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ABSTRACT

The convective building of a pycnocline is examined using a two-dimensional nonhydrostatic numerical model
forced by a balanced salinity dipole (source and sink). Although the forcing fields are steady, the model develops
oscillations that renew the model’s analog of ‘‘deep waters’’ only intermittently. The oscillation cycle consists
of a freshwater layer that advects along the surface, capping off the water column under the dense source and
preventing sinking; after a time, continuing densification forms a plume that breaks through the salinity barrier
and convects beneath the dense source, ventilating the deep water. Increasing the viscosity reduces but does not
eliminate this cycle. When the hydrostatic assumption is added, the model evolves systematically different
salinity distributions than the nonhydrostatic model due to the isolation of part of the tank by a persistent
convective column. The deep flow is also different in this case because of differences between the entrainment/
detrainment profile of a hydrostatic plume and one modeled explicitly. The model evolves a characteristically
skewed distribution of densities that is similar to the distribution of temperature in the World Ocean. Rotation
increases the range of this distribution due to the inhibition of meridional flow.

1. Introduction

The thermohaline circulation of the oceans is an im-
portant example of buoyancy-driven flow in a stratified
fluid. In such flows convection helps create the back-
ground stratification in the fluid and then is modified
by the stratification. Despite the intimate association
between convection and stratification there has been lit-
tle work examining the two in a coupled system.

Numerical work examining convection has often as-
sumed either a neutral or initial background stratification
that is stipulated independently of the convection (e.g.,
Jones and Marshall 1993). This is perfectly justified
when considering individual convective plumes that by
themselves have little effect on the background strati-
fication. Here, however, we are interested in the long
timescales over which the convection determines the
background stratification.

To a good approximation the thermohaline circulation
is driven not by a net buoyancy flux but by a spatial
separation of equal but opposite buoyancy fluxes with
a net of zero. Much laboratory work examining con-
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vection has been driven by a net buoyancy flux; when
the laboratory fluid becomes too light or too dense or
the buoyancy gradients vanish, the experiment is con-
sidered ‘‘over.’’ Here we are interested in the geophys-
ically relevant situation of no net buoyancy flux and
again the long-time behavior of the system is the point
of interest.

We examine the convective building process using a
two-dimensional nonhydrostatic numerical model con-
figured to be similar to the laboratory experiments of
Pierce and Rhines (1996; PR1 hereafter). Our objective
is to examine the energy evolution and population dis-
tributions of density in the system to the extent possible,
aspects of the laboratory experiments of PR1 that are
difficult to measure without disturbing the flow, and to
compare these distributions to those observed in the
earth’s oceans. Additionally, contrasting the numerical
results to the known laboratory results will indicate ar-
eas in which the numerical model is deficient; we then
attempt to extrapolate this understanding to large-scale
models of the earth’s thermohaline circulation.

This work is arranged as follows. Section 2 gives an
overview of the model’s derivation (details are given in
the appendix). Section 3 gives results for the various
test cases: the control run; a run with rudimentary effects
of rotation included; the effect of making the hydrostatic
approximation; and the effect of high diffusion. Section
4 discusses the results, and section 5 presents the con-
clusions.
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FIG. 1. Grid arrangement for the model. Here C indicates stream-
function points; y, horizontal velocity points; w, vertical velocity; and
t, tracers. Heavy lines indicate a solid boundary.

2. Model formulation

It is worth carefully considering the correspondence
between the ‘‘small scale’’ numerical model described
here, which is intended to model a 1-m-long laboratory
experiment, and ‘‘large scale’’ two-dimensional numer-
ical models intended to model the entire earth’s global
thermohaline circulation, such as those used by Mar-
otzke and Willebrand (1991), Stocker et al. (1992), and
Winton and Sarachik (1993). Comparing the governing
equations of the model used here (presented below) to
those of the large-scale models, it is evident that they
are similar except in two respects: 1) the small-scale
model is nonhydrostatic and so includes a prognostic
equation for the vertical velocity; the large-scale models
assume vertical hydrostatic balance. 2) Large-scale
models use large values for viscosity and diffusivity
(‘‘eddy diffusivities’’), while the values used here are
close to molecular values. Based on this correspondence
between the large- and small-scale models we expect
that some of the observations of the small-scale model
described here will be applicable to the 2D large-scale
models also and, with proper interpretation, to the
earth’s thermohaline circulation.

This comparison can be made more quantitative by
examining the relevant nondimensional parameters of
the modeled flow: the Reynolds number, the aspect ratio,
and (when rotating) the Rossby number. In comparing
these parameters for the flow modeled here to those of
the ocean, we use so-called eddy values for oceanic
viscosity and diffusivity rather than molecular values.
In regions or situations where oceanic mixing processes
are not well characterized by such an approach, this
comparison will not be valid; this indicates a funda-
mental limitation of the numerical model used here that
must be kept in mind.

The Reynolds number (Re) is given by UL/n, where
U is a characteristic velocity, L the length scale, and n
the viscosity. Using eddy viscosities, appropriate num-
bers for a large-scale model of the earth’s thermohaline
circulation might be U ; 0.1 m s21, L ; 1508 latitude,
and n ; 1 3 103 m2 s21, giving Re ; 1.5 3 103. For
the model developed here U ; 3 3 1023 m s21, L ;
0.75 m, and n 5 1 3 1026 m2 s21, giving Re ; 2.5 3
103, reasonably close to the value for a large-scale model.

The difference is greater for the aspect ratio d 5 L/
D (where D is the depth); for the thermohaline circu-
lation D ; 5 3 103 m, giving d ; 3 3 1024. For the
small-scale model D 5 0.16 m, giving d ; 0.2. The
extreme smallness of d (and therefore the largely hor-
izontal nature of motion in the earth’s oceans) is the
primary justification for the hydrostatic assumption be-
ing made in large-scale models of the earth’s thermo-
haline circulation. Nevertheless, this assumption is poor
in convective regions, which are an important point of
interest here. This issue will be explored in detail by
examining the behavior of the model both with and
without the hydrostatic assumption.

