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ABSTRACT

An analytical theory of barotropic tides propagating onto a sloping continental shelf from the deep ocean is
developed. The plane Poincaré waves incident from the deep ocean are obliquely angled, and a full matching
of shelf and ocean solutions is implemented. Allowance for a nonzero water depth at the coast requires an
additional term, the Bessel function of second kind, in the solution. The full solution is examined for response
characteristics for both frictionless tides and for tides affected by a linear bottom friction, and energy dissipation
rates are evaluated. Results for narrow continental shelves indicate that a small but nonzero coastal wall depth,
in conjunction with the angle of incidence, can play a significant role in modifying the response, while for wider
continental shelves both of these features greatly modify the response at resonance.

1. Introduction

Tides have fascinated men from earliest times. The
modern theory of tide is founded on Newton’s theory
of gravitation and Euler’s equations of motion. Laplace
combined these together and formed the governing
equations for the mathematical study of tides, which are
known as the Laplace tidal equations. In shallow coastal
waters the effect of gravitational forces on the response
is small compared with that of the deep ocean tide, and
bottom friction plays an important role in energy dis-
sipation.

A number of theoretical studies of tides propagating
onto a continental shelf have been published. Interest
has centered around the factors affecting amplification,
particularly near resonant conditions, and energy dis-
sipation rates. Two types of approaches have been made.
Webb (1976), Buchwald (1980), and Middleton and
Bode (1987) considered a flat-bottom shelf of constant
depth and were able to determine an exact solution by
matching with the deep ocean to predict the tide height,
currents, and dissipation of energy on the shelf. By con-
trast Clarke and Battisti (1981), Battisti and Clarke
(1982a,b), and Church et al. (1985) have taken a con-
stant slope approach (with the depth at the coast taken
to be zero), but they did not match shelf and deep ocean
solutions. On the other hand, they used coastal obser-
vation data to predict shelf tides and currents.

Webb (1976) calculated the tidal response of the Pat-
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agonian continental shelf. In his model he considered a
Kelvin wave propagating along a canal, with a rectan-
gular continental shelf at the end. He showed that max-
imum incident energy was absorbed at resonance. Buch-
wald (1980) simplified Webb’s problem by replacing the
Kelvin wave by a normally incident Poincaré wave and
showed that this absorption was maximized at a partic-
ular value of the friction parameter, which depends on
the shelf geometry. Middleton and Bode (1987) adapted
Buchwald’s model to include an obliquely incident
Poincaré wave. They concluded that the response de-
pends on the angle of incidence, and that left and right
bounded waves behave differently. The angle of inci-
dence plays an important role in determining the dis-
sipation rate of tidal energy on the shelf and the mag-
nitude and frequency of resonant peaks.

Clarke and Battisti (1981) and Battisti and Clarke
(1982a,b) have investigated tides on a smoothly sloping
shelf where longshore variations in coastline and to-
pography are on a much larger scale than the width of
the continental shelf. From a knowledge of the coastal
data they predicted offshore shelf tides and currents.
They did not consider explicitly the effects of oblique
incidence. No calculations were made to determine the
dissipation of tidal energy on the shelf. They considered
a sloping shelf but they did not take into account a
possible nonzero depth at a coastal wall. Their theories
are less applicable for a very wide shelf or for shelves
having slope less than 1023, where important additional
terms are neglected. Church et al. (1985) used a model
similar to that of Battisti and Clarke (1982a) to predict
the currents in the central Great Barrier Reef. Koblinsky
(1981) developed a one-dimensional numerical model
to predict the tidal sea level and current amplitudes
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FIG. 1. Schematic diagram showing Poincaré waves obliquely in-
cident to a sloping continental shelf. Here h1 denotes the depth at the
coast, h2 the depth at the shelf break, ho the depth of the deep ocean,
and h is the surface elevation.

across the West Florida shelf from the coastal sea level
and the cross-shelf topography.

A major aim of this paper is to determine the effects
on tidal response of having a coastal wall of nonzero
depth and an oblique angle of incidence. The inclusion
of a coastal wall in the model allows for situations where
the increase in depth at the coast is relatively steep but
not necessarily vertical. This can occur in areas of coast-
al cliffs, or simply when the increase in depth occurs
over a distance much smaller than the shelf width. Ref-
erence to a range of navigational charts shows that these
features are not uncommon.

