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EXCHANGE OF WATER IN THE SOIL-PLANT-ATMOSPHERE SYSTEM
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Abstract The developed methodology (the scaling
procedure) was shown how to solve the problems of fluxes
and of soil water storage in systems with heterogeneous
soil-plant-atmosphere boudary.
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INTRODUCTION

Solution of fluxes in the soil-plant-atmosphere
system (SPAS) are dominantly influenced by two
characteristic features:

a) physical heterogeneity in each part of
the system,

b) the strongly non-linear type of equations
describing fluxes in each part of the system.

All deterministic solutions dealing with the
transports in the SPAS are then approximative.
This contribution is not discussing detailed pro-
cedures but it tries to offer some new views upon
the opportunities to solve fluxes and storage of
water in the heterogeneous SPAS.

SCALING OF THE RICHARDS EQUATION (RE)
IN EVAPORATION

When we consider evaporation from the
bare soil as the simplest process on the boundary
with the atmosphere, we are tackling two types
of heterogeneities: Heterogeneity of the soil and
heterogeneity of the boundary condition. The
second one we are discussing here and the

method of scaling of the Richards equation RE
by the flux boundary condition is applicable. In
addition to the dependence upon soil hydraulic
characteristics, evaporation intensity depends
on evaporative demand of the atmosphere,
mostly on net radiation and air temperature [7].
Both are heterogeneous in space. The flux on
the boundary is then non uniform in space, too,
and we are usually measuring both the flux and
the soil water content, and potential on one
vertical. The ‘extension’ of our data to realistic
areal scale is therefore plausible. We can do it
by transforming the RE to the invariant form
with regard to the variable flux on the boundary
[4]. Hydraulic characteristics of the soil are
expressed as power functions of the soil water
content and of the residual soil water content 6,.
The functions are simply transformable to the
equations of Brooks and Corey [1], BCE.
Equations of van Genuchten [8], VGE, are only
approximatively identical with our power
functions and they are applicable for §<0.9 8s,
where 05 denotes the saturated soil water
content. Soil hydraulic characteristics are in our
scaling procedure:

soil water diffusivity D[L2 T7]

D(®)=D,(©6-86,)% )

retention curve with pressure head 4 [L]

h®)=-p®-6,)7" 2)
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and unsaturated hydraulic conductivity K [LT "]
K®)=K,(0-86,)" (3)

Do, Ko, g, p, u, v are fitting parameters which
have functional relationships to parameters in
BCE and VGE. Variables of the RE are scaled
with regard to the flux go on the top boudary:

t=q3T* z=q02*©-0,)=4J0* (3)

with @, 8, and y as scaling factors, ¢ is time, z is the
vertical coordinate, orjented from z = 0 on the
surface downward. With (4) in Egs (1) to (3) we
obtain RE in the scaled form:

00 *
y—a 99 " y(l+g)-2B
o rx=190

2 o]

0Z * 0Z *
w-p OK*(6%)
? AN (5)

In order to get (5) invariant in g, and using
scaled boundary conditions and scaled D(0) =
K(6) dh/d, we obtain:

o=(2u-g)/v,p=-ulv,y=
1/v,v=g+u+l. (6)

The scaled RE invariant to the top boundary
condition is then:

00 * 0 00 *
= D*(0* -
T * az*[ ( )az*]
oK *(0*)
oZ * @)

with boundary conditions:

*

T*<0,  Z*>0, 0*=0,
T*20, Z*—e,  0*=0,
T*20, Z*=0,

00 *
1=D*@")T-K*0" ()

In addition to the solution of evaporation,
the solution is applicable as approximative for
evapotranspiration, too, when the leaf area
index LAI =< 0.8. The space heterogeneity is
then increasing due to the non uniform
distribution of plant canopy, and the importance
of the proposed procedure is increasing, too.