Details of derivation of the model’s equations are
shown in the appendix; this section gives an overview
of the process. The model is two-dimensional and is
assumed to be Boussinesq and incompressible but not
hydrostatic; such an ‘‘anaelastic’’ system was first stud-
ied in this context by Ogura and Phillips (1962).

A two-dimensional model in the (Y, Z) plane is
formed by taking the horizontal average of the mo-
mentum equations in the X direction. A two-dimensional
model with fine resolution is used in preference to a
three-dimensional model with coarser resolution so that
small (close to molecular) values of diffusivity can be
used without the results being overwhelmed by numer-
ical diffusivity. However, this choice removes the role
of flow variations in the X direction, which has some
consequences on the flow that are pointed out in the
relevant sections below.

A streamfunction C can be defined by the relations
Cz 5 2V, Cy 5 W where V and W are the velocities
in the Y and Z directions, respectively, averaged in the
X direction. Taking the curl of the momentum equations
and making use of the horizontal vorticity z 5 Wy 2
Vz [ ¹2C yields

] g
2 2¹ C 1 J(C, z) 2 ( f U) 5 2 r9 1 m¹ z, (1)z y]t ro

where f is the Coriolis parameter, U is the velocity in
the X direction averaged in that direction, g is the grav-
itational acceleration, ro is a characteristic density, r9
is the perturbation density, and n is the viscosity. Ex-
amining the terms from left to right, this equation shows
that the horizontal vorticity can change due to the ad-
vection of the vorticity by the flow field, by a ‘‘tipping’’
of water columns in the presence of rotation, by an
imposed density torque, or by viscous diffusion.

The model numerically solves Eq. (1) along with a
tracer conservation equation (salinity is used here) on
a staggered grid using a leapfrog time scheme. The grid
is shown in Fig. 1. A half time step backward was
performed every 20 leapfrog steps followed by a for-
ward step to prevent time level splitting. An outline of



JUNE 1997 911P I E R C E A N D R H I N E S

FIG. 2. Outline of the time-marching procedure. Superscripts indi-
cate time levels; subscripts indicate derivatives.

the sequence used to step C forward in time is shown
in Fig. 2.

The tracer advection scheme is an adaptation of the
piecewise parabolic method (Colella and Woodward
1984) to a two-dimensional, flux conservative form for
use on a staggered grid. This advection scheme was
chosen because it is positive definite but has less nu-
merical diffusion than other such schemes, such as Smo-
larkiewicz (1983). A scheme with low numerical dif-
fusion is important for a model of convection because
it allows sharp gradients to form; the sharp gradients
are necessary to develop Richardson number instabili-
ties that play a role in entraining fluid into the con-
vecting element.

Energy equations

Equations for the evolution of kinetic (K ) and po-
tential (P) energy integrated over the volume of the
model (derived in the appendix) can be written as

DP
5 (Wgr9 2 2kgr 1 QF) dV (2)E z

| |Dt | | | |z}} z z}}}}
CONV CM SRC
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| | | | | |Dt z z z}}}} }}
CONV DISS PW

where k is the vertical diffusivity, Q is a source or sink
of potential energy imposed at geopotential F (i.e., sur-
face cooling or heating), e is the dissipation (defined in
the appendix), P is the pressure, and Ũ is the full three-
dimensional velocity field. The ‘‘CONV’’ term repre-
sents the conversion between potential and kinetic en-
ergy. A fluid parcel heavier than other parcels on the
same geopotential (r9 . 0) will tend to sink, generating
a negative vertical velocity; thus, the Wgr9 term will be
less than zero, increasing the kinetic energy and de-
creasing the potential energy by the same amount. The
center of mass term ‘‘CM’’ represents the change in
potential energy due to vertical movement of the center
of mass. For a generally stable system rz , 0 and dif-
fusion will tend to raise the center of mass of the system,
increasing the potential energy. ‘‘SRC’’ represents
sources or sinks of potential energy (surface cooling or
heating, respectively). ‘‘DISS’’ represents dissipation.
‘‘PW’’ represents pressure work and is identically zero
here because the fluid is assumed incompressible. It is
shown here for reasons that will be given in section 3.

3. Results

The domain consisted of 300 points in the horizontal
and 64 points in the vertical, with a grid spacing of 2.5
3 1023 m for a total domain 0.75 m long by 0.16 m
tall. The viscosity was set to 1 3 1026 m2 s21 and the
diffusivity to 0.5 3 1026 m2 s21. This value of diffusivity
is more appropriate for temperature (though still larger

than the molecular value) than for salinity; despite this,
salinity is used here for more direct comparison with
PR1. The explicit value for diffusivity was not set any
lower because tests showed that numerical diffusion im-
posed a practical lower limit to the explicit diffusivity.
Therefore, setting the explicit diffusivity lower, while
possible, would have been misleading. Note that there
is only a single active component to the equation of
state.

a. Control run

Forcing for the control run was similar in configu-
ration to that used in PR1. A dipole of buoyancy sources
forced the model, each source having a buoyancy flux
of 1.2 3 1024 m3 s23. Note that since the model is
reentrant in the X direction, the source is effectively a
line source of buoyancy.

The buoyancy source and sink were accomplished by
directly changing the salinity values in the top layer of
the model. This differs from PR1, where the forcing
was produced by pumping in small volumes of fluids
with known salinities and removing the same volume
at an equal rate.

Figure 3 shows the early evolution of the model’s
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FIG. 3. Contours of salinity (percent) as a function of depth and
time for the control case. For this and the following figures, the
contour interval is 0.05%, with extra contours (dashed) inserted be-
tween, at multiples of 0.025%, for values greater than 5%: T 5 (a)
2.0 min; (b) 2.8 min; (c) 3.9 min; (d) 9.6 min.

FIG. 4. The average salinity field for the control case after 35 min.

salinity field. The surface dense source is situated at the
right-hand side of the tank at approximately X 5 0.64
m, while the surface fresh source is at X 5 0.12 m. At
T 5 2.0 min (panel a) the freshwater can be seen prop-
agating along the surface of the tank in a bulbous-nosed

gravity current, while the salty water from the dense
source is propagating along the bottom in the opposite
direction. At this point, there has been no interaction
between the dense and light sources, and the velocities
in the interior of the tank are evolving as if the light
source were not present.

