On Wallis' inequality

Chao-Ping Chen

(Communicated by Toka Diagana)

For all positive integers n,

$$
\frac{1}{\sqrt{\pi\left(n+\frac{4}{\pi}-1\right)}} \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}}
$$

Both bounds are the best possible.

AMS Subject Classification: Primary 05A10, 26D20; Secondary 33B15
Keywords: Wallis' inequality; gamma function; monotonicity.

The Wallis formula follows from the infinite product representation of the sine (see [11, 15])

$$
\begin{equation*}
\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{\pi^{2} n^{2}}\right) \tag{1}
\end{equation*}
$$

Taking in (1) $x=\frac{\pi}{2}$ gives

$$
\begin{equation*}
\frac{\pi}{2}=\lim _{n \rightarrow \infty} \frac{[(2 n)!!]^{2}}{[(2 n-1)!!]^{2}(2 n+1)}=\prod_{n=1}^{\infty}\left[\frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right] \tag{2}
\end{equation*}
$$

The Wallis formula can also be expressed as

$$
\begin{equation*}
\frac{\pi}{2}=\left[4^{\zeta(0)} e^{-\zeta^{\prime}(0)}\right]^{2} \tag{3}
\end{equation*}
$$

see [11], where ζ is the Riemann zeta function [10].

[^0]A derivation of the Wallis formula from $\zeta^{\prime}(0)$ using the Hadamard product [9] for the Riemann zeta function $\zeta(s)$ due to Y. L. Yung can be found in [11]. The Wallis formula can also be reversed to derive $\zeta^{\prime}(0)$ from the Wallis formula without using the Hadamard product [14].

It is noted that Wallis sine (cosine) formula [12, 13] is as follows

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=\frac{\sqrt{\pi} \Gamma\left(\frac{n+1}{2}\right)}{n \Gamma\left(\frac{n}{2}\right)}= \begin{cases}\frac{\pi}{2} \cdot \frac{(n-1)!!}{n!!} & \text { for } n \text { even } \tag{4}\\ \frac{(n-1)!!}{n!!} & \text { for } n \text { odd }\end{cases}
$$

where

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad(x>0)
$$

is the Euler's gamma function.
For more information on Wallis formula, please refer to [1, p. 258], [3, pp. 17-28], [4, p. 468], [6, pp. 63-64], and references therein.

Motivated by (2), D. K. Kazarinoff [5] proved that, for all positive integers n,

$$
\begin{equation*}
\frac{1}{\sqrt{\pi\left(n+\frac{1}{2}\right)}}<\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}} \tag{5}
\end{equation*}
$$

The inequality (5) is called Wallis' inequality in [7, p. 103], see also [2, p. 259]. We here improve the lower bound and confirm the upper in (5).

Theorem 1: For all positive integers n,

$$
\begin{equation*}
\frac{1}{\sqrt{\pi\left(n+\frac{4}{\pi}-1\right)}} \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}} \tag{6}
\end{equation*}
$$

The constants $\frac{4}{\pi}-1$ and $\frac{1}{4}$ are the best possible.
Proof: Since

$$
\Gamma(n+1)=n!, \quad \Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}, \quad 2^{n} n!=(2 n)!!
$$

the double inequality (6) is equivalent to

$$
\begin{equation*}
\frac{1}{4}<\left[\frac{\Gamma(n+1)}{\Gamma\left(n+\frac{1}{2}\right)}\right]^{2}-n \leq \frac{4}{\pi}-1 \tag{7}
\end{equation*}
$$

Define for $x>-\frac{1}{2}$,

$$
\theta(x)=\left[\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}\right]^{2}-x
$$

clearly, $\theta(1)=\frac{4}{\pi}-1$. In order to prove (7), it is sufficient to show that the function θ is strictly decreasing on $[1, \infty)$ and with $\lim _{x \rightarrow \infty}=\frac{1}{4}$. The following proof shows that in fact $\theta^{\prime}(x)<0$ holds on $\left(-\frac{1}{2}, \infty\right)$. Easy computation yields

$$
\begin{aligned}
\theta^{\prime}(x) & =2(\theta(x)+x)(\psi(x+1)-\psi(x+1 / 2))-1 \\
\frac{\theta^{\prime \prime}(x)}{2(\theta(x)+x)} & =\psi^{\prime}(x+1)-\psi^{\prime}(x+1 / 2)+2(\psi(x+1)-\psi(x+1 / 2))^{2}
\end{aligned}
$$

where $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$, the logarithmic derivative of the gamma function, is psi function or digamma function.

Using the representations [8, p. 16]

$$
\begin{aligned}
\psi(x) & =-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} \mathrm{~d} t \\
\psi^{(n)}(x) & =(-1)^{n+1} \int_{0}^{\infty} \frac{t^{n}}{1-e^{-t}} e^{-x t} \mathrm{~d} t
\end{aligned}
$$

for $x>0$ and $n=1,2, \ldots$, where $\gamma=0.57721566490153286 \ldots$ is the EulerMascheroni constant, it follows that

$$
\frac{\theta^{\prime \prime}(x)}{2(\theta(x)+x)}=-\int_{0}^{\infty} t \delta(t) e^{-(x+1 / 2) t} \mathrm{~d} t+2\left(\int_{0}^{\infty} \delta(t) e^{-(x+1 / 2) t} \mathrm{~d} t\right)^{2}
$$

