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Abstract. We utilize a multiphase model, CON-AIR
(Condensed Phase toAir Transfer Model), to show that the
photochemistry of nitrate (NO−3 ) in and on ice and snow sur-
faces, specifically the quasi-liquid layer (QLL), can account
for NOx volume fluxes, concentrations, and [NO]/[NO2]
(γ=[NO]/[NO2]) measured just above the Arctic and coastal
Antarctic snowpack. Maximum gas phase NOx volume
fluxes, concentrations andγ simulated for spring and sum-
mer range from 5.0×104 to 6.4×105 molecules cm−3 s−1,
5.7×108 to 4.8×109 molecules cm−3, and∼0.8 to 2.2, re-
spectively, which are comparable to gas phase NOx volume
fluxes, concentrations andγ measured in the field. The
model incorporates the appropriate actinic solar spectrum,
thereby properly weighting the different rates of photolysis
of NO−

3 and NO−

2 . This is important since the immediate
precursor for NO, for example, NO−2 , absorbs at wavelengths
longer than nitrate itself. Finally, one-dimensional model
simulations indicate that both gas phase boundary layer NO
and NO2 exhibit a negative concentration gradient as a func-
tion of height although [NO]/[NO2] are approximately con-
stant. This gradient is primarily attributed to gas phase reac-
tions of NOx with halogens oxides (i.e. as BrO and IO), HOx,
and hydrocarbons, such as CH3O2.

1 Introduction

Interest in the nitrogen cycle over the polar regions was revi-
talized due to elevated NOx (NO+NO2) levels detected in
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and above snowpacks (Honrath et al., 1999; Jones et al.,
2000). Absorbing atλ≥290 nm, nitrate(NO−

3 ) is one of the
dominant anions present in the snowpack with approximately
an even surface distribution with latitude and longitude at
both polar regions (Legrand and Meyeski, 1997; Mulvaney
et al., 1998). Due to production and long-range transport, ni-
trate concentrations at the Arctic (∼10µM) are higher than
those measured at coastal Antarctica (∼5µM). Through so-
lar photolysis, nitrate is a major source of NOx emissions
from the snowpack. NOx mixing ratios within and above the
snowpack are proportional to NOx production rates, time of
day, and temperature (Cotter et al., 2003; Jones et al., 2000).
Consequently, nitrate photochemistry has been the focus of
a series of field (Honrath et al., 1999., 2000a, 2002; Jones et
al., 2000; Davis et al., 2001, 2004; Zhou et al., 2001; Dibb
et al., 2002, 2004; Qiu et al., 2002; Beine et al., 2002, 2003;
Jacobi et al., 2004) and laboratory experiments (Honrath et
al., 2000b; Dubowski et al., 2001, 2002; Chu and Anasta-
sio, 2003, Boxe et al., 2003, 2005, 2006; Jacobi et al., 2006;
Jacobi and Hilker, 2007).

If nitrate depth profiles in polar ice were preserved over
time, they would provide a valuable record of global paleoat-
mospheres. However, physical and photochemical process-
ing of nitrate can alter its surface and near-surface concen-
trations, especially at low-accumulation sites (Rothlisberger
et al., 2002), and possibly compromise its isotopic signa-
tures (Blunier et al., 2005; McCabe et al., 2005; Hastings et
al., 2004). While the photochemistry of nitrate in the snow-
pack has significant implications for tropospheric chemistry,
since its photoproducts, NO and NO2, are intimately linked
to reactions involving ozone, hydrocarbons and halogens,
this process also generates OH radicals (see below), which
can oxidize organic matter within snowpacks, leading to the
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formation of oxidized hydrocarbons (e.g. formaldehyde, ac-
etaldehyde, acetone) (Dominé and Shepson, 1999; Sumner
and Shepson, 2002; Grannas et al., 2004). In addition,
HONO has been measured in the polar regions (Zhou et al.,
2001; Honrath et al., 2002; Amoroso et al., 2006; Clemit-
shaw, 2006), where it has also been suggested as a possible
byproduct of nitrate photolysis (Zhou et al., 2001). Yet, ac-
tual HONO concentrations and its source at polar sites have
been debated (Chen et al., 2004; Dibb et al., 2004; Liao et
al., 2006; Jacobi et al., 2007).

It is clear that overlying boundary layer chemistry is af-
fected by photochemistry occurring at the snowpack at po-
lar regions. A useful tool to study specified photochemi-
cal mechanisms occurring in the snowpack is to multiphase
model boundary layer chemistry linked to chemistry at the
snowpack surface, which requires a physicochemical under-
standing of ice surfaces. The ice-air interface of solids is an
area that exhibits characteristics different from those of the
bulk material. This is primarily due to the fact that atoms
(or molecules) at the surface only encounter bonding forces
with other molecules from one side; simultaneously, there
is a similar imbalance at other interfaces. Furthermore, this
behavior causes the dislocation of atoms from their origi-
nal locations, alterations in their associated force and energy
constants, and effects on layers below the ice-air demarca-
tion. Michael Faraday in 1850 first suggested that the ice-air
interface consists of a thin wet film (Faraday, 1850), vari-
ously called the quasi-liquid layer (QLL), premelting layer,
liquid-like layer, or surface melting layer, by showing “that
a particle of water which could retain the liquid state whilst
touching ice on only one side, could not retain the liquid if it
were touched by ice on both sides” (Faraday, 1850).

The fact that the boundary between the solid and vapor
phase is wetted by a thin liquid film causes the free energy of
the boundary to be lower than it would be if the thin liquid
film were absent (Dash et al., 1995). As a result, if the surface
of ice were initially dry, then it would reduce its interfacial
free energy by converting a layer (e.g. the surface) of the
solid to liquid. Hence, a liquid-like layer should exist over
some measurable and quantifiable temperature range on the
surface of ice, below its bulk normal melting temperature.
The existence of the QLL is not prohibited due to its thinness
and closeness to the normal melting temperature of ice and
is present at a state where the free energy of the ice system
is at a minimum and is governed by the competition between
the free energy of the ice surface and the energy required to
melt a solid layer.