The situation after 2.8 min is shown in panel b. At
this point the buoyant water from the freshening source
has reached the location of the dense plume. The light
fluid has been drawn into the descending plume and
injected into the center of the tank. This freshwater then
tries to rise and by T 5 3.9 min (panel c) this buoyant,
injected water has formed a rising eddy under the dense
source that sweeps the descending plume against the
tank wall.

Not until T 5 9.6 min (panel d) does this eddy dis-
sipate, allowing a plume to reform directly beneath the
dense source. The salinity of the reformed plume is less
than that of the original plume, however, since it must
now penetrate through the fresh upper layer. As a result,
the plume penetrates only to intermediate depths.

The salinity field averaged for 10 min starting at 35
minutes is shown in Fig. 4. The model has built a deep
salinity gradient by this point, increasing from 4.95%
near the base of the sharp halocline to 5.15% at the
bottom. In this averaged picture a persistent ‘‘chimney’’
appears directly beneath under the dense source, which
is frequently the site of dense sinking. There is a slight
bowing up of the isohalines underneath the fresh source
where water lightened by diffusion tends to rise. It is
interesting to note that in this averaged picture there is
no indication that the deep water is ventilated—that is,
the interior isohalines extend from the left wall of the
tank to the right, isolating the bottom water.

The streamfunction averaged over a 10-min interval
starting at 35 minutes is shown in Fig. 5. There is a
strong surface-trapped circulation feeding entrainment
into the dense source; on average, fluid from the dense
source sinks no more than halfway through the tank
before detraining from the plume and recirculating into
the surface waters. There is a weak remnant of circu-
lation that ventilates the deep waters in the tank along
with some evidence of local recirculation in the deep
water.
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FIG. 5. The average streamfunction for the control case after 35 min.

FIG. 6. Control case, illustrating the repetitive cycle by which the
tank’s deep fluid is renewed. Fluid of salinity greater than 5.1% is
shaded.

Examination of the fields as a function of time shows
that the circulation is actually proceeding through a re-
petitive cycle of motions illustrated using the salinity
field in Fig. 6. The cycle begins with a plume sinking
directly underneath the dense source and a fresh layer
extending across about half the width of the tank (panel
a). The fresh surface layer propagates along the top of
the tank, sweeping the dense plume to the end wall, and

detaching a segment of dense plume water that de-
scends, isolated, into the interior of the tank (panel b).
The dense plume continues to sink along the end wall
for about 30 seconds (panel c), but then the dense water
accumulating under the salty source punches through
the surface stratification and forms a new dense plume
(panel d). The process then starts over again. A complete
cycle takes approximately 3½ minutes.

It is interesting to observe that a bit of dense water
(the shaded region in Fig. 6) reaches the bottom of the
tank via this process. Thus, the model’s analog of ‘‘deep
water’’ renewal is occurring intermittently through ep-
isodic sinking events terminated by the periodic infusion
of freshwater despite the fact that the forcing is steady.
There are hints of this process in the average salinity
field (Fig. 4) and average streamfunction field (Fig. 5).
In the average salinity field, a region of high salinity
can be seen under the dense source at about X 5 0.6
m, seemingly cut off from any possible source. In the
average streamfunction field, a small amount of flow
into the deep water underneath the dense source can be
seen. Also, in the deep waters under the dense source,
the average flow crosses the average isohalines; the
model is not very diffusive, so it is not possible for slow
vertical flow crossing isohalines to densify by diffusion
along the way. Instead, the deep flow seen in the average
streamfunction field is intermittent in nature.

In order to judge how water parcels sink, the tank
was seeded with 100 floats released after 40 minutes.
Figure 7 is a ‘‘spaghetti plot’’ showing every third float
track. There are two distinct sinking regions: one di-
rectly underneath the dense source and one adjacent to
the right-hand wall. This is not surprising considering
the cycle that the fields go through, but it is nevertheless
interesting to note that the existence of two sinking
regions is not immediately discernible from the average
streamfunction field (Fig. 5). The majority of floats that
sink in one of the dense plumes detrain from the sinking
region at a fairly shallow depth, recirculate to the sur-
face, and are reinjected into the interior of the tank.

Of the 100 floats released into the model, 13 descend-
ed in the dense plume directly under the source (the
‘‘left’’ plume), 25 descended in the plume along the
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FIG. 7. Tracks of 32 floats added to the control run.

FIG. 8. Tracks of floats in the left and right plumes.

right-hand wall (the ‘‘right’’ plume), and 12 descended
in both plumes at various times. Tracks for the 13 floats
that cycled only through the left plume are shown in
the upper panel of Fig. 8, while floats that went only
through the right plume are shown in the lower panel.
There is a distinct difference in the character of the float
tracks for the two plumes and thus for the water parcels
descending in the plumes. The floats associated with the
left plume are injected more deeply into the tank while
those of the right plume are more involved in the local,
shallow recirculation. This is consistent with the ob-
servation from Fig. 6 that it is primarily fluid that de-
scends in the left plume that ventilates the deep water
in the tank and that this process occurs in episodic sink-
ing events interrupted by freshwater sweeping across
the top of the tank.

The maximum horizontal velocity in the interior of
the tank measured across a line 44 cm from the left wall
is shown in Fig. 9. The numerical model evolves interior

velocities in a way similar to that observed in PR1 but
with more variability. The initial velocity, about 0.8 cm
s21, is close to the observed value there (0.7 cm s21).
The spin up of the tank is fully resolved in time by the
numerical model, and it can be seen that the maximum
value is reached in about 2 minutes. The numerical mod-
el comes to its equilibrium velocity in a shorter time
than the laboratory experiment: somewhat over 10 min-
utes versus 30 minutes. This timescale is set by the time
it takes the signal from the fresh source to propagate
along the top of the box and interact with the dense
plume, decreasing the buoyancy flux into the interior of
the tank. The box is shorter in the numerical experiment
than the laboratory experiment (0.75 m versus 0.92 m),
but not enough to explain all of the discrepancy. Part
of the difference is due to the fact that in the laboratory
experiment the surface buoyancy sources were approx-
imately point sources, while the numerical sources are
line sources; in the laboratory the freshened surface wa-
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FIG. 9. Time evolution of the maximum interior velocity for the
control run.

