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On Wallis’ inequality

Chao-Ping Chen

(Communicated by Toka Diagana)

Abstract

For all positive integersn,

1√
π
(
n + 4

π − 1
) ≤

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n)

<
1√

π
(
n + 1

4

) .

Both bounds are the best possible.

AMS Subject Classification:Primary 05A10, 26D20; Secondary 33B15
Keywords: Wallis’ inequality; gamma function; monotonicity.

The Wallis formula follows from the infinite product representation of the sine (see
[11, 15])

sin x = x

∞∏
n=1

(
1− x2

π2n2

)
. (1)

Taking in (1)x =
π

2
gives

π

2
= lim

n→∞
[(2n)!!]2

[(2n− 1)!!]2(2n + 1)
=

∞∏
n=1

[
(2n)2

(2n− 1)(2n + 1)

]
. (2)

The Wallis formula can also be expressed as

π

2
=

[
4ζ(0)e−ζ′(0)

]2
, (3)

see [11], whereζ is the Riemann zeta function [10].
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A derivation of the Wallis formula fromζ ′(0) using the Hadamard product [9] for
the Riemann zeta functionζ(s) due to Y. L. Yung can be found in [11]. The Wallis
formula can also be reversed to deriveζ ′(0) from the Wallis formula without using the
Hadamard product [14].

It is noted that Wallis sine (cosine) formula [12, 13] is as follows

∫ π
2

0

sinn x dx =

∫ π
2

0

cosn x dx =

√
π Γ(n+1

2
)

nΓ(n
2
)

=





π

2
· (n− 1)!!

n!!
for n even,

(n− 1)!!

n!!
for n odd,

(4)

where

Γ(x) =

∫ ∞

0

tx−1e−t dt (x > 0)

is the Euler’s gamma function.
For more information on Wallis formula, please refer to [1, p. 258], [3, pp. 17–28],

[4, p. 468], [6, pp. 63–64], and references therein.
Motivated by (2), D. K. Kazarinoff [5] proved that, for all positive integersn,

1√
π
(
n + 1

2

) <
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
<

1√
π
(
n + 1

4

) . (5)

The inequality (5) is called Wallis’ inequality in [7, p. 103], see also [2, p. 259]. We
here improve the lower bound and confirm the upper in (5).

Theorem 1: For all positive integersn,

1√
π
(
n + 4

π
− 1

) ≤
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
<

1√
π
(
n + 1

4

) . (6)

The constants
4

π
− 1 and

1

4
are the best possible.

Proof: Since

Γ(n + 1) = n!, Γ
(
n +

1

2

)
=

(2n− 1)!!

2n

√
π, 2nn! = (2n)!!,

the double inequality (6) is equivalent to

1

4
<

[
Γ(n + 1)

Γ
(
n + 1

2

)
]2

− n ≤ 4

π
− 1. (7)

Define forx > −1

2
,

θ(x) =

[
Γ(x + 1)

Γ
(
x + 1

2

)
]2

− x,
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clearly,θ(1) =
4

π
− 1. In order to prove (7), it is sufficient to show that the functionθ

is strictly decreasing on[1,∞) and with lim
x→∞

=
1

4
. The following proof shows that in

fact θ′(x) < 0 holds on

(
−1

2
,∞

)
. Easy computation yields

θ′(x) = 2(θ(x) + x)(ψ(x + 1)− ψ(x + 1/2))− 1,

θ′′(x)

2(θ(x) + x)
= ψ′(x + 1)− ψ′(x + 1/2) + 2(ψ(x + 1)− ψ(x + 1/2))2,

whereψ(x) = Γ′(x)/Γ(x), the logarithmic derivative of the gamma function, is psi
function or digamma function.

Using the representations [8, p. 16]

ψ(x) = −γ +

∫ ∞

0

e−t − e−xt

1− e−t
dt,

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xt dt

for x > 0 and n = 1, 2, . . ., whereγ = 0.57721566490153286 . . . is the Euler-
Mascheroni constant, it follows that

θ′′(x)

2(θ(x) + x)
= −

∫ ∞

0

tδ(t)e−(x+1/2)t dt + 2

(∫ ∞

0

δ(t)e−(x+1/2)t dt

)2

,

where
δ(t) =

(
1 + e−t/2)−1.

By using the convolution theorem for Laplace transformas, we have

θ′′(x)

2(θ(x) + x)
= −

∫ ∞

0

tδ(t)e−(x+1/2)t dt

+ 2

∫ ∞

0

[∫ t

0

δ(s)δ(t− s) ds

]
e−(x+1/2)t dt

=

∫ ∞

0

e−(x+1/2)tω(t) dt,

(8)

where

ω(t) =

∫ t

0

[
2δ(s)δ(t− s)− δ(t)

]
ds.

SetPa(y) = δ(a(1 − y))δ(a(1 + y)), and lets =
t

2
(1 + y), and take into account

thaty 7→ Pt/2(y) is an even function. Then we get

ω(t) =

∫ 1

0

[
2Pt/2(y)− δ(t)]t dy. (9)
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Easy computation yields

P ′
a(y)

Pa(y)
= − 1

1 + ea(1−y)/2
+

1

1 + ea(1+y)/2
< 0,

which implies for0 < y < 1,

2Pt/2(y) > 2Pt/2(1) = 2δ2(t/2) = 2(1 + e−t/4)−2 > (1 + e−t/2)−1 = δ(t),

and thusω(t) > 0 by (9). Combining (8) and (9) leads toθ′′(x) > 0 andθ′(x) is strictly
increasing on(−1/2,∞).

From the representations [1, p. 257 and p. 259]

xb−a Γ(x + a)

Γ(x + b)
= 1 +

(a− b)(a + b− 1)

2x
+ O

(
x−2

)
(x →∞), (10)

ψ(x) = ln x− 1

2x
+ O

(
x−2

)
(x →∞), (11)

we conclude that

lim
x→∞

x−
1
2

Γ(x + 1)

Γ
(
x + 1

2

) = 1, (12)

lim
x→∞

x

[
ψ(x + 1)− ψ

(
x +

1

2

)]
=

1

2
. (13)

From (12), (13) and the monotonicity of the functionθ′, we imply

θ′(x) < lim
x→∞

θ′(x)

= lim
x→∞

2

[
x−1/2 Γ(x + 1)

Γ(x + 1/2)

]2

x(ψ(x + 1)− ψ(x + 1/2))− 1 = 0.

Using the asymptotic formula (10) we conclude from

θ(x) = x

[
x−1/2 Γ(x + 1)

Γ(x + 1/2)
+ 1

] [
x−1/2 Γ(x + 1)

Γ(x + 1/2)
− 1

]

that
lim

x→∞
θ(x) = 1/4.

The proof is complete. ¥
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