The thickness of the QLL as a function of temperature
has been quantified both experimentally (Doppenschmidt
and Butt, 2000; Pittenger et al., 2001; Bluhm et al., 2002;
Sadtchenko and Ewing, 2002) and theoretically (Ohnesorge
et al., 1994; Landa et al., 1995; Wettlaufer, 1999). With the
single exception of Elbaum et al. (1993), whose experiments
were done on exposed horizontal facets in the prismatic ori-
entation 10̄10, these studies have shown that the QLL in-

creases with increasing temperature. Additionally, impurities
enhance its thickness (Doppenschmidt and Butt, 2000; Wett-
laufer, 1999). The addition of impurities at constant pressure
will shift the normal melting point of the bulk solid, which is
directly dependent on the concentration of the impurity. As
the melting point is approached, the QLL appears to be in-
distinguishable from the liquid phase in its uppermost layers.
Concurrently, we do acknowledge that, at specified temper-
ature regimes, below the actual melting point of pure water
ice, the QLL is distinctly dissimilar than pure liquid water
(e.g. its ability to take up trace gases). For instance, McNeill
et al. (2006) showed for the first time that the solubility of
HCl in the QLL, rather exhibiting a solubility similar that in
a true-liquid matrix, exhibits a solubility that is intermedi-
ate between that in bulk ice and its respective solubility in a
true-liquid matrix.

The QLL can play a pivotal role in environmental phe-
nomena such as 1) controlling the friction of ice and snow;
2) soil freezing, permafrost formation, and frost heave; 3)
sintering and sliding in glaciers, sea-ice, and snow fields;
and 4) behavior of atmospheric ice (Dash et al., 1995). The
QLL has also been suggested to contribute to the electrifi-
cation of thunder clouds via charge transfer at the liquid-ice
interface (Baker and Dash, 1994). Abbatt et al. (1992) and
Molina (1994) even proposed that polar stratospheric clouds
are able to accommodate HCl by dissolution in multilayer-
thick quasi-liquid films, where they can efficiently partici-
pate in ozone destruction during winter and spring months in
Antarctica and the Arctic. These hypotheses were later con-
firmed by seminal work, via laboratory analyses, showing ex-
plicitly that trace gases do efficiently accommodate snow/ice
surfaces through trace-gas induce QLL formation McNeill et
al. (2006).

As shown in Jones et al. (2007), spring and sum-
mertime maximum NOx volume fluxes range from
∼4.5×104 to ∼5.5×105 molecules cm−3 s−1. In
addition, field measurements of NOx range from
∼5.7×108 to ∼2.9×109 molecules cm−3 and exhibit
[NO]/[NO2] (γ=[NO]/[NO2]) from ∼0.8 to ∼2.0 (Hon-
rath et al., 1999, 2002; Jones et al., 2000; Beine et al., 2002;
Dibb et al., 2002; Simpson et al., 2007). In this study, we
use CON-AIR to show that nitrate photochemistry in the
QLL does simulate well NOx volume fluxes, concentrations,
and γ measured just above the snowpack (i.e. at∼25 cm)
at various sites in the Arctic and coastal Antarctica. The
implications of these findings are also discussed.

2 Model description

CON-AIR is a multiphase model that treats the interaction of
gas phase boundary layer chemistry with condensed phase
chemistry and photochemistry in and on snow and ice sur-
faces, specifically the QLL. As described previously, here
the QLL is defined as a thin layer on the surface of snow
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and ice, where water molecules are not in a rigid solid struc-
ture, yet not in the random order of a liquid (Petrenko and
Whitworth, 1999), which, in our model, is the demarcation
between the vapor and bulk ice phase. It is structured in two
main components: i) condensed phase chemistry and pho-
tochemistry regime in the QLL; and ii) gas phase chemistry
scheme comprising photochemical, thermal, and heteroge-
neous reactions.

The exchange of nitrogen species between the QLL
and the atmosphere depends on the respective Henry’s
law constants of species including NO and NO2. The
Henry’s law solubility constants and temperature de-
pendences for the gas phase equilibrating species NO
and NO2 are 1.9×10−3

×e(1500(1/T−1/T o)) M atm−1 and
6.4×10−3e(2500(1/T−1/T o)) M atm−1, respectively (Schwartz
and White, 1981; Lelieveld and Crutzen, 1991). The tem-
perature dependence of the solubility of species is taken into
account by including a diurnal variation of the typical tem-
perature profile of both the Arctic and coastal Antarctic re-
gion during spring and summertime (i.e. 250≤T/K≤265).
A description of the radiation and gas phase scheme,
and a complete set of all gas phase reactions employed
in the model are summarized in Table 1 of the supple-
mentary material (http://www.atmos-chem-phys.net/8/4855/
2008/acp-8-4855-2008-supplement.pdf).

2.1 Condensed phase scheme and QLL parameterizations

We note that the following formulation is developed within
the context of a current overall shortage of physico-chemical
data pertinent to the uptake and release of trace gases to
snow/ice at conditions relevant for the polar snowpack. Bulk
concentrations ofNO−3 and NO−

2 (i.e. at the top few cen-
timeters) at the Arctic and coastal Antarctic snowpack are
1≤[NO−

3 ]/µM≤17 and∼1 nM, respectively (Stotlemyer and
Toczydlowski, 1990; Jaffe and Zukowski, 1993; Li, 1993;
Silvente and Legrand, 1995; De Angelis and Legrand, 1995;
Dibb et al., 1998; Jones et al., 2007). A number of labora-
tory experiments have provided evidence that the photolysis
of nitrate transpires in the QLL on the surface of ice crys-
tals (Dubowski et al., 2001, 2002; Boxe et al., 2003; Chu
and Anastasio, 2003). In this study, we restrict our model
simulations within the context that all condensed phase re-
actions take place in the much smaller volume of the QLL.
Typical bulk concentrations of NO−3 and NO−

2 measured in
the Arctic and coastal Antarctic snowpack were re-quantified
following the formulation established by Cho et al. (2002).
Cho et al. (2002) derived the following equation