FIG. 10. Distribution of salinities in the control run after 35 min.
Bins are 0.01% wide; the log of the fraction of population in the bin
is plotted on the y axis.

FIG. 11. Population distribution for ocean salinity (top) and tem-
perature (bottom) based on annually averaged data from Levitus
(1982). Both figures are plotted such that density increases to the
right. Salinity bins are 0.02 psu wide; temperature bins are 0.18C
wide.

ter was obliged to spread outward before propagating
along the surface. Additionally, sidewall friction is pres-
ent in the laboratory but not in the numerical model;
this will tend to retard the surface plume’s flow in the
laboratory. (Note that endwall and bottom friction are
included in the numerical model.)

The population distribution of salinities for the con-
trol run after 35 minutes is shown in Fig. 10. A pro-
nounced asymmetry is clearly evident, with a large
amount of water slightly saltier (and thus denser) than
the initial value of 5% and a small amount of very light,
fresh water. The asymmetry is caused by the tendency
of the dense water to advect away from the densening
source, preventing further densification, while the light
water tends to remain near the freshening source, be-
coming increasingly fresh. The forcing conditions are
a balanced flux dipole so the volume-averaged salinity
in the tank must remain constant; however, the most
common salinity does not have to remain at the initial
value of 5%, and has increased.

The asymmetric salinity population in the model is
similar to the highly skewed temperature distribution
that occurs in the real oceans, shown in Fig. 11. Salinity
in the numerical model is analogous to temperature in
the ocean because the sense of the thermohaline cir-
culation in the present epoch is determined primarily by
temperature rather than salinity differences—thus, the
close correspondence of model salinities (Fig. 10) to
oceanic temperatures (lower panel of Fig. 11). By con-
trast, oceanic salinities less than 37.50 psu show no
evidence on the large scale that densified water advects
rapidly away from the densifying region; in fact, the
distribution is roughly symmetric about the central
peaks. It is interesting to note, however, that waters of
salinity greater than 37.50 psu do have the character-
istically skewed shape associated with a salinity-driven
circulation. These are the Mediterranean Sea waters.

ENERGY EVOLUTION

The bulk energetics of the 2D model illustrate an
interesting aspect of the potential energy balance. As-
sume that the working fluid has a linear equation of
state and that exactly equal but opposite heat fluxes are
being used to drive the system: Q watts of heating are
applied at the surface at one end of the tank and Q watts
of cooling at the other end. The applied heating produces



916 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 12. Evolution of energies in the control run over the first 10
min. KE is the kinetic energy, PE is the potential energy, CONV is
the KE to PE conversion term, DISS is the dissipation, and CM is
the ‘‘center of mass’’ term. The latter three are time integrated.

a density change of 2Dr, while the applied cooling
produces a density change of 1Dr. The heating and
cooling are both applied on the same geopotential sur-
face at height H. The total tank-integrated change in
potential energy of the system due to all sources is then
(2DrgH) 1 (1DrgH) [ 0. Thus, the sources do not
directly change the volume-integrated potential energy
of the system. Nevertheless, motions appear in the work-
ing fluid; this is because the initially homogeneous body
of water has available potential energy to convert to
kinetic energy. A heavy parcel injected at the surface
will descend through the water column, releasing some
of this PE; a light parcel injected at the surface, by
contrast, cannot rise any farther. The result is that during
the first few minutes a stratification is established, the
center of mass of the system lowers, and this released
potential energy is converted to kinetic energy.

Figure 12 shows the time evolution of the potential,
kinetic, conversion, dissipation, and center of mass en-
ergies in the model [using the terminology from Eq. (3)]
during the first 10 minutes. As discussed above, the
potential energy drops rapidly when the experiment is
initiated, while the kinetic energy increases. After about
5 minutes the initial heavy plume has moved along the
bottom of the tank to the left-hand wall where it splashes
up. This vertical advection of heavy water (Wr9 . 0)
briefly increases the potential energy of the system at
the expense of kinetic energy, the reverse of the typical
conversion process.

The integrated dissipation term continues to increase
as time goes on. This term is apparently unbalanced
since the net tank-integrated input of potential energy
by all the sources is identically zero, and kinetic energy
cannot be extracted from the initial available potential
energy indefinitely. This apparent imbalance is caused
by the neglect of the pressure work term [PW in Eq.
(3)], which is required to be identically zero in all mod-
els with an incompressible fluid despite the fact that

density changes are allowed. In actuality, the decrease
in fluid density is accomplished by an expansion of fluid
against pressure, thereby performing work on the sur-
rounding fluid; the increase in density is accomplished
by contraction with applied pressure, and work is per-
formed by the surrounding fluid. In steady state, the
constant dissipation is balanced by constant input of
mechanical energy into the system through this (ne-
glected) pressure work term. For this work to be pos-
itive, it follows that the expansion of the fluid must
occur at a higher average pressure than the contraction.
It should be noted that unbalanced dissipation is not a
unique characteristic of this particular model; it will be
a feature of any model that allows changes in density
but also assumes incompressibility—which is to say,
most oceanic GCMs.

The effect of rotation

The numerical model was configured as the zonal
average of the three-dimensional equations of motion
so that at least the rudimentary aspects of the rotating
case could be examined. The rotation rate was chosen
such that the Rossby number would be small, U/fL ;
0.01. Using the values of U and L given in section 2,
this gives a rotation rate of f ; 0.5 rad s21.

It is important to remember that the model is reen-
trant, with no side walls in the X direction; thus, there
is no analog of ‘‘western boundaries’’ along which flow
can develop. This configuration is similar to that studied
in the laboratory by Hignett et al. (1981), who examined
the long-term steady state of convection in a rotating
annulus driven by a temperature gradient from below.
They did not examine either the spinup of the system
or (due to equipment limitations) the interior density
structure. Both of these are amenable to examination
with a numerical model.

Figure 13 shows the salinity field in the rotating mod-
el, 0.5 minutes after initiation of the experiment. The
corresponding figure for the nonrotating case is also
shown for comparison. In the presence of rotation the
degree to which the nose of the plume can spread hor-
izontally is restricted, as has been described by Jones
and Marshall (1993). It can also be seen that the plume
penetrates farther in the same amount of time.

