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ABSTRACT

The development of a pointwise (in the horizontal) energy diagnostic scheme applicable to a 1½-layer,
nonisopycnic, primitive equation model is presented. The scheme utilizes the concept of available gravitational
energy to replace the conventional potential energy. This gives a total energy (kinetic plus potential) that is zero
and a minimum with respect to a given reference state (a positive definite quantity) locally. Mean and eddy
components of the kinetic and available gravitational energy forms are defined by introducing a thickness-
weighted mean for velocity and density. Finally, mathematical formulations for the conversion terms, that is,
those terms responsible for a reversible exchange of energy between the four energy compartments, are derived.

1. Introduction

We explore below a scheme whereby the traditional
energy diagnosis (e.g., Holland and Lin 1975; Holland
1978; Bleck 1985; Pinardi and Robinson 1986) of ocean
models can be applied to 1½-layer, nonisopycnic, prim-
itive equation models (e.g., McCreary et al. 1989; Røed
1996). As such, the model is a simplified version of
multilayer, nonisopycnic, models featuring variable lay-
er densities (e.g., McCreary and Kundu 1988; Røed
1995). For the purpose of this note, we will consider
the motion to be frictionless. Thus, the considered flow
is, in essence, governed by the frictionless nonlinear
shallow-water equations. This allows us to study the
nature of the conservative conversion terms without
having to consider conversion due to the nonconser-
vative terms, that is, due to dissipation, diffusion, dia-
pycnal mixing, and frictional drag.

As is common, the total energy is split into two parts
to separate the energy contained in the motion, that is,
kinetic energy, from the energy that can be converted
into kinetic energy, that is, potential energy. We derive
a potential energy that is zero and minimum with respect
to a certain specified reference state such that it is pos-
itive everywhere for any deviation away from that state,
that is, a locally positive definite quantity. That such a
reference state exists is obvious since any fluid under
gravity, and in the absence of any external forces and
friction, strives toward an equilibrium state in which its
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center of gravity is at its minimum position, that is, a
state in which there is no energy left for conversion into
kinetic energy. The potential energy we derive, called
the available gravitational energy [AGE: a name adopt-
ed from Pinardi and Robinson (1986) who used a similar
potential energy in their study of energetics for open
ocean quasigeostrophic models] bears a strong resem-
blance to the concept of available potential energy first
introduced by Margules (see Gill 1982, p. 219) and is
derived following the ideas of Holliday and McIntyre
(1981) and Andrews (1981). Unlike the available po-
tential energy, the AGE does not require that the fluid
is contained within a closed system. Since AGE for a
multilayer model is locally a positive definite quantity,
it relaxes the containment requirement of the available
potential energy concept and, hence, allows us to di-
agnose the energetics pointwise in the horizontal.

As has become common, we also derive the energetics
associated with mean and eddy components of the two
energy forms, where the mean kinetic and available
gravitational energy is associated with the mean flow
and the eddy kinetic and available gravitational energy
is associated with the eddy motion. In this we have
applied the traditional assumption that there is no ex-
change of mass between the mean and the eddy motion.
This requires the introduction of two different averaging
operators, as defined below.

We start by giving the equations of motion both for
the total flow and the mean flow. Then we discuss the
energy partition and the definition of the available grav-
itational energy, where the case of adjustment under
gravity is used as an illustration. Finally, the develop-
ment of mean and eddy energy components and their
time rate of change are derived to reveal the various
energy conversion terms.
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2. Equations of motions

The governing equations for the 1½-layer model ne-
glecting diapycnal mixing, frictional, and driving forces
are (e.g., McCreary et al. 1989; Røed 1996)

R w
(hu) 1 =· 1 f k 3 hu 1 = 5 0, (1)t 1 2 1 2r r0 0

h 1 = · hu 5 0, (2)t

(hq) 1 = · P 5 0, (3)t

where

R 5 r huu, w 5 hp, P 5 hqu,0

r 2 r 102 2q 5 , p 5 gr q h. (4)0r 20

Here, h is the layer thickness, u the horizontal velocity,
w a measure of the pressure p, q a measure of the density
contrast, r the density, and r0 a reference density. Note
that R is a tensor. In the remainder of this paper we will
refer to q as ‘‘density’’ although it is actually a measure
of the relative density contrast; that is, it is a dimen-
sionless quantity.