ψH2O(T ) =
mH2ORTf

1000H 0
f

T

Tf − T
C0
T , (1)

which relates the fraction of liquid water(ψH2O) as a func-
tion of temperature (T ) and the total solute concentration
in the QLL (C0

T ). ψH2O(T ) is the fraction of water in the

QLL as a function of temperature,mH2O is the molecu-
lar weight of water (18.01 g/mole),R is the gas constant
(8.314×10−3 kJ/K mole),H 0

f is enthalpy of fusion of wa-
ter (6 kJ/mole), andTf is the freezing temperature of water
(273.15 K). Assuming that the total initial concentrations of
NO−

3 and NO−

2 reside in the QLL, we relate their respective
bulk concentrations(Cbulk) to their respective concentrations
in the QLL via Eq. (2):

Cbulk=ψH2O(T )C
0
T (2)

Substituting Eq. (1) into Eq. (2), yields the following:

ψH2O(T ) =

√
mH2ORTf

1000H 0
f

T

Tf − T
Cbulk . (3)

Then, given the upper limit Cbulk−upper−limit (=17.0001µM,
[NO−

3 ]o=17µM and [NO−

2 ]o=1 nM) and the lower
limit Cbulk−lower−limit (=1.0001µM, [NO−

3 ]o=1µM and
[NO−

2 ]o=1 nM), we calculate 4.54×10−5 and 1.01×10−5

as the mean of the upper and lower limitψH2O from 250 to
265 K, respectively, by using Eqs. (4) and (5):

mean ofψH2O−upper−limit

=

i=265∑
i=250

√
mH2ORTf

1000H0
f

Ti
Tf−Ti

Cbulk−upper−limit

16
; (4)

mean ofψH2O−lower−limit

=

i=265∑
i=250

√
mH2ORTf

1000H0
f

Ti
Tf−Ti

Cbulk−lower−limit

16
. (5)

Summing the mean ofψH2O−upper−limit and themean of
ψH2O−lower−limit gives 5.55×10−5. In CON-AIR, as an
approximation, we incorporate the average of this sum,
2.78×10−5, as the fraction of liquid water, representative
for temperatures from 250 to 265 K. Taking the mean of the
median of[NO−

3 ]o found both in the Arctic (i.e. from 3 to
17µM) and coastal Antarctic (i.e. from 1 to 9µM) yields
7.5µM. Then, as an estimation, we take[NO−

3 ]o=7.5µM
and[NO−

2 ]o=1 nM as their initial bulk concentrations. Using
Eq. (2), the concentration of[NO−

3 ]o and[NO−

2 ]o in the QLL
is 270 mM and 0.04 mM, respectively, which we incorporate
in CON-AIR as their initial concentrations.

Given our estimatedψH2O=2.78×10−5, we calculate a
QLL thickness∼300 nm by the following formulation: snow
depth× snow column cross-sectional area× mass fraction of
liquid water = 1 cm×1 cm2

×2.78×10−5=2.78×10−5 cm3;
then, 2.78×10−5 cm3/1 cm2=278 nm∼300 nm. This derived
QLL thickness is comparable to previous laboratory mea-
surements (Boxe, 2005; McNeill, 2005).

As an approximation, we use a use a conservative
snow depth of 1 cm and a snow density of 0.31 g cm−3

(Michalowski et al., 2000; Sumner and Shepson, 1999). As a
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Table 1. QLL reactions and rate constants.

Reactions Aqueous rate constantsa QLL rate constantsb

NO−

3 +hv→NO2+O− c

NO−

3 +hv→NO−

2 +O(3P) c

NO−

2 +hv→NO+O− d

O−+H2O→
.OH+OH− 2.82×10−15cm3 molec−1 s−1 2.82×10−15cm3 molec−1 s−1/(volumetric)e

.OH+OH−
→O−+H2O 2.00×10−11cm3 molec−1 s−1 2.00×10−11cm3 molec−1 s−1/(volumetric)e

O2+O(3P)→O3 6.64×10−12cm3 molec−1 s−1 6.64×10−12cm3 molec−1 s−1/(volumetric)e

O(3P)+NO−

2 →NO−

3 2.46×10−12cm3 molec−1 s−1 2.46×10−12cm3 molec−1 s−1/(volumetric)e

O3+NO−

2 →NO−

3 +O2 6.15×10−16cm3 molec−1 s−1 6.15×10−16cm3 molec−1 s−1/(volumetric)e

NO−

3 +O(3P)→NO−

2 +O2 3.72×10−13cm3 molec−1 s−1 3.72×10−13cm3 molec−1 s−1/(volumetric)e

NO−

2 +
.OH→NO2+OH− 3.32×10−11cm3 molec−1 s−1 3.32×10−11cm3 molec−1 s−1/(volumetric)e

NO2+NO2+H2O→NO−

2 +NO−

3 +2H+ 1.66×10−13cm3 molec−1 s−1 1.66×10−13cm3 molec−1 s−1/(volumetric)e

NO+NO2+H2O→2NO−

2 +2H+ 3.32×10−13cm3 molec−1 s−1 3.32×10−13cm3 molec−1 s−1/(volumetric)e

NO+.OH→NO−

2 +H+ 3.32×10−11cm3 molec−1 s−1 3.32×10−11cm3 molec−1 s−1/(volumetric)e

NO2+
.OH→NO−

3 +H+ 2.16×10−12cm3 molec−1 s−1 2.16×10−12cm3 molec−1 s−1(volumetric)e

NO+NO2→N2O3 1.83×10−12cm3 molec−1 s−1 1.83×10−12cm3 molec−1 s−1/(volumetric)e

N2O3+H2O→2NO−

2 +2H+ 5.3×102 s−1 5.3×102 s−1

2NO2→N2O4 7.48×10−13cm3 molec−1 s−1 7.48×10−13cm3 molec−1 s−1/(volumetric)e

N2O4+H2O→NO−

2 +NO−

3 +2H+ 103 s−1 103 s−1

a Aqueous phase reaction rate constants were obtained from Mack and Bolton (1999).
b QLL rate reaction rate constants were quantified by including the “volumetric” factor (Grannas et al., 2007; Takenaka et al., 1996).
c JNO−