In this paper we have considered tides on a linear
slope having a finite depth at the coast driven by incident
Poincaré waves, which impinge at an angle to the shelf.
Ocean–shelf matching allows calculation of the dissi-
pation of tidal energy on the shelf. To keep the problem
tractable it is assumed that there is no alongshelf de-
pendence of the shelf profile and that the alongshelf
scale of the tides on the shelf is much larger than the
width of the shelf (Clarke 1991). We have also ignored
effects due to alongshore variations in the amplitude of
the incident tide.

In this paper, section 2 considers the formulation of
the problem and its solution. Section 3 represents results
both for zero and nonzero shelf friction. Section 4 sum-
merizes the results with a discussion.

2. The model

a. Formulation of the problem

The model geometry of our problem is shown in Fig.
1, which represents a sloping continental shelf where
depth h is a function of offshore coordinate x. Poincaré
waves are incident at an angle a at the shelf break, h1

and h2 represent the depth at the coast and at the shelf
break, and ho represents the depth of the deep ocean.

The depth-averaged, unforced, linearized, inviscid
equations of motion for a barotropic tidal flow in a
rotating medium are given by

1
u 2 f y 5 2gh 1 X (1)t x rh

1
y 1 f u 5 2gh 1 Y (2)t y rh

h 1 (hu) 1 (hy) 5 0, (3)t x y

where (u, y) are the depth-averaged velocities in the x
direction (cross shelf) and y direction (alongshore) re-
spectively, f is the Coriolis parameter, g is the accel-
eration due to gravity, h is the surface elevation, r is
the density of water, X and Y are the bottom stresses in
the x and y direction, z is the distance up from the sea
surface, and h is the water depth.

Bottom stress can be linearized as (Battisti and Clarke
1982a)

X 5 2rr u1

Y 5 2rr y,1

where r1(x) 5 cDzuz. Here cD is the drag coefficient and
zuz is the root-mean-square velocity of higher frequen-
cies motions. Then Eqs. (1) and (2) reduce to

r u1u 2 f y 5 2gh 2 (4)t x h

r y1y 1 f u 5 2gh 2 . (5)t y h

Since r1(x)/h(x) vary slowly across the shelf, setting
5 const 5 r/ha where r is a constant friction co-r /h1

efficient and ha is the average depth on the shelf, is a
reasonable approximation (Battisti and Clarke 1982a).
Under these approximations the depth-averaged, lin-
earized shallow-water equations appropriate for tidal
motion become

ru
u 2 f y 5 2gh 2 (6)t x ha

ry
y 1 f u 5 2gh 2 . (7)t y ha
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For tidal motion of the form exp(ivt), ]/]t can be re-
placed by iv, and so from (6) and (7)

r
iv 1 u 2 f y 5 2gh (8)x1 2ha

r
iv 1 y 1 f u 5 2gh . (9)y1 2ha

Let

ir
s 5 v 1 2 , (10)1 2vha

then (8) and (9) reduce to

isu 2 f y 5 2gh (11)x

isy 1 f u 5 2gh . (12)y

Using (11) and (12) the velocities are found to be

g
u 5 (ish 1 f h ) (13)x y2 2s 2 f

g
y 5 (ish 2 f h ). (14)y x2 2s 2 f

b. Tides in the deep ocean

Velocities in the deep ocean [where r/(vha) K 1] are
found by putting ha 5 ho, r 5 0, and s 5 v in (13)
and (14), so

g
u 5 (ivh 1 f h ) (15)o x y2 2v 2 f

g
y 5 (ivh 2 f h ). (16)o y x2 2v 2 f

Substituting (15) and (16) into (3) gives
2 2 2 2] h ] h v 2 f

1 1 h 5 0. (17)
2 2]x ]y gho

Assuming an incident and reflected wave in the deep
ocean of the form

hI 5 i(k x1ly1vt)oIe (18)

hR 5 i(2k x1ly1vt)oRe (19)

and substituting into (17) using h 5 hI 1 hR gives the
dispersion relation for the deep ocean as