where

$$
\delta(t)=\left(1+e^{-t / 2}\right)^{-1}
$$

By using the convolution theorem for Laplace transformas, we have

$$
\begin{align*}
\frac{\theta^{\prime \prime}(x)}{2(\theta(x)+x)}= & -\int_{0}^{\infty} t \delta(t) e^{-(x+1 / 2) t} \mathrm{~d} t \\
& +2 \int_{0}^{\infty}\left[\int_{0}^{t} \delta(s) \delta(t-s) \mathrm{d} s\right] e^{-(x+1 / 2) t} \mathrm{~d} t \tag{8}\\
= & \int_{0}^{\infty} e^{-(x+1 / 2) t} \omega(t) \mathrm{d} t
\end{align*}
$$

where

$$
\omega(t)=\int_{0}^{t}[2 \delta(s) \delta(t-s)-\delta(t)] \mathrm{d} s
$$

Set $P_{a}(y)=\delta(a(1-y)) \delta(a(1+y))$, and let $s=\frac{t}{2}(1+y)$, and take into account that $y \mapsto P_{t / 2}(y)$ is an even function. Then we get

$$
\begin{equation*}
\omega(t)=\int_{0}^{1}\left[2 P_{t / 2}(y)-\delta(t)\right] t \mathrm{~d} y \tag{9}
\end{equation*}
$$

Easy computation yields

$$
\frac{P_{a}^{\prime}(y)}{P_{a}(y)}=-\frac{1}{1+e^{a(1-y) / 2}}+\frac{1}{1+e^{a(1+y) / 2}}<0
$$

which implies for $0<y<1$,

$$
2 P_{t / 2}(y)>2 P_{t / 2}(1)=2 \delta^{2}(t / 2)=2\left(1+e^{-t / 4}\right)^{-2}>\left(1+e^{-t / 2}\right)^{-1}=\delta(t)
$$

and thus $\omega(t)>0$ by (9). Combining (8) and (9) leads to $\theta^{\prime \prime}(x)>0$ and $\theta^{\prime}(x)$ is strictly increasing on $(-1 / 2, \infty)$.

From the representations [1, p. 257 and p. 259]

$$
\begin{align*}
x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)} & =1+\frac{(a-b)(a+b-1)}{2 x}+O\left(x^{-2}\right) \quad(x \rightarrow \infty) \tag{10}\\
\psi(x) & =\ln x-\frac{1}{2 x}+O\left(x^{-2}\right) \quad(x \rightarrow \infty) \tag{11}
\end{align*}
$$

we conclude that

$$
\begin{gather*}
\lim _{x \rightarrow \infty} x^{-\frac{1}{2}} \frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}=1 \tag{12}\\
\lim _{x \rightarrow \infty} x\left[\psi(x+1)-\psi\left(x+\frac{1}{2}\right)\right]=\frac{1}{2} \tag{13}
\end{gather*}
$$

From (12), (13) and the monotonicity of the function θ^{\prime}, we imply

$$
\begin{aligned}
\theta^{\prime}(x) & <\lim _{x \rightarrow \infty} \theta^{\prime}(x) \\
& =\lim _{x \rightarrow \infty} 2\left[x^{-1 / 2} \frac{\Gamma(x+1)}{\Gamma(x+1 / 2)}\right]^{2} x(\psi(x+1)-\psi(x+1 / 2))-1=0 .
\end{aligned}
$$

Using the asymptotic formula (10) we conclude from

$$
\theta(x)=x\left[x^{-1 / 2} \frac{\Gamma(x+1)}{\Gamma(x+1 / 2)}+1\right]\left[x^{-1 / 2} \frac{\Gamma(x+1)}{\Gamma(x+1 / 2)}-1\right]
$$

that

$$
\lim _{x \rightarrow \infty} \theta(x)=1 / 4
$$

The proof is complete.

References

[1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, 55, 9th printing, Dover, New York, 1972.
[2] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Addison Wesley Longman Limited, 1998.
[3] S. R. Finch, Archimedes' Constant, § 1.4 in Mathematical Constants, Cambridge Univ. Press, Cambridge, England, 2003. Available online at http://pauillac.inria.fr/algo/bsolve/.
[4] H. Jeffreys and B. S. Jeffreys, Wallis's Formula for π, § 15.07 in Methods of Mathematical Physics, 3rd ed. Cambridge Univ. Press, Cambridge, England, 1988.
[5] D. K. Kazarinoff, On Wallis formula, Edinburgh. Math. Soc., Notes no. 40, pp. 1921, 1956.
[6] J. F. Kenney and E. S. Keeping, Mathematics of Statistics, Part 2, 2nd ed., Van Nostrand, Princeton, New Jersy, 1951.
[7] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
[8] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer, Berlin, 1966.
[9] http://mathworld.wolfram.com/HadamardProduct.html.
[10] http://mathworld.wolfram.com/RiemannZetaFunction.html.
[11] http://mathworld.wolfram.com/WallisFormula.html.
[12] http://mathworld.wolfram.com/WallisCosineFormula.html.
[13] http://mathworld.wolfram.com/WallisSineFormula.html.
[14] J. Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series, Proc. Amer. Math. Soc., 120, pp. 421-424, 1994.
[15] E. W. Weisstein, Concise Encyclopedia of Mathematics CD-ROM, CD-ROM edition 1.0, May 20, 1999. Available online at http://www.math.pku.edu.cn/ stu/eresource/wsxy/sxrjjc/wk/Encyclopedia/math/w/w009.htm.

[^0]: College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454010, China, E-mail: chenchaoping @hpu.edu.cn, chenchaoping@sohu.com

 The author was supported in part by NSF of Henan Province (0511012000), SF for Pure Research of Natural Science of the Education Department of Henan Province (200512950001), china.