3
values were extrapolated from Qui et al. (2002) and King et al. (2005).

d JNO−

2
was extrapolated from Zuo and Deng (1999).

e volumetric∼8.20×10−4 (Grannas et al., 2007; Takenaka et al., 1996).

result, the total potential liquid content in a snow column of
1 cm2 cross-sectional area of snowpack is:

total potential liquid content=
1 cm× 0.31 g cm−3

1 g cm−3

= 0.31 cm3 cm−2 (6)

The estimated fraction of liquid water is 2.78×10−5; there-
fore, the QLL volume at the snowpack surface:

QLL volume= 0.31 cm3 cm−2
× 2.78× 10−5

= 8.6 × 10−6 cm3 cm−2 (7)

To properly express aqueous phase reaction rates to QLL re-
action rates, a volumetric factor (volumetric) was estimated
based on laboratory derived reaction rate enhancement fac-
tors. A volumetric factor was quantified by taking the av-
erage of the upper limit reaction rate enhancement factors
obtained in the laboratory by Grannas et al. (2007) and Tak-
enaka et al. (1996), 40 and 2.4×103, respectively, yielding

volumetric=
40+ 2.4 × 103

2
= 1.22× 103 (8)

Therefore, the reaction rates are quantified by incorporating
volumetric factor, volumetric. The rate constants for reac-
tions taking place in the QLL are:

k × volumetric, (9)

k × volumetric2, (10)

wherek are the actual literature aqueous phase rate constants
in units of cm3 molecule−1 s−1 and cm6 molecule−2 s−1, for
second- and third-order rate constants, respectively. Table 1
lists the major reactions pertaining to nitrate photochemistry,
their condensed phase reaction rates, and their QLL reaction
rates.

The rate constant for the transfer of species from the QLL
to the gas phase is calculated using an approximation of the
first order rate constant,kt=1.25×10−5 s−1 (Gong et al.,
1997; Michalowski et al., 2000).

kmix = kt ×
9.31× 10−6 cm3 (QLL)

10,000 cm3 (atmosphere)
(11)

Nevertheless, the rate of transfer of species will depend on
the concentration and Henry’s law constants for solubility of
the corresponding species. Hence, the complete expression
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for the phase equilibration of species from the QLL to the
atmosphere is:

k(QLL→Atmosphere) = (kmix × [species concentration]

× volumetric) /(H ′) , (12)

whereH ′ is the dimensionless Henry’s law constant.H ′ is
defined asH ′

=(HRT ), whereH is a species’ Henry’s law
constant,R is the gas constant, 0.082058 L atm K−1 mol−1,
andT is the temperature (K).

3 Results and discussion

The photochemistry of nitrate in the aqueous phase has
been studied extensively (Mark et al., 1996; Mack and
Bolton, 1999). Dissolved nitrate has two primary absorp-
tion bands in the ultraviolet (UV). The first occurs in the
far UV via the strongπ→π∗ transition, centered at 201 nm
(εmax=9500 M−1 cm−1), and the second is a weaker absorp-
tion band that occurs via the highly forbiddenn→π∗ tran-
sition, centered at 302 nm (εmax=7.14 M−1 cm−1). Further-
more, it was proposed that the weaker absorption band may
occur from the combination of a singlet and tripletn→π∗

andσ→π∗ transition (Maria et al., 1973).
Mack and Bolton (1999) showed that the overall stoi-

chiometry for nitrate irradiation is

NO−

3
hv

−→ NO−

2 +
1

2
O2. (R1)

In the absence of.OH scavengers this stoichiometry is main-
tained over the entire pH range (Wagner and Strehlow, 1980).
For λ<280 nm, the major reaction pathway is through iso-
merization of[NO−

3 ]
∗, generated via Reaction (R2), to form

ONOO−, peroxynitrite, and at low pH, peroxynitrous acid,
HONOO (Reaction R3). HONOO can also be produced from
the recombination of.OH and NO2 within a solvent cage as
shown in Reaction (R4). HONOO isomerizes rapidly back
to NO−

3 (Reaction R5) (Mack and Bolton, 1999).

NO−

3
hv

−→ [NO−

3 ]
∗ (R2)

NO−

3 −→ ONOO−
+ H+

+ −→ HONOO (R3)

.OH + NO2 −→ HONOO (R4)

HONOO−→ NO−

3 + H+ (R5)

Yet, in the troposphere, allλ<290 nm is completely attenu-
ated by stratospheric ozone. Therefore,λ≥290 nm are per-
tinent for this study. In aqueous solutions at pH<6 and
λ≥290 nm, nitrate photolysis proceeds via two primary pho-
tolytic pathways as illustrated in Reactions (R6) and (R7),
through the generation of nitrate in the excited state,[NO−

3 ]
∗,

from Reaction (R2). As shown in Reaction (R8), O− reacts
rapidly with water to form the hydroxyl radical.

[NO−

3 ]
∗

+ H+
−→ NO2 + O− (R6)

[NO−

3 ]
∗

−→ NO−

2 + O(3P) (R7)

O−
+ H2O −→

. OH + OH− (R8)

Atomic oxygen produced in Reaction (R7) can react with
molecular oxygen ([O2]water∼0.3 mM) via Reaction (R9)
or with nitrate by way of Reaction (R10) (Warneck and
Wurzinger, 1988).

O2 + O(3P) −→ O3 (R9)

NO−

3 + O(3P) −→ NO−

2 + O2 (R10)

Ozone, generated by Reaction (R9), is either consumed by
reaction with NO−2 (Reaction R11) (Hoigne et al., 1985) or
by decomposition to.OH (Hoigne et al., 1985).