To pave the way for a decomposition of the energy
into mean and eddy components we now follow Bleck
(1985) and define two averaging operators, one denoted
by an overbar and a second denoted by a circumflex¯(c)

. The first is an ordinary spatial or temporal averagingˆ(c)
operator, while the second is a thickness weighted av-
eraging operator; that is,

hc
ĉ 5 . (5)

h̄

We also assume that the averaging operators are inter-
changeable; that is,

A 5 Ā ˆĉ c. (6)

Then defining

¯h 5 h 1 h0, u 5 û 1 u9, q 5 q̂ 1 q9, (7)

it follows that

1
2 2¯w̄ 5 w 1 w , w 5 gr q̂ h ,M E M 02

1
w 5 gr (hqh0q̂ 1 hqhq9 ),E 02

¯ ¯R 5 r huu 5 R 1 R , R 5 r hûû,0 M E M 0

¯R 5 r hu9u9, P 5 hqu 5 P 1 P ,E 0 M E

¯P 5 hq̂û, P 5 hq9u9. (8)M E

Applying the ordinary averaging operator to (1)–(3)
and making use of (5), (6), and (8) gives equations of
motion governing the mean variables:

R wM M¯ ¯(hû) 1 =· 1 f k 3 hû 1 =t 1 2 1 2r r0 0

w RE E5 2= 2 =· , (9)1 2 1 2r r0 0

¯ ¯h 1 = · hû 5 0, (10)t

¯(hq̂) 1 = · P 5 2= · P . (11)t M E

As noted in the introductory section, there is no inter-
action term on the right-hand side of (10). This is a
direct implication of the use of the thickness weighted
averaging operator (5) to define the mean current û. The
eddy motion does, however, interact with the mean mo-
tion through the terms on the right-hand sides of the
remaining equations. As revealed by (9)–(11), the equa-
tions of motion for the mean flow have the appearance
of being the equations of motion for a hypothetical fluid
of thickness , velocity û, and density q̂, with sourceh̄
terms determined by the eddy flow.

3. Energy partition

We start by specifying a reference state as being one
at rest with constant layer thickness and layer density;
that is,

h 5 hr, q 5 qr. (12)

The kinetic energy of the upper layer follows by inte-
grating the kinetic energy vertically over the upper layer
assuming that the velocity is depth independent; that is,

1
2K 5 r hu . (13)02

Note that the kinetic energy is a positive definite quan-
tity; that is, it is always positive and attains its minimum
(zero) value in the reference state. A development of
the conventional potential energy, here denoted by P,
by a similar vertical integration gives (e.g., O’Brien
1967; McCreary and Yu 1992)

1
2 25 gr q h , (14)P 02

a quantity that is indeed positive but is not a positive
definite quantity in the above sense. To achieve the latter
we need to derive an expression that is different, yet sim-
ilar.

We propose to express the potential energy in the form

1
2F 5 gr (qh 2 q h ) (15)0 r r2

and will refer to it as being the available gravitational
energy. Note that AGE is strictly nonnegative, is zero
(minimum) in the reference state, and has the dimension
of energy. Moreover, with AGE defined as potential
energy, the energy equation, as shown by (26) below,
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takes on a conservative form consistent with conven-
tional theory. Note that (15) includes the possibility of
a variable upper-layer density and thus energy can be
stored in the form of lateral density deviations as well
as upper-layer thickness deviations.

For illustration purposes let us consider the problem
of adjustment under gravity of a rotational fluid (Rossby
1937, 1938; Gill 1976, 1982). We first assume that the
density is constant (i.e., q 5 qr) and that the initial state
is at rest with an unbalanced (dynamically) upper-layer
thickness that has a positive deviation Dh away from
the equilibrium depth hr for x , 0 and an equal but
negative deviation for x $ 0 (e.g., Gill 1976). The initial
AGE is then equal to the initial energy and is every-
where (that is, for all x) given by the positive value

1
2 2E 5 gr q Dh . (16)0 r2

We may alternatively assume that the upper-layer thick-
ness is constant and equal to the thickness of the reference
state and let the initial density be unbalanced; that is, let
the density deviate positively away from the reference
density for x , 0 and negatively for x $ 0. Let Dq denote
the density deviation. Then the initial AGE is again pos-
itive and is everywhere given by the expression

1
2 2E 5 gr h Dq . (17)0 r2

It is also possible to let both the density and the
thickness deviate initially, as for instance described
above. In that case, the initial energy becomes

21 (h Dq 1 q Dh 1 DqDh) , x , 0r rE 5 gr (18)0 252 (h Dq 1 q Dh 2 DqDh) , x $ 0,r r

which, although different for x , 0 and x $ 0, is still
positive everywhere.

Under any of these circumstances a motion will ensue
for t . 0 in which this initial AGE is converted into
kinetic energy. Due to the positive definite character of
the AGE the energy (in an integrated sense) remains
constant for the ensuing frictionless flow and, hence,
there is a maximum amount of kinetic energy that can
be obtained by conversion of AGE. In turn, this imparts
an upper limit on the possible attainable currents. We
will return to this point once we have derived the energy
conservation equation, that is, at the end of section 4.