2 2v 2 f
2 2 2k 5 k 1 l 5 . (20)o gho

The angle of incidence of the obliquely incident wave
may be defined as

2l
tana 5 (21)

ko

as in Middleton and Bode (1987). The seaward velocity
just beyond the shelf edge is found from (15) to be

vk g f lo i(ly1vt)u 5 (R 2 I) 1 i (R 1 I) e . (22)o 2 2 [ ]v 2 f vko

c. Tides on a sloping shelf

The topography of a sloping shelf may be given by

h 1 s(x 1 a), 2a # x # 01
h(x) 5 (23)5h , x . 0.o

Equation (23) represents a shelf region of uniform slope
with a drop of h1 at the coast (x 5 2a) and a perpen-
dicular drop off at x 5 0 to a deep sea region (x . 0)
of constant depth ho. For simplicity of notation we define

h2 5 h1 1 sa.

Noting h 5 h(x) and g/(s2 2 f2) is a constant from the
definition of s, substitution of (13) and (14) into (3)
gives the full governing equation for sea level on the
sloping shelf as

2 2h h f s 2 fx xh 1 h 1 h 1 h 1 ivh 5 0.xx yy x yh h is isgh

From (18) and (19) the alongshore dependence is given
by

hy 5 ilh, (24)

so the above expression simplifies to

2 2h h f l v(s 2 f )x x2h 1 h 1 2l 1 1 hxx x [ ]h h s sgh

5 0. (25)

Since we are considering only those continental margins
whose significant bends in the coastline have a scale
much larger than the shelf width (i.e., both the along-
shore tidal scale l21 and the alongshore scale of coastline
bends is much larger than the shelf width), the l2 term
in (25) can be neglected (Clarke and Battisti 1981).
Neglecting l2 and using (23), the above expression (25)
simplifies to

h2hhh 1 hhh 1 hmh 5 0, (26)

where the complex constant m is given by
2 2f l v(s 2 f )

m 5 1 . (27)
2ss sgs

Substituting z2 5 4mh, the above equation (26) simpli-
fies to a Bessel equation of zero order and its solution
is given by

hs(z) 5 [C1Jo(z) 1 C2Yo(z)]ei(ly1vt). (28)

Here C1 and C2 are constants to be determined from the
boundary conditions. We note in the following that
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]J ]Yo o5 2J (z); 5 2Y (z)1 1]z ]z

and also that

] 2ms ]
5 .

]x z ]z

The relation between the two constants C1 and C2 can
be found from the boundary condition at the coast, that
is, u 5 0 at x 5 2a. This condition constrains hs by

f l
(h ) 5 2 h at x 5 2 a. (29)s x ss

For simplicity of expression, let us define

z , x 5 2a1
z 5 (30)5z , x 5 0.2

From (29) the coastal condition gives

C gz Y (z ) 2 Y (z )1 1 o 1 1 15 5 t (say). (31)
C J (z ) 2 g z J (z )2 1 1 1 o 1

Thus t is a complex constant that depends on the pa-
rameter g, which is defined as

f l
g 5 . (32)

2sms

d. Matching ocean and shelf solutions

The offshore component of velocity us at the shelf
break is found through (13) to be

igsC 12u 5 2ms 2 {tJ (z ) 1 Y (z )}s 1 2 1 22 2 [s 2 f z2

i(ly1vt)1 g{tJ (z ) 1 Y (z )} e .o 2 o 2 ] (33)

Now C2 can be determined from the boundary condi-
tions at the shelf break; that is, hu and h must be con-
tinuous at the shelf break. This implies that at x 5 0

h 5 h 1 h (34)s I R

u h 5 u h . (35)s s o o

These give

C2[tJo(z2) 1 Yo(z2)] 5 I 1 R (36)

and

1 1
C t gJ (z ) 2 J (z ) 1 gY (z ) 2 Y (z )2 o 2 1 2 o 2 1 21 2[ ]z z2 2

f l
5 G (R 2 I) 1 i (R 1 I) , (37)[ ]vko

where g is given by (32) and

2 21h v(s 2 f ) ko oG 5 . (38)
2 2i h s(v 2 f )2sm2

Equations (36) and (37) can be manipulated to give

2I
C 5 , (39)2 D

where

1 f l
D 5 (tJ (z ) 1 Y (z )) G 1 1 i 2 go 2 o 2 5 1 2 6[G vko

1
1 (tJ (z ) 1 Y (z )) . (40)1 2 1 2 ]z2

Therefore h on the shelf is given by

hs 5 C2[tJo(z) 1 Yo(z)]. (41)