NO−

2 + O3 −→ NO−

3 + O2 (R11)

The UV absorption spectrum of nitrite displays three ab-
sorption bands: the first involves aπ→π∗ transition
with maxima at 220 nm, and the latter two peaks are
maxima at 318 nm (εmax=10.90 M−1 cm−1) and 354 nm
(εmax=22.90 M−1 cm−1), both corresponding ton→π∗ tran-
sitions. Similar to nitrate, nitrite undergoes direct photolysis
as shown in Reaction (R12) to produce NO, and it also oxi-
dizes by reaction with.OH via Reaction (R13).

NO−

2 + H+ hv
−→ NO +

. OH (R12)

NO−

2 +
. OH −→ NO2 + OH− (R13)

The photolysis of NO2 also produces NO (Reaction R14).
We exclude this reaction from the chemical scheme used
in CON-AIR since its photolytic lifetime during midday
spring and summertime(1/JNO2=1/4.6×10−3 s−1

≈ 217 s )
(Yung and DeMore, 1999) is longer than its diffusion life-
time through a∼300 nm thick QLL (see above calculation).
As calculated using the diffusion length equation (Eq. 13)
(Dubowski et al., 2001):

NO2
hv

−→ NO + O(3P) (R14)

L =
√
Dτ ; τ =

(300× 10−7 cm)2

9.8 × 10−9 cm2 s−1
≈ 0.09 s (13)

L is the thickness of the QLL,D is the diffusion coefficient
of NO2 (Dubowski et al., 2001), andτ is the time it takes
NO2 to diffuse through a thicknessL. Using Eq. (13), we
show that the maximum snowpack depth, starting from the
top of the ice surface, where NO2 photolysis will not occur is
≈(9.8×10−9 cm2 s−1

×217 s)1/2≈15µm. Consequently, be-
low 15µm NO2 will undergo photolysis to produce NO,
supporting the exclusion of this photolytic pathway. This
estimation is further supported by previous findings, which
have shown that NO2 produced from nitrate photolysis in
the outermost layers of thin ice films are readily released to
the gas phase, compared to NO2 formed at deeper depths,
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Fig. 1. Simplified schematic diagram illustrating the primary reac-
tions governing NOx release from a 300 nm thick QLL film to the
gas phase from nitrate photochemistry. At QLL depths<15µm,
NO2 photolysis does not occur, while at QLL depths>15µm NO2
photolysis occurs.

which undergoes further chemical and photolytic processing
(Dubowski et al., 2001; Boxe et al., 2005, 2006). Finally,
the photoproduced NO and NO2 are readily released to the
gas phase after equilibration due to their low solubility (Re-
action R15).

NO2(QLL), NO(QLL)
escape
−→ NO2(g), NO(g) (R15)

The protonation of nitrite to form nitrous acid(HONO(aq))

(Reaction R16) was also not considered in the QLL reac-
tion mechanism since model simulations yieldedγ∼1500,
much larger than any reported measurements from field stud-
ies (e.g.γ∼0.8 to∼2.0) (Honrath et al., 1999, 2002; Jones et
al., 2000, 2007; Beine et al., 2002; Dibb et al., 2002; Simp-
son et al., 2007). This result implies that a significant amount
of HONO produced in the snowpack may be retained by ma-
trix or solvent cage effects or may be dependent on pho-
tosensitized organic compounds, such as possible reaction
cycles that may efficiently transfer electrons to NO2, possi-
bly leading to the production of HONO (Beine et al., 2006).
Presently, the mechanism of HONO formation from NO−

3 is
not well known.

NO−

2 + H+
−→ HONO(aq) ⇔ HONO(g) (R16)

A simplified scheme illustrating the primary reactions gov-
erning NOx release from the QLL film to the gas phase from
nitrate photochemistry used in CON-AIR is shown in Fig. 1.
Laboratory studies have shown that the photochemistry of ni-
trate in ice is analogous to its aqueous phase photochemistry
(Dubowski et al., 2001, 2002; Chu and Anastasio et al., 2003;
Boxe et al., 2006) Therefore, as shown in Table 1, QLL reac-
tion rates were quantified by scaling aqueous phase reaction
rates according to the micro-scopic dimensions of the QLL.
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Figure 2 
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Fig. 2. The absorption spectrum for NO−3 and NO−

2 (Gaffney et al.,
1992; Zuo and Deng, 1998) and the normalized solar spectrum at
the Earth’s surface from 290 to 400 nm.

Laboratory studies have shown that nitrate is a source
of NO and NO2 from ice surfaces (Honrath et al., 2000b;
Dubowski et al., 2001, 2002; Chu and Anastasio, 2003; Boxe
et al., 2003, 2005, 2006; Jacobi et al., 2006; Jacobi and
Hilker, 2007). Only a small number of laboratory inves-
tigations of nitrate photochemistry in ice were carried out
to correlate their respective NO and NO2 fluxes with field
measurements (Boxe et al., 2003, 2006). Yet, these stud-
ies were restricted by high detection limits for NO and NO2
and the use of irradiation sources emitting at 313±20 nm
(i.e. overlapping the absorption spectrum of nitrate), result-
ing in higher NOx concentrations than measured in the field
and much lowerγ (e.g. 0.043 to 0.0005) than those mea-
sured over the Arctic and Antarctic snowpack (Boxe et al.,
2003, 2006). Compared to the typical initial nitrate concen-
trations (1 to 20µM) and the typical actinic flux spectrum
at Earth’s surface for the Arctic and coastal Antarctic re-
gions, the higher initial nitrate concentrations (50 mM) and
the dissimilar actinic flux spectrum used, likely contributed
to the disparity between these laboratory results and those
from the field. Figure 2 illustrates this disparity to some ex-
tent by comparing the absorption spectrum for nitrate and
nitrite and the actinic flux spectrum at the Earth’s surface.
The surface irradiance is computed using a 2-stream radia-
tive transfer code (Thompson, 1984). We calculate the di-
urnal variation ofJNO−

3
and JNO−

2
for snowpack summer

and springtime conditions by extrapolating laboratory mod-
eled and measuredJNO−

3
andJNO−

2
for ice, snowpack, and

seawater (Zuo and Deng, 1998, Qiu et al., 2002; King et
al., 2005) to the radiative transfer code, coupled to CON-
AIR, such thatJNO−