4. Energy equations

The time rate of change of the two energy forms may
now be developed based on the equations of motion. Tak-
ing the time derivative of K and F, and substituting the
various terms from the equations of motion (1)–(3), gives

K 1 = · Ku 5 C, (19)t

F 1 = · Fu 1 = · (w 2 w )u 5 2C, (20)t r

where

C 5 2u · =w (21)

is a conversion term converting energy between the two
energy forms and

1
2 2w 5 gr q h (22)r 0 r r2

is a measure of the pressure in the reference state. Note
that the third term on the left-hand side of (20) is the
work done by the pressure excess, rather than the work
done by the pressure as in conventional derivations of
this equation. The energy equation now follows by add-
ing (19) and (20); that is,

Et 1 = · (E 1 w 2 wr)u 5 0, (23)

where E 5 K 1 F is the energy.
At this stage it is important to note that there is an

inherent ambiguity in the choice of the conversion term.
This stems from the fact that the energy equation (23)
does not provide us with any insight into how to split
up the pressure excess work between the two energy
parts. The choice underlying (19) and (20) gives a
straightforward physical interpretation of the conversion
term as being the advective pressure work. The other
obvious choice, a choice commonly found in textbooks,
would be to associate the pressure excess work with
(19) in which case the conversion term becomes

C* 5 (w 2 wr)= · u. (24)

With this, a conversion between potential and kinetic
energy is measured by the divergence of the flow field
(or the compressibility in a compressible fluid).

We now introduce the energy density e as the sum of
the kinetic energy density ek and the available gravi-
tational energy density ep, defined by

21 1 (qh 2 q h )r r2e 5 u , e 5 g . (25)k p2 2 h

This allows us to rewrite the energy equation as

(he)t 1 = · hBu 5 0, (26)

where

w 2 wrB 5 e 1 (27)
r h0

is the Bernoulli function. As is well known, there is a
strong resemblance between the motion of a compress-
ible gas and a fluid motion governed by the shallow-
water equations in that the thickness assumes the role
of density. Indeed, in comparison with compressible gas
theory, in which the Bernoulli function is defined as ek

1 ep 1 (p/m) where p is pressure and m is density, we
may conclude that in a 1½-layer, nonisopycnic, model
r0h assumes the role of the density, while w 2 wr as-
sumes the role of pressure. It is interesting to note that
the latter bears a strong resemblance to the pressure
excess in Holliday and McIntyre (1981) and Andrews
(1981). Thus, the introduction of AGE as potential en-
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ergy leads to a form of the energy equation for the 1½-
layer nonisopycnic model consistent with conventional
theory and in which the particular form of the Bernoulli
function in (27) is a direct implication of the introduc-
tion of the AGE to replace the conventional expression
for the potential energy.

We may now return to the Rossby adjustment problem.
As is well known, the final adjusted state is stationary
and consists of a geostrophic jet confined to the region
near the initial thickness and/or density jump. Hence, the
energy flux =·hBu is zero everywhere in the final state.
During the adjustment phase the energy flux is, however,
nonzero and is responsible for the radiation of energy
away from the initial density and/or upper-layer thickness
jump. Thus, at a particular location in space the sum of
the kinetic energy and the AGE does not remain constant,
but changes in response to the energy flux. This explains
why not all of the initial AGE is converted into kinetic
energy locally. If the fluid is assumed to be contained
within solid walls, an integration of the energy equation
reveals that the integrated sum of the kinetic and the
available gravitational energy remains constant since then
the integrated flux term vanishes. In this case the energy
radiated by the waves cannot escape and all of the initial
AGE remains in the closed system as available potential
energy. This shows that the AGE is strongly related to
the available potential energy concept.

5. Energy decomposition

Applying the conventional averaging operator to the
kinetic energy (13), making use of (6) and (7), it follows
that

1 1 1
2 2 2¯ ¯K 5 r hu 5 r hû 1 r hu9 , (28)0 0 02 2 2

which shows that the average kinetic energy naturally
decomposes into a component

1
2¯K 5 r hû (29)M 02

associated with the kinetic energy of a hypothetical fluid
of layer thickness , velocity û, and density q̂ (hence-h̄
forth mean kinetic energy), and a component

1
2K 5 r hu9 (30)E 02

associated with the eddy motion (henceforth eddy ki-
netic energy). The same procedure may be followed for
the potential energy to give

1¯ 2¯F 5 F 1 F , F 5 gr (q̂h 2 q h ) ,M E M 0 r r2

1
F 5 gr (hqh0q̂ 1 hqhq9), (31)E 02

where FM will be denoted the mean AGE and FE the

eddy AGE. Due to the variable density the eddy AGE
has two parts, one associated with the deviations in the
upper-layer thickness variations and a second associated
with deviations in the upper-layer density.