Several ratios are useful for describing the tidal response
under differing conditions. First, the ratio of the am-
plitude of the reflected and incident wave is

zRz zh zo5 2 1. (42)
I I

The tidal amplification at the coast compared to the
incident wave amplitude in the deep ocean is given by

zh z zC z[ztJ (z ) 1 Y (z )z]c 2 o 1 o 15 . (43)
I I

The ratio of tidal height on the shelf to the that at the
shelf break is given by

zh z ztJ (z) 1 Y (z)zs o o5 , (44)
zh z ztJ (z ) 1 Y (z )zo o 2 o 2

and the ratio zhcz/zhoz is given by (44) with z 5 z1.
Dissipation D has been calculated following Middleton

and Bode (1987) and is given by

1
1/2 2 2 21/2 2 2D 5 rg(gh ) (1 2 f /v ) (I 2 zRz )cosa, (45)o2

and the normalized dissipation Dn is
2 2 21/2 2 2D 5 (1 2 f /v ) (I 2 zRz )cosa. (46)n

Another important ratio is that of the alongshore current
ys(x) to the offshore current us(x) on the shelf:

zy (x)z zslzA 1 2 f msBzs 5 , (47)
zu (x)z z f lzA 2 2smsBzs

where A and B are given by

A 5 tJo(z) 1 Yo(z) and B 5 tJ1(z) 1 Y1(z). (48)

e. Ray tracing when z is large

To examine the behavior of the solution when z is
large let us put C2 5 2iC3 in (28). Then
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hs(z) 5 [C1Jo(z) 2 iC3Yo(z)] ei(ly1vt). (49)

When z is large, Jo(z) and Yo(z) behave like 2/pz cosÏ
(z 2 p/4) and 2/pz sin(z 2 p/4), respectively. There-Ï
fore, hs can be written as

1/22 C 2 C1 3 i(z2p/4)h (z) 5 es 1 2 1pz 2

C 1 C1 3 2i(z2p/4) i(ly1vt)1 e e . (50)22

The behavior of a modulated wave (amplitude varies
slowly in space compared to the variations in the phase
function) can be described through the simplified geo-
metrical techniques of ray theory. If P(x) 5 2/pz andÏ
Q(x) 5 z 2 p/4, expression (50) represents a plane wave
if

z(1/P)(dP/dx)z K dQ/dx

1/2z K 1.

Since Bessel functions Jo(z) and Yo(z) behave like
cos(z 2 p/4) and sin(z 2 p/4), respec-2/pz 2/pzÏ Ï

tively, when z $ 3p/4, (50) can be regarded as a plane
wave of the form A(x, t)exp(iu) and ray techniques can
be applied. Therefore, the wavenumber and the fre-
quency are given respectively by the gradient and the
time derivative of the phase function; that is,

ux 5 k, uy 5 l, ut 5 v. (51)

Therefore, from (50) and (51) the wavenumber in the
x direction and the phase speed on the shelf are given
by

1/2
2ms

k (x) 5 (52)s 5 6h(x)
1/2

2v h(x)
c(x, t) 5 . (53)

25 6ms

When there is no friction,
1/2

2v h(x)
c(x, t) 5 . (54)

2 25 6h (k 1 l ) 1 ( f ls/v)o o

Since the group velocity is given by

cg 5 c2k/v, (55)

the ray path can be determined from the real part of the
expression below

l
y 5 Ïh dx. (57)E

2Ïms

3. Results

a. Parameters

There are a relatively large number of parameters to
vary in order to obtain a general description of the re-

sults of the model. These include the coastal depth h1,
the shelf edge depth h2, the ocean depth ho, and the shelf
width a. The shelf slope s is dependent on some of these.
Other physical constants are provided by the Coriolis
parameter f and the shelf bed friction parameter r. Pa-
rameters of the incident wave include the frequency v,
the angle of incidence a, and the wavenumbers k and
l, which are related to other parameters through the deep
ocean dispersion relation. It is not practical to calculate
the tidal response to the full range of all parameters, so
in the present work, the parameters have been chosen
to facilitate comparison with other published papers.

