally averaged buoyancy flux, but time-
dependence in both the buoyancy flux and the spatial
structure of the forcing should be considered in future
studies. Additional attention should be given to the gra-
dients in ice concentration around the periphery of the
coastal polynya in order to examine seasonal and syn-
optic variability in the forcing decay region. The effects
of ambient stratification, more realistic bottom topog-
raphy, and wind-driven circulation have been omitted
here and should be considered as well. Nevertheless,
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the present idealized treatment provides a conceptual
foundation for studies that include more complicated
and realistic features.
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APPENDIX

Buoyancy Flux in the Forcing Decay Region

In deriving (9) and (11), we ignored the surface buoy-
ancy flux in the forcing decay region surrounding the
coastal polynya (Fig. 1). This greatly simplifies the anal-
ysis because the left-hand side of (5) can be evaluated
analytically. Heuristically this simplification may be de-
fended by noting that the eddies form within the forcing
decay region, so they already contain the dense water
formed there as they begin moving offshore. The equi-
librium state occurs only after the eddies have ex-
changed water from the constant forcing region (where
B 5 B0) with ambient water, so the parameter depen-
dence on b in (9) and (11) is sensible. However, (9) and
(11) clearly fail when b → 0 with W ± 0; they predict
te 5 re 5 0, yet the density must change because of the
buoyancy flux in the forcing decay region.

The buoyancy flux in the forcing decay region can
be included in the analysis in the following manner. The
total buoyancy flux is computed numerically as

B 5 B dA, (A1)T EE
where B is given by (4). A new forcing region is now
defined in which uniform buoyancy flux B0 is imposed
over a half-ellipse with axes extending beyond a and b
by an amount Ŵ such that the total buoyancy flux is
still BT:

p ˆ ˆB 5 B dA 5 B (a 1 W)(b 1 W). (A2)T EE 0 02

Solving for Ŵ yields
1/2

a 1 b 2B /pB 2 abT 0Ŵ 5 1 1 4 21 . (A3)
25 1 2 6[ ]2 (a 1 b)

The perimeter of the new forcing region is

P(a, b, Ŵ) 5 2(a 1 Ŵ)E[1 2 (b 1 Ŵ)2/(a 1 Ŵ)2].
(A4)

The analysis of section 2, starting with (6), proceeds as

before but with a and b replaced by a 1 Ŵ and b 1
Ŵ, respectively.

All of the numerical calculations can be reinterpreted
in terms of this approach to account for the entire buoy-
ancy flux. [Of course, the numerical calculations them-
selves are unchanged. Only the scalings (9) and (11)
and b change.] For example, the standard parameters
(B0 5 4 3 1027 m2 s23, a 5 30 km, b 5 10 km, W 5
10 km, and H 5 50 m) produce Ŵ 5 5.1 km, from
which b 5 4.6 and a9 5 0.066. So, the estimate of
eddy exchange efficiency increases because the eddies
are redistributing a larger total buoyancy flux in the
same length of time. Otherwise, the scaled responses
shown in Figs. 4 and 7 are only marginally altered,
certainly not enough to question the validity of (9) and
(11) as a good approximation. Presumably, the agree-
ment would deteriorate as b becomes small relative to
W, in which case a disproportionate amount of buoyancy
flux would be neglected in (9) and (11). This situation
has not been tested here because it is probably not im-
portant in forming dense shelf water in the Arctic.
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