Following the procedure used to derive (19) and (20),
the time rate of change of the mean kinetic energy and
mean AGE may be developed based on the equations
of motion for the mean variables, that is, (9)–(11). Thus,

K 1 = · K ûM Mt

M E5 C 1 C 1 C , (32)M M ME

F 1 = · F û 1 =(w 2 w )ûM M M rt

M ME5 2C 1 C , (33)M

where

M EC 5 2û · =w , C 5 2û · =w ,M M M E

C 5 2û · = · R ,ME E

ME ¯C 5 2gr (q̂h 2 q h )= · P . (34)0 r r E

Adding (32) and (33) gives

E MEE 1 = · (E 1 w 2 w )û 5 C 1 C 1 C ,M M M r M MEt
(35)

which then is the energy equation governing the mean
motion, that is, the energy equation governing the motion
of the hypothetical fluid. The three terms on the right-
hand side of (35) represent source terms that are re-
sponsible for reversible (or conservative) conversions be-
tween the mean and the eddy energy parts. The first term
is associated with conversion between mean kinetic en-
ergy and eddy available gravitational energy. The second
is associated with conversion between the mean and eddy
kinetic energy, whereas the last is associated with con-
version between the mean and eddy available gravita-
tional energy. Here , which appears in both (32) andMCM

(33) with opposite sign, is the mean counterpart to C in
(21). As discussed in the previous section, the choice of
these terms is ambiguous. Thus, care must be exercised
when interpreting these terms in isolation. Adding and
subtracting an arbitrary term on the right-hand side of
(35) may alter the meaning of the individual terms, but
not their collective meaning. It should be noted that this
result is independent of the expression chosen to repre-
sent potential energy. For instance, Plumb (1983) made
a similar remark in his criticism of applying energy di-
agnostics to atmospheric models where a conventional
expression for the potential energy was used.

Applying the conventional averaging operator to the
energy equations (19) and (20), and subtracting, re-
spectively, (32) and (33), gives equations for the time
rate of change of the eddy energy parts; that is,

K 1 = · FE KEt

E5 C 2 C , (36)E ME
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1
w 1 = · F 1 gr (hqh0q̂ 1 hqhq9)u9E FE 0t 1 22

E E ME5 2C 2 C 2 C , (37)E M

where

1
E 2C 5 2u9·=w, F 5 hu9 u 1 û · R ,E KE E2

1
F 5 gr (hqh0q̂ 1 hqhq9)uFE 02

¯1 gr (q̂h 2 q h )P .0 r r E (38)

The term represents a conversion between the eddyECE

kinetic and available gravitational energy and is the
eddy counterpart of . Note that FFE and FKE are con-MCM

structed in exactly the same manner, that is, as the av-
erage of those terms defining the eddy kinetic and avail-
able gravitational energy components, respectively,
times the velocity. Thus, by adding the two eddy com-
ponents we obtain

1
E 1 =· F 1 gr (hqh0q̂ 1 hqhq9)u9E E 0t 1 22

E ME5 2C 2 C 2 C , (39)M ME

where FE 5 FKE 1 FFE. Note that the source terms on
the right-hand side of (39) are exactly those that appear
as source terms in the equation governing the mean
energy (35), but with opposite signs. As is obvious, the
second gradient vector term on the left-hand side of (39)
represents the eddy counterpart to the pressure excess
work, that is, =·(w 2 wr)u, and hence may be denoted
the eddy pressure excess work. Due to the inclusion of
a possible lateral density variability also the eddy pres-
sure excess has two terms associated with the density
and thickness variability, respectively.

6. Concluding remarks

The energy diagnosis above has been developed to a
stage where it is useful for application to a 1½-layer
model. In particular, the introduction of the available
gravitational energy concept, inspired by the works of
Holliday and McIntyre (1981) and Andrews (1981), is
shown to be useful. It allows us to define the energy in
terms of a locally quadratic invariant and positive definite
quantity, which bears a strong resemblance to the avail-
able potential energy concept (see Gill 1982, 219). How-
ever, in contrast to the available potential energy, it allows
us to undertake a pointwise (in the horizontal) energy
diagnosis, that is, relaxes the confinement requirement
associated with the available potential energy concept.
Thus, if the motion is frictionless, the time rate of change
of the sum of the kinetic and available gravitational en-
ergy is balanced locally by a well-defined energy flux.
The kinetic energy that can then be obtained by conver-
sion of AGE at any location is equal to the initial avail-

able gravitational energy at that location plus the flux of
energy toward that location.

The obvious next step is to extend the ideas above to
yield useful mathematical expressions for multilayer mod-
els, both reduced gravity and finite depth, featuring a lat-
erally variable density in all layers, and to employ the meth-
od to cases involving realistic mesoscale features as, for
instance, those of McCreary and Yu (1992) and Røed
(1996). Such work is underway and will be reported else-
where.
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