3
and JNO−

2
vary as a function of so-

lar zenith angle (or as a function of time of day), therefore
providing a more complete representation of nitrate photo-
chemistry. Note, the smaller and larger summer/springtime
diurnal profiles ofJNO−

3
were derived from extrapolating
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Figure 3 
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Fig. 3. (a) Simulated diurnal summer volume flux profiles of NO
and NO2 just above the snowpack.(b) Simulated diurnal springtime
volume flux profiles of NO and NO2 just above the snowpack.

the lower and upper limits for theJNO−

3
values obtained

for surface snow and sea-ice (Qiu et al., 2002; King et al.,
2005), while the summer/springtime diurnal profile ofJNO−

2
was derived from extrapolating theJNO−

2
value obtained for

surface seawater (Zuo and Deng, 1998). Figure 3 illus-
trates a typical diurnal profile for NO (e.g. maximum volume
fluxes of 2.3×104 molecules cm−3 s−1 during spring and
3.2×105 molecules cm−3 s−1 during summer) and NO2 (e.g.
maximum concentrations of 1.2×104 molecules cm−3 s−1

to 2.7×104 molecules cm−3 s−1 during spring and 1.8×105

to 3.2×105 molecules cm−3 s−1 during summer) over the
Arctic and Antarctic snowpack. These simulated NOx
volume fluxes are comparable to field measurements
of Jones et al. (2007). Assuming a∼100 m bound-
ary height and taking the median of the concentra-
tion of molecules between 250 and 265 K at atmo-
spheric surface pressure (1 atm or 1.01325×105 N m−2)

(2.86×1019 molecules cm−3), simulated maximum concen-
trations of NOx, ∼5.7×108 to ∼4.8×109 molecules cm−3,
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Fig. 4. Calculated summertime gas phase NO and NO2 concentra-
tion profiles as a function of height above the snowpack.

agree well with maximum concentrations of NOx measured
just above the snowpack by field measurements,∼5.7×108

to ∼2.9×109 molecules cm−3, (Honrath et al., 1999, 2002;
Jones et al., 2000; Beine et al., 2002; Dibb et al., 2002; Simp-
son et al., 2007). It also accounts for the range ofγ mea-
sured during Arctic and Antarctic summer and springtime,
where springtime maximumγ ranges from∼0.84 to∼1.86
and summertime maximumγ ranges from∼0.50 to∼2.20,
which is also in good accord with measuredγ over the snow-
pack (Honrath et al., 1999, 2002; Jones et al., 2000; Beine
et al., 2002; Dibb et al., 2002; Simpson et al., 2007). Fur-
thermore, these model results reinforce laboratory and snow
chamber results showing that the major source of NO release
from snow/ice surfaces isNO−2 , its immediate photolytic pre-
cursor that absorbs at wavelengths longer than nitrate itself
(Cotter et al., 2003; Boxe et al., 2006), as shown in Fig. 2.
Thus, incorporating the actinic flux at the Earth’s surface
shows that nitrite is more photolabile than nitrate (Cotter et
al., 2003).

Furthermore, we investigate the profile of gas phase
boundary layer NO and NO2 as a function of height up to
20 m during the summertime over the snowpack using a 1-
D model (Saiz-Lopez et al., 2008). Figure 4 shows that the
model predicts a slight negative gradient for both[NO] and
[NO2], andγ remains approximately constant. The gradi-
ent is the result of gas phase reactions of NOx with halo-
gens oxides (i.e. BrO and IO), HOx, and hydrocarbons (e.g.
CH3O2) (Saiz-Lopez et al., 2008). Atmospheric stability
and wind speed may also affect the concentration gradient
of NOx above the snowpack (Beine et al., 2002). However,
constraining the 1-D model with the lower limit summertime
NO and NO2 volume fluxes derived from CON-AIR leads to
good agreement with recent summertime observations of NO
and NO2 concentrations (13 ppt and 7 ppt as average noon
values) and ratios (([NO]/[NO2]∼1.8) obtained at a few me-
ters above the coastal Antarctic snowpack (e.g. Jones et al.,
2007).
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4 Summary and conclusions

We use a novel multiphase model, CON-AIR (Condensed
Phase toAir Transfer Model) to show that the photochem-
istry of nitrate in and on snow/ice surfaces (i.e. the QLL)
can account for measured NO and NO2 volume fluxes, con-
centrations, and [NO]/[NO2] measured just above the Artic
and coastal Antarctic snowpack. Our model results produce
comparable results although polar snowpack site physico-
chemical properties are dynamic and specific in nature. In
addition, our model simulations suggest that, in general, ni-
trite photolysis (predominantly produced from nitrate pho-
todecomposition) governs the release of NOx just above the
Arctic and coastal Antarctic snowpack, which is controlled
by nitrite’s coincident absorption spectrum with the solar
spectrum at the polar snowpack surface. Finally, our model
analyses show that NO and NO2 display a negative concen-
tration gradient as a function of height although their concen-
tration ratios remain constant. We attribute this effect to gas
phase reactions of these species with halogen oxides, HOx,
and hydrocarbons.
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Dominé, F. and Shepson, P. B.: Air-snow interactions and atmo-
spheric chemistry, Science, 297, 1506–1510, 2002.

Doppenschmidt, A. and Butt, H. J.: Measuring the thickness of the
liquid-like layer on ice surfaces with atomic force microscopy,
Langmuir, 16, 6709–6714, 2000.

Dubowski, Y., Colussi, A. J., and Hoffmann, M. R.: Nitrogen diox-
ide release in the 302 nm band photolysis of spray-frozen aque-
ous nitrate solutions. Atmospheric implications,J. Phys. Chem.
A., 105, 4928-4932, 2001.

Dubowski, Y., Colussi, A. J., Boxe, C., and Hoffmann, M. R.:
Monotonic increase of nitrite yields in the photolysis of nitrate
in ice and water between 238 and 294 K, J. Phys. Chem., 106,
6967–6971, 2002.

Faraday, M.: Lecture before the Royal Institution reported in the
Athaneum, 640, 1850.