The population distribution of salinity in the rotating
model after 15 minutes is shown in Fig. 14. The range
of salinities encountered in this case is far wider than
in the control case. This is due to the rotational inhi-
bition of overturning in the tank; fluid parcels spend a
longer time near the forcing regions when the system
is rotating. The boundary conditions are flux driven rath-
er than set-value so that the longer parcels remain near
the forcing spots, the more extreme value of salinity
they will take on. As a result, both the maximum and
minimum salinities are greater than in the control case.

The population peak near 5.3% grows with time dur-
ing the 80 minutes the model was run. It arises from
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FIG. 13. Salinity field for the rotating test case (upper panel) after 0.5 min. The field for the
nonrotating case (lower panel) is also shown for comparison.

FIG. 14. Distribution of salinities in the rotating run after 15 min.
Bins are 0.01 psu wide; the log of the fraction of population in the
bin is plotted on the y axis. The data for the control run is shown
for comparison.

mixing that the descending dense plume generates in
the interior of the tank. This interior mixed region can
be seen in Fig. 15, the salinity field after 80 minutes,
underneath the dense plume between the 5.30% and
5.35% isohalines. Similar but smaller peaks that are
remnants of individual dense plumes can be seen in Fig.
14 between salinities of 4.5% and 5.0%.

The hydrostatic case

It is instructive to compare the results shown above
with the results of the model configured as a hydrostatic
system. The motivation for doing this is that large-scale

models of the oceanic circulation use a similar set of
equations to the ones used here but with the hydrostatic
assumption made from the outset. Since the nonhy-
drostatic results are known in this case, comparing them
with the results of a hydrostatic model should indicate
specific ways in which hydrostatic models yield differ-
ent simulation results than the case when fuller physics
are included. A caveat that must be kept firmly in mind
is the difference in scale of the nonhydrostatic plumes
for a global 2D model versus the small-scale model used
here. In a global 2D model the expected size of the
nonhydrostatic convective plumes is far smaller than
one grid point, while in the small-scale model the
plumes are resolved by several grid points. Neverthe-
less, the comparison can yield some interesting insights
into the difference in behavior between the two situa-
tions, and it should be remembered that even in the
large-scale models the hydrostatic assumption is not val-
id in the convecting regions.

The hydrostatic model was constructed by changing
the vertical momentum from a fully prognostic one in
the vertical velocity w to a simple hydrostatic balance

5 2gr9.p9z (4)

Along with this change to the equations, the treatment
of the tracer fields was altered to prevent a statically
unstable condition from persisting; that is, a ‘‘convec-
tive adjustment’’ scheme was added. The scheme used
here is one common in large-scale oceanic modeling:
under statically unstable conditions, the vertical diffu-
sion constant between gridboxes is set to a value several
orders of magnitude larger than the value used in stable
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FIG. 15. Salinity field for the rotating case, 80 min.

FIG. 16. Hydrostatic test case, T 5 2 min.

conditions. The vertical diffusion equation is then
solved implicitly to prevent instabilities. This scheme
effectively removes the instability in just a few model
time steps. This scheme was deliberately chosen to be
similar to that used in large-scale modeling so that com-
parisons with such models would be more straightfor-
ward.

Figure 16 shows the salinity field for the hydrostatic
run at time T 5 2 min. This can be directly compared
to the top panel of Fig. 3, the control model for the
same time. There are a number of interesting differences
between the model making the hydrostatic approxima-
tion and the control run. First, the hydrostatic model is
noisier then the nonhydrostatic one. V. Sheremet (per-
sonal communication, 1992) has pointed out that hy-
drostatic models have a 2Dx gridpoint instability that
arises in potentially statically unstable conditions. The
instability is due to the removal of the vertical velocity
information from the internal gravity wave equation,
which then becomes unbounded in growth rate. Ordi-
narily this small 2Dx effect is easily damped out by
horizontal viscosity, and test runs of this model with
higher viscosities indeed showed that the noise could
be similarly damped. The undamped runs have been
used here both to be consistent with the control run and
to emphasize the point that a properly constructed non-
hydrostatic model can have less noise than the hydro-
static model at low viscosities. Another cause of this

noise is propagating pressure waves that generate weak
vertical instabilities due to truncation errors in the ad-
vection algorithm. Convection rapidly mixes these with
a large diffusion coefficient, while in the nonhydrostatic
case the marginally heavy parcel falls quite slowly.

The second point is that the dense fluid in the hy-
drostatic run has penetrated farther into the fluid in the
same amount of time compared to the control run. The
behavior can be understood from Fig. 17, which shows
the salinity fields in the hydrostatic (upper panel) and
control model (lower panel) at 0.25 minutes. At this
time the control model has just begun to form the dense
plume that ultimately descends from the source, drawing
salty fluid to the bottom of the tank. The situation with
the hydrostatic model is quite different; the statically
unstable conditions underneath the dense source force
a persistent column of convectively adjusted water im-
mediately below, which rapidly averages the high sa-
linity values over the depth of the water column. Once
this convecting column is initiated, its high diffusivity
makes it function as a kind of ‘‘pipeline’’ whereby sur-
face conditions are injected directly into the deep fluid.
The dense plume moves away from this source region
without having had to fall vertically through the tank,
which is why it has advanced farther than the plume in
the control case (Fig. 16).

The third manner in which the hydrostatic case differs
appreciably from the control is in the structure of the
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FIG. 17. Contours of salinity after 0.25 min for the hydrostatic test case (upper panel) and the
control case (lower panel).

FIG. 18. Average salinity field after 35 min for the hydrostatic test case.

‘‘nose’’ of the dense plume that propagates along the
bottom of the tank. The hydrostatic model cannot sup-
port the kind of density inversion that is evident in Fig.
3, and the dense water sinks into the body of the plume.
The feature is thus spread out over a larger vertical
extent than is seen in the control model.