In particular, we shall consider shelves of width 150–
300 km having a shelf edge depth of h2 5 120 m and
an ocean depth of ho 5 5000 m. Variations in shelf slope
will therefore be expressed through a variation in coastal
depth h1 and shelf width. The Coriolis parameter f is
given by f 5 21.0838 3 1024 s21, appropriate for 488S
latitude. Such parameters allow comparison with the
earlier work of Webb (1976), Buchwald (1980), and
Middleton and Bode (1987) for the Patagonian shelf.
Effects of variation in the friction parameter r are also
typical of earlier work and we again use the (unusual)
definition of frequency units for v as radians per day.
Note that the M2 tide has v 5 1.40509 3 1024 s21 5
12.14 rad day21.

b. Results for the flat shelf model

As noted by Buchwald (1980) the main cause of res-
onance on a flat shelf occurs through the quarter-wave-
oscillator resonance. In this situation the tidal crest,
propagating to shore from the shelf edge where it has
been driven by the external tide, reflects from the coast
and propagates out to the shelf edge, arriving at a time
so as to be exactly in phase with the deep ocean tide
once again. Middleton and Bode (1987) extended this
work to account for the effects of oblique angle of in-
cidence.

c. Results for zero shelf friction

To facilitate interpretation of the effects of friction,
it is first necessary to gain an idea of the response when
the friction r 5 0. One response ratio of interest is the
ratio of coastal amplitude to that at the shelf break (zhcz/
zhoz). In case of zero shelf friction this ratio is one-half
of the ratio of the coastal amplitude to that of the in-
cident Poincaré wave zhcz/I. To simplify the presentation,
it is assumed that a 5 0 for these calculations. In Fig.
2 the ratio zhcz/I is plotted as a function of frequency v
and coastal depth h1 for two selected shelf widths, 150
and 300 km.

For the moderate width or narrow shelf the response
increases with increasing frequency at constant h1 as
resonance is approached. It also increases as h1 is re-
duced at constant frequency primarily as a consequence
of continuity: As the tide flows shoreward on the shelf,
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FIG. 2. Ratio of coastal amplitude zhcz/I to that of the incident Poincaré wave, I, as a function of v and h1 both for
wide (300 km) and moderate width (150 km) shelves.

FIG. 3. Dependence of zhcz/I on h1 and a when v 5 16 rad day21

for a shelf width of 300 km.

the shoaling depth demands a large surface elevation
displacement. On a moderate shelf (a 5 150 km), the
tide travels too rapidly (has too large an overall wave-
length at a given frequency) to allow resonance for the
values used in Fig. 2. For the wider shelf (a 5 300 km),
resonance is seen to occur at frequencies of approxi-
mately 15 rad day21 at h1 5 0 m, increasing in frequency
(but reducing in amplitude) as h1 is increased to perhaps
18 rad day21 when h1 5 100 m.

To investigate the effects on the response of the joint
variation of angle of incidence a and coastal depth h1,
calculations are plotted in Fig. 3 of the response zhcz/I.
In this case it is seen that (for the other parameters as
given) the maximum response occurs at a coastal depth
of some 15–20 m and with angles of incidence smaller
than about 208. There is little asymmetry in the response
for left bounded (a . 0) and right bounded (a , 0)
incident waves for smaller a although the asymmetry
increases with zaz. The results are quantitatively con-
sistent with Middleton and Bode’s (1987) Fig. 4a.

For any constant value of the coastal depth h1, narrow
shelves have a shorter ‘‘quarter-wave’’ wavelength for
resonance and hence resonance occcurs at a higher fre-
quency. This is shown clearly Fig. 4.
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FIG. 4. Variation of zhcz/I with shelf width for a coastal wall depth
of h1 5 20 m.

FIG. 5. Increase of M2 tide with the increase of shelf width a and
decrease of coastal wall depth h1.