Gaffney, J. S., Marley, N. A., and Cunningham, M. M.: Measure-
ment of the absorption constants for nitrate in water between 270
and 335 nm, Environ. Sci. Technol., 25, 207–209, 1992.

Gong, S. L., Walmsley, J. L., Barrie, L. A., and Hopper, J. F.: Mech-
anisms for surface ozone depletion and recovery during Polar
Sunrise, Atmos. Environ., 31(7), 969–981, 1997.

Grannas, A. M., Shepson, P. B., and Filley, T. R.: Photochemistry
and nature of organic matter in Arctic and Antarctic snow, Global
Biogeochem. Cycles, 18, GB1006, doi:10.1029/2003GB002133,
2004.

Hastings, M. G., Steig, E. J., and Sigman, D. M.: Seasonal varia-
tions in N and O isotopes of nitrate in snow at Summit, Green-
land: Implications for the study of nitrate in snow and ice cores,
J. Geophys. Res., 109, D20306, doi:10.1029/2004JD004991,
2004.

Hoigne, J., Bader, H., Haag, W. R., and Staehelin, J.: Rate constants
of reactions with organic and inorganic compounds in water-III.
Inorganic compounds and radicals, Water Res., 19, 993–1004,
1985.

Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B.,
and Campbell, B.: Evidence of NOx production within or upon
ice particles in the Greenland snowpack, Geophys. Res. Lett., 26,
695–698 1999.

Honrath, R. E., Peterson, M. C., Dziobak, M. P., Dibb, J. E., Arse-
nault, M. A., and Green, S. A.: Release of NOx from sunlight-
irradiated midlatitude snow, Geophys. Res. Lett., 26, 695–698,
2000a.

Honrath, R. E., Guo, S., Peterson, M. C., Dziobak, M. P., Dibb,
J. E., and Arsenault, M. A.: Photochemical production of gas
phase NOx from ice crystal NO−3 , J. Geophys. Res., 105, 24 183–
24 190, 2000b.

Honrath, R. E., Lu, Y., Peterson, M. C., Dibb, J. E., Arsenault,
M. A., Cullen, N. J., and. Steffen, K.: Vertical fluxes of NOx,
HONO, and HNO3 above the snowpack at Summit, Greenland,
Atmos. Environ., 36, 2629–2640, 2002.

Jacobi, H.-W., Bales, R. C., Honrath, R. E., Peterson, M. C., Dibb, J.
E., Swanson, A. L., and Albert, M. R.: Reactive trace gases mea-
sured in the interstitial air of surface snow at Summit, Greenland,
Atmos. Environ., 38, 1687–1697, 2004.

Jacobi, H.-W., Annor, T., and Quansah, E.: Investigation of the
photochemical decomposition of nitrate, hydrogen peroxide, and
formaldehyde in artificial snow, J. Photochem. Photobiol. A.,
179, 330–338, 2006.

Jacobi, H.-W. and Hilker, B.: A mechanism for the photochemical
transformation of nitrate in snow, J. Photochem. Photobiol. A,
185, 371–382, 2007.

Jaffe, D. A. and Zukowski, M. D.: Nitrate deposition to the Alaska
snowpack, Atmos. Environ., 27A, 2935–2941, 1993.

Jones, A. E., Weller, R., Wolff, E. W., and Jacobi, H.-W.: Speci-
ation and rate of photochemical NO and NO2 production from
Antarctic snow, Geophys. Res. Lett., 27, 345–348, 2000.

Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemit-
shaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon,
R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal
NOy budget in coastal Antarctica and its link with surface snow
and ice core nitrate: results from the CHABLIS campaign, At-
mos. Chem. Phys. Discuss., 7, 4127–4163, 2007,
http://www.atmos-chem-phys-discuss.net/7/4127/2007/.

King, M. D., France, J. L., Fisher, F. N., and Beine, H. J.: Measure-
ment and modeling of UV radiation penetration and photolysis
rates of nitrate and hydrogen peroxide in Antarctic sea ice: An
estimate of the production rate of hydroxyl radicals in first-year
sea ice, J. Photochem. Photobiol. A, 176, 39–49, 2005.

Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores:
a review, Rev. Geophys., 35, 219–243, 1997.

Landa, A., Wynblatt, P., Hakkinen, H., Barnett, R. N., and Land-
man, U.: Equilibrium interphase interfaces and premelting of the
Pb(110) surface, Phys. Rev. B, 51, 10 972–10 980, 1995.

Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267, 1991.

Li, S.-M.: Particulate and snow nitrite in the spring arctic tropo-
sphere, Atmos. Environ., 27, 2959–2967, 1993.

Liao, W., Case, A. T., Mastromarino, J., Tan, D., and Dibb, J.
E.: Observations of HONO by laser-induced fluorescence at the
Sout Pole during ANTCI 2003, Geophys. Res. Lett., 33, L09810,
doi:10.1029/2005GL025470, 2006.

Mack, J. and Bolton, J. R.: Photochemistry of nitrite and nitrate
in aqueous solution: a review, J. Photochem. Photobiol. A, 128,
1–13, 1999.

Maria, H. J., McDonald, J. R., and McGlynn, S. P.: Electronic
absorption spectrum of nitrate ion and boron trihalides, J. Am.
Chem. Soc., 95, 1050–1056, 1973.

Mark, G., Korth, H.-G., Schuchmann, H.-P., and von Sonntag,
C.: The photochemistry of aqueous nitrate ion revisited, J. Pho-
tochem. Photobiol. A, 101, 89–103, 1996.

McCabe, J. R., Boxe, C. S., Colussi, A. J., Hoffmann, M. R., and
Thiemens, M. H.: Oxygen isotopic fractionation in the photo-
chemistry of nitrate in water and ice, J. Geophys. Res., 110,
D15310, doi:10.1029/2004JD005484, 2005.

McNeill, V. F.: Studies of Heterogeneous Ice Chemistry Relevant to
the Atmosphere, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 2005.