The average salinity field in the hydrostatic model
after 35 minutes is shown in Fig. 18. The differences
from the control case (Fig. 4) are interesting. The control
case goes through the previously described four-stage
cycle; the hydrostatic model does not exhibit such an
oscillation. The hydrostatic model has a pycnocline that
is approximately twice as thick as the nonhydrostatic
model; this is evocative of the overly thick thermoclines

commonly found in primitive equation OGCMs, which
generally make the hydrostatic assumption. This thicker
pycnocline is due to the same processes that cause great-
er noise and enhanced mixing in the hydrostatic model,
that is, the gridpoint instability and convective mixing
triggered by truncation errors, as described above. In a
model that uses a centered-differencing advection al-
gorithm, overshoots and other nonmonotonic behavior
could generate similar extraneous convective mixing.

In the hydrostatic model the entire portion of the tank
to the right of the dense source has been vertically ho-
mogenized by contact with the dense source. Freshwater
from the light source is incapable of advecting past the
dense source, as happens with regularity in the four-
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FIG. 19. Population distribution of salinity for the hydrostatic mod-
el at 35 min. The control run is shown for comparison.

FIG. 20. The average streamfunction field for the hydrostatic test case after 35 min.

stage cycle of the control run. Instead, the convective
column forms a barrier to the flow. Water to the right
of this barrier is almost isolated from the fresh source;
as a result it is distinctly saltier than the interior fluid,
as can be seen in the population distribution of salinities
after 35 minutes (Fig. 19). An additional peak in the
distribution for the hydrostatic case can be seen at a
salinity of about 5.13%. Thus, there is a systematic dif-
ference in evolved salinities between the hydrostatic and
nonhydrostatic models. This difference, however, could
be ameliorated by three-dimensional flow around the
convective source. Whether such a flow would be pos-
sible in a particular case depends on the details of the
topography, surface forcing, etc.

The circulation that the hydrostatic model develops
is also different from the control case. The average
streamfunction after 35 minutes is shown in Fig. 20.
Note that the contour interval is twice that used in the
control run (Fig. 5). The flow is stronger than in the
control case and has more deep flow. Upwelling through
the halocline is more broadly distributed with much of
the flow apparently avoiding the fresh region altogether,
unlike the control case.

High-diffusion test case
The effect of anomalously high diffusion (either nu-

merical or explicit) on the results of numerical models

is another area of interest. To explore the effect that
anomalously high diffusion (either numerical or explic-
it) has on the results shown here, a series of runs was
performed with both viscosity and diffusivity set to 5
3 1026 cm2 s21, five times higher than the control value.

Figure 21 shows the salinity field for the high-dif-
fusion run at T 5 2 min. The figure can be directly
compared to the top panel of Fig. 3, the field for the
control case at the same time (and plotted with the same
contour intervals). The high-diffusion run shows a num-
ber of differences that are not surprising: the fields are
generally more diffuse and have advanced farther than
in the control case. The salinity values at the nose of
the advancing plume are the same as those in the control
case, but the dense fluid behind the nose has advanced
farther. The outline of the eddy above and behind the
nose of the advancing dense plume can be seen but has
been eroded by diffusion and so lost its definition and
decreased in amplitude.

It is more interesting to observe what has happened
to the four-state cycle that was illustrated in Fig. 6 for
the control case. A similar set of pictures for the high-
diffusion test case is shown in Fig. 22. In the high-
diffusion run the dense plume never detaches from the
end wall. Dense fluid thus reaches the interior via a
boundary layer rather than being injected directly into
the interior of the fluid, as was the case with the control
run. In the control case, dense water periodically de-
tached from the dense source and was injected into the
tank just below. In the high-diffusion case, this is now
the site where light fluid is engulfed by a persistent eddy
formed by the ‘‘sloshing’’ of water back and forth in
the tank. The sloshing behavior proceeds despite the
higher value of the diffusion and has the distinct effect
of modulating the amount of dense water that penetrates
to the interior of the tank. This is not as strong as in
the control case, where the water column actually gets
capped off and the dense plume ceases due to periodic
surges of freshwater, but the remnants of this behavior
can be seen in the variability of the dense plume’s trans-
port.

The average salinity field after 20 minutes is shown
in Fig. 23. The bowl shape of the halocline is more
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FIG. 21. Contours of salinity for the test run with diffusion 5 times that of the control run.
T 5 2 min.

FIG. 22. High-diffusion test case, illustrating the high-diffusion an-
alog to the control run’s intermittent ‘‘deep water’’ renewal.

evident than in the control run and the ventilation path
of the model’s deep water is specifically evident as a
narrow umbilical running from the dense source to the
wall and thence to the deep interior. Even in this high-
diffusion case, however, the halocline is not as thick as
the hydrostatic case.

The average streamfunction field after 20 minutes is
shown in Fig. 24. The observation from the salinity

fields that the flow never detaches from the right-hand
wall is borne out; there is no indication of descent un-
derneath the dense plume. Additionally, the flow ven-
tilates the bottom of the tank in a smoother and more
constant fashion than in the control model. In fact, the
streamfunction is more similar to the hydrostatic case
than to the control case, which is consistent with the
idea that the addition of the convective algorithm greatly
increases the overall mixing in the tank.

4. Discussion

It is interesting to compare the circulation evolved by
the hydrostatic model to the nonhydrostatic control
model. The primary circulation in the control model
(Fig. 5) penetrates no deeper than halfway into the tank,
while in the hydrostatic case (Fig. 20) it is close to
symmetric about the center of the tank, just as observed
in PR1. This is despite the fact that the hydrostatic model
includes highly simplified physics to handle the con-
vective adjustment.

The primary reason for this can be understood by
recalling from PR1 the behavior of the laboratory ex-
periment when a sloping bottom was inserted under-
neath the dense source. In that case the dense plume
lifted off the bottom of the tank and circulation was
mostly at intermediate depths, just as in the control case
here. This happened in the laboratory case because re-
duced entrainment allowed the tank to fill from the bot-
tom up, lifting the plume off the bottom once the in-
fluence of the surface light water on the dense plume
was felt. In the laboratory experiment without a bottom
slope the circulation never lifted off the bottom because
the entrainment was too large.