At the M2 tidal frequency it is also instructive to de-
termine the joint effects of shelf width a and coastal
depth h1. Figure 5 shows that zhcz/I increases with the
increase of shelf width and the reduction in h1. Wide
shelves are more sensitive to a reduction in h1 than
narrow shelves.

Some general deductions can be made from the ex-
pression of phase speed (53). Phase speed decreases as
the coast is approached because the water is shallower.
Phase speed depends on l and is maximum when the
wave is left bounded (l , 0). Therefore, resonance oc-
curs at a lower frequency when l . 0 (a , 0) than
when l , 0 (a . 0), which agrees with Middleton and
Bode’s (1987) results. Phase speed increases with the
increase of h1, so a shelf with a shallower coastal wall
will resonate at a lower frequency (Fig. 2). In contrast
to the flat shelf, for any particular angle of incidence
the value of ks depends on the sign of l.

Ray theory, when applicable, proves to be an ex-
tremely powerful tool, simplifying the solution of wave
problems, usually stated in terms of partial differential
equation, to an ordinary integration along rays. These
characteristic curves are such that energy travels along
this curve and the tangent at any point to this curve is
in the direction of the group velocity. To apply the ray
theory the amplitude of the wave should vary slowly
in comparison to the variations in the phase function.
This condition is automatically satisfied for large values
of z when the roots of the Bessel function Jo(z) are
approximately those of cos(z 2 p/4). Since Jo(z) has no
complex zeroes, the positive zeroes of the equation Jo(x)
5 0 are given approximately by bm 5 (m 2 1/4)p. This
approximation is fairly good even for m 5 1, 2, 3, ···
(Bowman 1958). So the theory of ray techniques can
be applied when Re(z) is greater than 3p/4. Figure 6
shows the minimum value of Re(z) as a function of h1

and h2, in other words as a function of slope (since the

shelf width is constant). We see that z increases with
the decrease in slope and a narrow shelf needs more
gentle slope than a wide shelf to apply this theory. It
also shows ray theory can be applied to shelves with a
slope of the order of 1024. This value of z can be ob-
tained for any width of shelf.

Figure 7 shows shelves having the same slope have
a different ray path depending on the depth of the coastal
wall. This statement is true both for wide and moderate
width shelf.

d. Results for nonzero shelf friction

Figure 8 shows the response on a wide and moderate
width shelf as a function of h1 and v when bottom
friction (r 5 .001 m s21) is introduced. Comparing Fig.
8 with Fig. 2, it is clear that responses are reduced below
those that occur for no friction at all frequencies. The
reduction in response is greater on a wide shelf and is
maximum near resonant frequency. Friction is more ef-
fective in shallower water so the response increases with
increase of h1.

Since resonance at the M2 frequency occurs on a wide
shelf (350 km), the reflection coefficient amplitude of
the response on a wide shelf (a 5 300 km) is shown
in Fig. 9. The ratio zRz/I changes with h1 and it is min-
imum (but nonzero) at the resonant frequency, indicat-
ing that a small portion of the incident wave energy
reflects back to the deep ocean, and maximum energy
is absorbed on the shelf. Even at resonance those slopes
with different coastal wall depths do not absorb the same
amount of incident energy. Depending on the friction a
particular slope absorbs maximum energy. In Fig. 9 we
see that, when friction is r 5 0.001 m s21, maximum
energy is absorbed when the coastal depth is around 20 m.

The variation with bottom friction of the response
and reflection coefficient amplitudes for three different
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FIG. 6. The real part of z1 as a function of h1 and h2 on a moderate width (a 5 150 km) and wide (a 5 300 km)
shelf. The upper panels have zero friction, and the lower panels have friction r 5 .001 m s21.

FIG. 7. The ray path on a moderate width and wide shelf when
slope is 1024 and friction is zero for selected cases of coastal wall
depth.

slopes at their resonant frequencies are given in Fig. 10.
Bottom friction is a force/unit area, so an increase of
friction coefficient has more impact on a shelf with
smaller coastal wall (and hence shallower water depth)

than a larger. Therefore, with the increase of friction the
response (zhcz/I) decreases at a faster rate for h1 5 20
m than for h1 5 60 m. Thus when friction is more than
a critical value r 5 0.0008 m s21 (this value depends
on the depth at shelf break) a greater depth at the coast
gives higher amplification. Buchwald (1980) mentioned
that almost all incident tidal energy will be absorbed at
a particular friction, which depends on the shelf param-
eters. It is found here that this value also depends on
h1.