McNeill, V. F., Loerting, T., Geiger, F. M., Trout, B. L., and Molina,
M. J.: Hydrogen chloride-induced surface disordering on ice,
Proc. Natl. Acad. Sci. USA, 103, 9422–9427, 2006.

Michalowski, B. A., Francisco, J. S., Li, S.-M., Barrie, L. A., Bot-
tenheim, J. W., and Shepson, P. B.: A computer model study of
multiphase chemistry in the Arctic boundary layer during polar

www.atmos-chem-phys.net/8/4855/2008/ Atmos. Chem. Phys., 8, 4855–4864, 2008

http://www.atmos-chem-phys-discuss.net/7/4127/2007/


4864 C. S. Boxe and A. Saiz-Lopez: Multiphase modeling of nitrate photochemistry in the QLL

sunrise, J. Geophys. Res., 105, 15 131–15 145, 2000.
Molina, M. J.: The Probable Role of Stratospheric ‘Ice’ Clouds:

Hetergeneous Chemistry of the ‘Ozone Hole’, in: The Chem-
istry of the Atmosphere: The Impact of Global Change, edited
by: Calvert, J. G., pp. 27–38, Blackwell Scientific Publications,
Boston, 1994.

Mulvaney, R., Wagenback, D., and Wolff, E. W.: Postdeposi-
tional change in snowpack nitrate from observation of year-round
near-surface snow in coastal Antarctica, J. Geophys. Res., 103,
11 021–11 031, 1998.

Ohnesorge, R., Lowen, H., and Wagner, H.: Density-Functional
theory of crystal fluid interfaces and surface melting, Phys. Rev.
E, 50, 4801–4809, 1994.

Petrenko, V. F. and Whitworth, R. W.: Physics of Ice, Oxford Uni-
versity Press, New York, 1999.

Pittenger, B., Fain, S. C., Cochran, M. J., Donev, J. M. K., Robert-
son, B. E., Szuchmacher, A., and Overney, R. M.: Premelting
at ice-solid interfaces studied via velocity-dependent indentation
with force microscope tips, Phys. Rev. B, 63, 134 102, 2001.

Qiu, R., Green, S. A., Honrath, R. E., Peterson, M. C., Lu, Y., and
Dziobak, M.: Measurements ofJNO−

3
in snow by nitrate-based

actinometry, Atmos. Environ., 36, 2563–2571, 2002.
Rothlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fis-

cher, H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth,
U., Siggaard-Andersen, M. L., and Steffensen, J. P.: Nitrate in
Greenland and Antarctic ice cores: a detailed description of post-
depositional processes, Ann. Glaciol., 35, 209–216, 2002.

Sadtchenko, V. and Ewing, G. E.: Interfacial melting of thin ice
films: An infrared study, J. Chem. Phys., 116, 4686–4697, 2002.

Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S.,
Bauguitte, S. J.-B., Jones, A. E., Roscoe, H. K., Salmon, R. A.,
Bloss, W. J., Lee, J. D., and Heard, D. E.: On the vertical distri-
bution of boundary layer halogens over coastal Antarctica: im-
plications for O3, HOx, NOx, and the Hg lifetime, Atmos. Chem.
Phys., 8, 887–900, 2008,
http://www.atmos-chem-phys.net/8/887/2008/.

Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitro-
gen oxides and oxyacids in dilute aqueous solution, in: Advances
in Environmental Science and Engineering, edited by: Pfafflin, J.
R. and Ziegler, E. N., 4, 1–45, 1981.

Silvente, E. and Legrand, M.: A preliminary study of air-snow re-
lationship for nitric acid in Greenland, in: Ice Core Studies of
Global Biogeochemical Cycles, NATO ASI Ser., Ser. I, vol. 30,
edited by: Delmas, R. J., Springer-Verlag, New York, 225–240,
1995.

Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Botten-
heim, J., Burrows, J., Carpenter, L. J., Frieß, Goodsite, M. E.,
Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B.,
Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson,
P., Sodeau, J., Steffen, A., Wagner T., and Wolff, E.: Halogens
and their role in polar boundary-layer ozone depletion, Atmos.
Chem. Phys., 7, 4375–4418, 2007,
http://www.atmos-chem-phys.net/7/4375/2007/.

Stottlemeyer, R. and Toczydlowski, D.: Pattern of solute movement
from snow into an Upper Michigan stream, Can. J. Fish. Aquat.
Sci., 47, 290–300, 1990.

Sumner, A. L. and Shepson, P. B.: Snowpack production of
formaldehyde and its effect on the Arctic troposphere, Nature,
398, 230–233, 1999.

Thompson, A. M.: The effects of clouds on photolysis rates and
ozone formation in the unpolluted troposphere, J. Geophys. Res.-
Atmos., 89, 1341–1349, 1984.

Wagner, I. and Strehlow, H. Z.: Flash photolysis of nitrate ions in
aqueous solutions, Phys. Chemie. Neue Folge, 123, 1–33, 1980.

Warneck, P. and Wurzinger, C.: Product quantum yields for the 305-
nm photodecomposition of NO−3 in aqueous solution, J. Phys.
Chem., 92, 6278–6283, 1988.

Wettlaufer, J. S.: Impurity effects in the premelting of ice, Phys.
Rev. Lett., 82, 2516–2519, 1999.

Yung, Y. L. and Demore, W. B.: Photochemistry of Planetary At-
mospheres, Oxford University Press, 1999.

Zhou, X., Beine, H. J., Honrath, R. E., Fuentes, J. D., Simpson, W.,
Shepson, P. B., and Bottenheim, J. W.: Snowpack photochem-
ical production of HONO: a major source of OH in the arctic
boundary layer in springtime, Geophys. Res. Lett., 28, 4087–
4090, 2001.

Zuo, Y. and Deng, Y.: The near-UV absorption constants for nitrite
ion in aqueous solution, Chemosphere, 36, 181–188, 1998.

Atmos. Chem. Phys., 8, 4855–4864, 2008 www.atmos-chem-phys.net/8/4855/2008/

http://www.atmos-chem-phys.net/8/887/2008/
http://www.atmos-chem-phys.net/7/4375/2007/