There is analogous behavior in the two numerical
models. The circulation in the control case lifts off the
bottom of the tank, while the hydrostatic model’s cir-
culation remains essentially symmetric about middepth.
The mixing (and therefore numerically simulated en-
trainment) is large in the hydrostatic case because of
the algorithm used to implement the convective ad-
justment. It follows that the entrainment in the control
case must be less than it should be for an accurate sim-
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FIG. 23. The average salinity field after 20 min in the high-diffusion test case.

FIG. 24. The average streamfunction field after 20 min in the high-diffusion test case.

ulation, given the observation that the tank fills with
dense water and the plume lifts off the bottom.

The difference in boundary conditions between the
laboratory experiment and the numerical model might
also be thought to have some effect. Recall that in PR1,
the buoyancy flux is accomplished via small but finite
volume fluxes; here there are no volume fluxes. This
was examined in a test case where the fluid densities
near the sources were set to the desired values, rather
than changed via buoyancy fluxes. This simulates the
instantaneous withdrawal and replacement of a small
volume of fluid near the sources with fluid already at
the target density. The result was that the four-stage
cycle took approximately twice as long and was more
irregular as well. Examination of this case showed that
the surface freshwater flows and eddies were sometimes
too weak to cap off the water column and prevent the
dense plume from sinking. As a result, the time-aver-
aged circulation pattern was a bit deeper than in the
control case (Fig. 5), but far from being as symmetric
as in the hydrostatic case (Fig. 20). Thus, the difference
in boundary conditions between the laboratory and nu-
merical cases has an influence toward encouraging the
numerical case’s plume to lift farther from the bottom
of the tank, but the difference in entrainment is the
stronger effect.

The hydrostatic model overestimates mixing in the
region between the dense source and the right-hand wall
(Fig. 18). It is virtually impossible to have horizontal
surface flow past the dense source because the high

diffusivities associated with the convective adjustment
scheme distribute the freshwater signature over the en-
tire water column, with the result that no coherent signal
is ever seen to the right of the dense source. Salinities
in this region are therefore quite poorly represented.
However, three-dimensional flow, not allowed in the
two-dimensional model used here, might reduce this
effect.

More illumination is shed on the difference between
the hydrostatic and nonhydrostatic results by consid-
ering the results of the high-diffusion model. The
streamfunction in this case (Fig. 24) shows that flow is
continuously penetrating to the bottom of the water col-
umn just as in the laboratory experiment and in the
hydrostatic model. This is consistent with the view that
the control model’s plume lifts off the bottom of the
tank due to insufficient entrainment, which is made up
for by greater overall diffusion in the high-diffusion test
case. However, the high-diffusion model achieves this
by trapping the flow to the right-hand wall; dense fluid
only enters the deep part of the tank via this boundary
current. This is quite different from the flow observed
in the laboratory experiments of PR1 although it is rem-
iniscent of the flow observed by Rossby (1965) in his
laboratory experiments, which were performed with a
linear gradient of forcing and generally at high viscos-
ities.

These results support the idea that it is critical to
correctly model the overall entrainment and detrainment
in convective regions to accurately simulate buoyancy-
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driven, meridionally overturning flows such as the
earth’s thermohaline circulation. Much of the deep struc-
ture in the flows modeled here was directly set by the
overall entrainment and detrainment patterns in the con-
vective region. In the laboratory experiments of PR1 it
was additionally shown that the time-dependent behav-
ior of the deep ventilation is sensitive to the overall
entrainment. The time variability seen here is mostly a
result of a repetitive cycle of motions that involves
freshwater capping off the dense source and a dense
plume subsequently punching through the cap. This cy-
cle is damped as the mixing is increased and disappears
entirely when the hydrostatic assumption and a con-
vective adjustment scheme that has high mixing are add-
ed. This suggests that large-scale models that employ a
convective adjustment scheme, or otherwise have un-
realistically high values of mixing, may damp some
natural variability associated with this process.

5. Conclusions

We have examined the process of building a pyc-
nocline by using a two-dimensional, nonhydrostatic
model configured to be similar to the laboratory ex-
periments of Pierce and Rhines (1996); the forcing is a
balanced dipole of salinity fluxes with a net density
change of zero. This methodology allows us to examine
aspects of the laboratory system that are difficult to
measure without disturbing the flow, such as the overall
energetics and the population distribution of densities.
Our conclusions are as follows.

1) The control case’s analog of deep-water ventilation
occurs intermittently despite the constant surface
forcing. The ventilation is accomplished through a
repetitive cycle: (i) Freshwater propagates along the
top of the tank from the freshening to the densifying
source. (ii) The freshwater caps off the water column
under the dense source, preventing ventilation of the
deep waters. (iii) The freshwater under the densi-
fying source gradually increases in density until it
punches through the halocline and initiates deep ven-
tilation. The cycle then repeats.

2) The tendency of light water to remain under the light-
ening source and dense water to rapidly convect
away from the densifying source produces a char-
acteristically skewed population distribution of den-
sity. With a balanced surface density flux, the mean
density remains constant, but the most common den-
sity becomes considerably denser than the mean.
This skewed population density can be seen in the
World Ocean’s temperature distribution but not in
the salinity distribution, which is consistent with the
fact that the earth’s thermohaline circulation is ther-
mally direct. The Mediterranean Sea waters are an
exception to this; they show a distribution consistent
with a saline-direct large-scale circulation.

3) The presence of rotation has a strong impact on the

evolved density distributions. Rotation inhibits me-
ridional flow with the result that water remains near
the sources for a longer time. As a result, the rotating
system shows a considerably wider range of densities
than the nonrotating system.

4) There were significant differences between the be-
havior of the nonhydrostatic control case and a test
case that used the hydrostatic assumption and a con-
vective adjustment scheme. The hydrostatic case
evolved noisier fields than the fully nonhydrostatic
model due to the enhanced mixing; also, the range
of salinities evolved by the hydrostatic model was
larger than in the the control model since part of the
tank was isolated by a strong convective barrier to
flow.

5) Although the balanced sources do not directly cause
any change in the volume-integrated potential energy
of the system, motions appear in the fluid because
the initially homogeneous body of water has avail-
able potential energy that can be tapped. After the
available potential energy is released, motions con-
tinue (and energy is internally dissipated) although
no energy is apparently being supplied to the system.
This is because the pressure work term is neglected
in the model used here and in most oceanic general
circulation models, which specify an incompressible
fluid despite allowing changes in density.