Due to presence of the bottom friction tidal energy
is dissipated on the shelf. The mean rate of tidal energy
dissipation is equal and opposite to the mean tidal en-
ergy flux (45). Since the amplitude of the reflection
coefficient depends on the slope, the dissipation is dif-
ferent for different h1. For any particular slope it is
maximum when a 5 08 (Fig. 11).

The dissipation rate of the M2 tide is shown as a
function of the friction coefficient r in Fig. 12. Dissi-
pation increases with the increase of friction but de-
creases with the increase of h1. In case of the M2 tide
more energy will be absorbed on a shelf with small
coastal depth.

Figure 13 shows the dependence of the magnitude
and phase of the coastal to shelf break response on h1

for a normal incident wave. The peak at v 5 17.0 rad
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FIG. 8. Response amplitudes on a wide and moderate width shelf, given as a function of frequency v and coastal
wall depth h1.

FIG. 10. Response and reflection coefficient amplitudes as a func-
tion of friction for three different values of h1 at their resonant fre-
quencies.

FIG. 9. Reflection coefficient amplitudes on a large shelf as a func-
tion of frequency and coastal wall depth.

day21 (h1 5 60 m) is larger than that at v 5 16.5 rad
day21 (h1 5 40 m), which is itself larger than that at v
5 16.0 rad day21 (h1 5 20 m). If the frequency is less
than the resonant frequency, a smaller depth at the coast
leads to higher amplification. The situation is reversed
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FIG. 11. Normalized dissipation z (Dn)z for a 5 300 km and different
coastal wall depths h1 and different values of angle of incidence a.

FIG. 12. Normalized dissipation (zDnz) of the M2 tide as a function
of friction coefficient r and the coastal wall depth h1.

FIG. 13. Magnitude and phase of the coastal amplitude ratio as a
function of frequency for three different depths at the coast.

for frequencies higher than the resonant frequency. The
phase of the ratio depends markedly on h1 near the res-
onant frequency.

The across-shelf structure and phase of the M2 tide
compared to that at the shelf break [hs(x)/h0(0)] are
shown as a function of h1 for three different angles of
incidence (a 5 608, 08, 2608) in Fig. 14. In the Southern
Hemisphere f , 0, so Kelvin waves travel with the coast
to the left of the direction of propagation. The influence
of Kelvin wave type dynamics makes the amplitude
higher in the case of a left bounded wave. Figure 14
clearly shows that the left bounded wave has higher
amplitude than the right bounded wave, and the effect
of h1 is larger on the left bounded wave. The phase
change across the shelf depends more on the depth of
the coastal wall h1 than on the angle of incidence. For
a shelf of width 300 km, the phase changes for a shelf
with 1-m coastal wall are 22.48 (a 5 2608), 23.38 (a
5 08), and 24.38(a 5 608), respectively. By contrast,
the phase change for three different depths at the coast
are 24.38 (h1 5 1 m), 18.88 (h1 5 11 m), and 15.68 (h1

5 21 m) when a 5 608.
The angle of incidence strongly affects the velocity

ratio zy /uz (Middleton and Bode 1987) but the ratio de-
pends on h1 as well. This ratio is constant when a 5 0
(zy /uz 5 z f z/zsz). Since the constant does not depend on
h1, shelves with different coastal wall depths can have
the same velocity ratio across the shelf when the wave
is incident normally. When waves are incident at an
angle, the ratio depends on h1. Near the coast it depends
strongly on h1. In case of a left bounded wave, this ratio
becomes almost zero near the coast. The position of the
minimum ratio zy /uz lies closer to the coast for smaller
values of h1. Any variation of h2 does not make much
difference. Figure 15 shows these results are true for
any type of shelf, that is, wide or moderate width.

Ray theory can be applied to shelves with different
slopes to determine the effects of friction. From Fig. 16
we see friction is more effective on a shelf with a small
coastal wall. Refraction of the ray path from the shelf
break to the coast increases with the increase in h1,
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FIG. 14. Across-shelf structure and phase of the M2 tide compared
to that at the shelf break for three different angles of incidence and
for three different coastal depths. Solid line represents zero depth,
where dash–dot line represents 20-m depth and dash line represents
40-m depth at the coast.