SCALING OF THE SIMPLIFIED RE
IN EVAPOTRANSPIRATION

When the soil is covered by vegetation and
LAI = 0.8, the RE is not fully adequate to the
deterministic description since 6(z,f) as well as
the fluxes in the soil are influenced by the uptake
of water by the plant roots. The net of roots in
the soil creates a system of ‘channels’ in which
water is flowing at velocities by orders higher
than in the neighbouring soil [7]. Roots are a
new kind of heterogeneity. The continuity
equation is therefore completed by the
extraction term S and:

00 dq
o = e SEN: ©)

In order to get rid of complicated term of
extraction, we substitute the soil water content
6 by the soil water storage W [L]. Thus we
average the heterogeneous g, and 0 fields in the
soil-root system:

W=y d (10)

where L is the depth of the main rooting zone.

The procedure is applicable mainly for cultural
plants. Then [5]:

ow oH
— = —K(W)—

ar = KNS, ()
where the total potential H = h(W) + z. [2] have
demonstrated that the known various forms K(6)
are applicable for K(W), too. We express the
term K(W) as the sum of resistances in SPAS,
K(W) = L/R(W) and:

L

R(W)=_—+RP+RO

Ksoil(W) (12)

where K soif (W) is the mean weighted hydraulic
conductivity of the soil over the depth (O,L), Rp
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is the resistance in cells of plants, usually
negligible and therefore the length of the path
of the flux of water from the root up to the
canopy can be neglected. R, is the regulated
resistance of stomatal openings, in the first
approximation Ro (W). In (4) we replace the

expression of (6-0r) by water storage
W = g} W *. Further on:
KW)y=K,w"
and in scaled form
K(W) =g, K*(W*) (13)
h(W) = —pW™"
and
h(W) = 5™ h*(W*). (14)

Equation (11) is then transcribed into the
scaled form:

o WX

o 9r*

oh*(W*)
oz *

=@t K*(W*)gh ™
vy K*(W*

90 K*(W*) (15)

With the top boundary condition:

T*20,

_OW* y-a
ar*1o

q =

’ (16)
we obtain for the condition of invariancy of Eqs
(15) and (16) to the flux on the top boundary g,
the scaling parameters:

B=ul/v,y=1/v,o=(1-v)/v. (17)

The scaled equation is then invariant to the
flux on the boundary. If we are measuring at
intervals in depth and time, we are frequently
replacing differentials by finite differences in
(15), and we continue further on in following
approximations: The soil water pressure head A
(matrix potential) is measured at z = L/2, 9z is

replaced by L and 0Z* = qg L*,
The term dh*(W*)/9dZ * is then replaced
by Ah*/L* with Ah* being the scaled form of the

difference of the pressure head at the centre of
the root zone and pressure head (potential) at the
transpiring surface, i.e., (b p - hy,,) We are
assuming that A, is given by the atmospheric
conditions at the top level of the canopy.

CONCLUSIONS

The scaling procedure enables to solve
following problems:

1. Space structure of time Tp when the
potential evapotranspiration ET), is reduced to
actual evapotranspiration ET,, where ET), is
defined as the flux g, on the boundary. Since
ET,; as well as g, at location i are
space-variable due to local climate and
microclimate, due to the non-monocultural
character of the vegetation and due to the
non-uniform plant growth at i, we expect space
variability of Tp;. This variability can be
estimated from scaled T*, once Ty is known
together with estimates of soil hydraulic
functions at one pedon-scale location.

2. In situation of Chapter 1 (evaporation)
we can estimate soil water distribution with the
depth 6(z), which is either measured, or
numerically estimated on one vertical (pedon
scale). From this known 6(z) for the given g, we
estimate 0(z) by the scaled RE for all locations
for which actual fluxes g, are either measured
or estimated from meteorologic data.

3. For each measured 6(z) and known
physical characteristics of the soil, the flux on
the boundary qo(=ET4) is estimated using the
methods of inverse problem solution, see
Chapter 1 (evaporation).

4. Hydraulic parameters of the soil-root
zone K(W) and h(W) are not identical with
independently measured parameter, of soil only
(i.e., when the sink term due to absorption of
water by roots is not considered). If W(¢) in soil
with vegetation is measured together with /2,
and with &,,,, we can estimate K() and h(W)
functions of the soil-root zone applying the
inverse procedure to the scaled approximative
equation of Chapter 2 (evapotranspiration).
These characteristics are usable for estimation
of T, etc.
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The developed methodology offers more

applications in solving the problems of fluxes
and of soil water storage in systems with
heterogeneous soil-plant-atmosphere boundary.

L.
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