Acknowledgments. We would like to thank an anon-
ymous reviewer for pointing out the effect that the dif-
ference in boundary conditions might have on the ex-
periment, as described in section 4.

APPENDIX

Derivation of the Model Equations

a. Momentum equations

The model derivation begins with the decomposition
of the pressure and density fields into horizontally av-
eraged and perturbation components

r 5 r̄(z, t) 1 r9(x, y, z, t) ø r (A1)o

p 5 p̄(z, t) 1 p9(x, y, z, t). (A2)

Consistent with the Boussinesq assumption, it is as-
sumed that a characteristic density for the system ro can
be sensibly chosen and used in terms other than the
buoyancy forcing. The background hydrostatic state is
simply 5 .p̄ gr̄z

After subtracting off the background hydrostatic state,
the momentum equations become

Du p9x 22 f y 1 hw 5 2 1 n¹ u (A3)
Dt ro
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Dy p9y 21 f u 5 2 1 n¹ y (A4)
Dt ro

Dw p9 gz 22 hu 5 2 2 r9 1 n¹ w, (A5)
Dt r ro o

where u, y, and w are the velocity components, f 5 2V
sinu, h 5 2V cosu, V is the rotation rate of the earth,
u is the latitude, n is viscosity, r9 is the perturbation
density, and r9 is the perturbation pressure.

The horizontal Coriolis terms in Eqs. (A3) and (A5)
cannot be generally neglected in nonhydrostatic cases
since the vertical velocities and accelerations can be
large. However, this model’s purpose is to supplement
laboratory experiments where the rotation vector will
always be aligned with the vertical. In such cases cos
u [ 0, and the horizontal Coriolis terms do not appear.

The density equations for the system are

Du
25 k ¹ u (A6)uDt

DS
25 k ¹ u (A7)SDt

r 5 r(u, S), (A8)

where u is the potential temperature, S is the salinity,
and the applicable diffusivities are ku and kS. In most
of the experiments shown here, either temperature or
salinity (but not both) was used.

The fluid is assumed to be incompressible;

=·u 5 0. (A9)

The nonhydrostatic system of equations using this as-
sumption is typically called the ‘‘anaelastic’’ system and
was first studied in this context by Ogura and Phillips
(1962).

A two-dimensional model is constructed by taking
the horizontal average of the equations given above and
assuming periodicity in X. A similar approach was taken
by Smith (1989). Letting the horizontal averaging op-
erator be indicated by angle brackets,

L1
^∗& 5 ∗ dx, (A10)E2L

2L

and letting capital letters indicate horizontally averaged
quantities (so U 5 ^u&, P 5 ^p9&, etc.), the momentum
and mass continuity equations become

]U
21 ^yu 1 wu & 2 f V 5 n¹ U (A11)y z]t

]V Py 21 ^yy 1 wy & 1 f U 5 2 1 n¹ V (A12)y z]t ro

]W P gz 21 ^yw 1 ww & 5 2 2 r9 1 n¹ W (A13)y z]t r ro o

V 1 W 5 0, (A14)y z

where the terms with x derivatives have vanished due
to the periodic boundary conditions in x. The mass con-
tinuity equation then suggests defining a streamfunction:

C 5 2V (A15)z

C 5 W. (A16)y

This simplifies the solution procedure since an imper-
meable boundary can easily be implemented by setting
C constant on the boundary.

The pressure can be eliminated by forming a hori-
zontal vorticity equation from the curl of the V and W
momentum equations:

]z g
21 U·=z 2 ( f U) 5 2 r9 1 n¹ z, (A17)z ydt ro

where z 5 Wy 2 Vz [ ¹2C. The Coriolis parameter f
is taken to be constant. In this step we assume that
averages of products are the same as products of the
averages, that is, that ^ywy& 5 ^y&^wy& 5 VWy, etc. Since
the averaging is being performed in the x direction, this
assumption removes the role of eddy transports in that
direction. This 2D model has no extent in the x direction,
however, so the omission is not a drawback. Eddy trans-
ports in the y–z plane can still be developed.

The previous assumption also allows us to write the
U momentum equation as

]U
21 VU 1 WU 2 f V 5 n¹ U. (A18)y z]t

Finally, using the definition of C, Eq. (A17) becomes

] g
2 2¹ C 1 J(C, z ) 2 ( f U) 5 2 r9 1 n¹ z,z y]t ro

(A19)

which is Eq. (1).

b. Energy equations

An equation for the kinetic energy of the system K
can be obtained by multiplying Eq. (A11) by U, Eq.
(A12) by V, Eq. (A13) by W, and summing:

DK
2˜5 2U·=P 2 Wgr9 1 n¹ K 2 r eoDt

˜5 =·(2PU 1 r n=K ) 2 Wgr9 2 r eo o

˜1 P=·U, (A20)

where K [ (½)ro(U2 1 V2 1 W 2), Ũ [ (Ui 1 Vj 1
Wk), and e is the dissipation, defined by e [ n ((]Ũ/
]y)2 1 (]Ũ/]z)2).

If the geopotential F is taken to be equal to gz, then
the potential energy can be defined as P [ rF. The
evolution of the potential energy can then be written as
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DP DF Dr
5 r 1 F

Dt Dt Dt
25 Wgr̄ 1 Wgr9 1 k¹ P 2 2kgr 1 FQz

5 =·(k=P) 1 Wgr̄ 1 Wgr9 2 2kgr 1 FQ.z

(A21)

Comparing Eqs. (A20) and (A21) shows that the Wgr9
term accomplishes the conversion from potential energy
to kinetic energy.

The fourth term on the right-hand side of Eq. (A21)
comes from the diffusion term and represents the change
in potential energy of a system in a gravity field whose
center of mass moves owing to diffusion.

If we are interested in the energy budget of a closed
system, then Eqs. (A20) and (A21) can be integrated
over the volume of the tank. The divergence terms on
the right-hand side integrate to zero; the term inWgr̄
Eq. (A21) does also since is constant over the widthr̄
of the tank while W must integrate to zero over the
width. We are left with Eqs. (2) and (3).
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