FIG. 15. Velocity ratio zy/uz of the M2 tide near the coast when the
angle of incidence is 608 and depths at the coast are 20 m, 40 m, and
60 m respectively.

FIG. 16. Ray path on a moderate width and wide shelf when slope
is 1024 and friction is 1023 m s21 for selected values of the coastal
wall depth h1.

whereas friction reduces the refraction. Also the refrac-
tion increases as the angle of incidence increases (not
shown).

It is useful to compare the results of this model with
those of Church et al. (1985). These authors used Battisti
and Clarke’s (1982a) model to predict the currents in
the central Great Barrier Reef. In their model l was
assumed to be complex and estimated from the coastal
data. They agreed that estimation of l from noisy coastal
data was difficult and incorrect estimation of l leads to
an error in the result. In the present model this problem
has been avoided by calculating l from the deep water
values. Clarke and Battisti (1981) have shown that l is
independent of x. So equating the negative value of lr

(note the different terminology used for the phase lag)
given in Church’s (1985) paper to our parameter l allows
the angle of incidence to be found. Using these values
along with other parameters used by Church (1985), the
tidal amplitude and cross-shelf velocity across the shelf

has been plotted in Fig. 17, and this figure is comparable
with Fig. 4 in Church’s paper.

Finally in Fig. 18 we provide a quick summary of
the effects of coastal wall depth at three different shelf
widths. Even a small value of h1 (20 m) can make a
large difference in coastal response for all depths. Since
the values of h1, h2, a, and slope are not independent
of each other it is difficult to directly ascribe effects to
one parameter only, however, it is clear that even a small
value of h1 can make a large difference in response.

4. Discussion

A simple analytical model of tidal flow onto a con-
tinental shelf is formulated using a sloping shelf ba-
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FIG. 17. The computed tidal amplitude and cross-shelf velocity of
the M2 tide in the Great Barrier Reef as a function of distance from
the coast. The solid line represents our calculation, while the plus
symbol indicates tidal heights computed by Church and the open
circle indicates the observed tide.

FIG. 18. Across-shelf structure of M2 tide on three different width
shelves for different combinations of depths at the coast and at the
shelf break.

thymetry on a shelf that is predominantly straight and
whose profile is independent of longshore position. The
adjacent deep ocean has constant depth, while at the
coast the water depth is considered to be, in general,
nonzero. This bathymetry allows a full matching of
ocean and shelf flows in cases where the shelf flows
may be affected by bottom friction. The complete so-
lution, comprising Bessel functions of the first and sec-
ond kind, allows a consideration of flows that are
obliquely angled and partly reflected from the coast.

The dependence of the tidal response on the shelf has
been evaluated for a range of parameters and a com-
parison made with earlier theoretical studies. Specific
objectives have been to determine the influence of the
coastal wall, and the angle of incidence for both very
wide (300 km) and moderate (150 km) shelf widths. At
the larger shelf widths, resonance is approached and the
shelf response becomes large.

In the case of zero bottom friction, for frequencies
lower than the resonant frequency, an increase in coastal
depth results in a reduction in sea-level amplitude at the
coast. For moderate width or narrow shelves, the re-
sponse always decreases with increase in coastal depth.
This situation is reversed for frequencies exceeding the
resonant frequency. The resonant frequency depends on
both the angle of incidence and the coastal wall depth,
with the resonant frequency increasing with coastal
depth. An asymmetry is evident between left bounded
waves and right bounded waves, with waves traveling
in the same direction as Kelvin waves having a larger
response in general, but also being more easily affected
by changes in coastal depth.

Bottom friction reduces the response on both wide
and moderate shelf widths, but the reduction is most
evident near resonance on a wide shelf. The overall

energy dissipation rate is also found to depend on the
coastal depth, with dissipation decreasing as coastal
depth increases.

Comparison of our results with those of Church
(1985) shows that the estimation of alongshore gradients
from noisy coastal data can be avoided by determining
alongshore wavenumbers from the angle of incidence
and the deep-ocean parameters.
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