Sequence Inequalities for the Logarithmic Convex (Concave) Function

Jian-She Sun
(Communicated by John M. Rassias)

Abstract

Let f be a positive strictly increasing logarithmic convex (or logarithmic concave) function on (0,1], then, for k being a nonnegative integer and n a natural number, the sequence $\frac{1}{n} \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right)$ is decreasing in n and k and has a lower bound $\int_{0}^{1} f(t) d t$. From this, some new inequalities involving $\sqrt[n]{(n+k)!/ k!}$ are deduced.

AMS Subject Classification: Primary 26D15
Keywords: Alzer's inequality, Kuang's inequality, Logarithmic convex, Logarithmic concave.

1. Introduction

In [1], H. Alzer, using the mathematical induction and other techniques, proved that for $r>0$ and $n \in N$,

$$
\begin{equation*}
\frac{n}{n+1} \leq\left(\frac{1}{n} \sum_{i=1}^{n} i^{r} / \frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}\right)^{1 / r}<\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \tag{1.1}
\end{equation*}
$$

[^0]By the cauchy's mean-value theorem and the mathematical induction, F. Qi in [7] presented that, if n and m are natural numbers, k is a nonnegative integer, $r>0$, then

$$
\begin{equation*}
\frac{n+k}{n+m+k}<\left(\frac{1}{n} \sum_{i=k+1}^{n+k} i^{r} / \frac{1}{n+m} \sum_{i=k+1}^{n+m+k} i^{r}\right)^{1 / r} . \tag{1.2}
\end{equation*}
$$

The lower is best possible. From the stirling's formula, for all nonnegative integers k and natural numbers n and m, F.Qi in [8] obtained

$$
\begin{equation*}
\left(\prod_{i=k+1}^{n+k} i\right)^{1 / n} /\left(\prod_{i=k+1}^{n+m+k} i\right)^{1 /(n+m)} \leq \sqrt{\frac{n+m}{n+m+k}} \tag{1.3}
\end{equation*}
$$

Let f be a strictly increasing convex (or concave) function in (0,1], J.-C. Kuang in [2] verified that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)>\frac{1}{n+1} \sum_{k=1}^{n+1} f\left(\frac{k}{n+1}\right)>\int_{0}^{1} f(x) d x \tag{1.4}
\end{equation*}
$$

In [10], F. Qi, considering the convexity of a function proved that let f be a strictly increasing convex (or concave) function in (0,1$]$, then the sequence $\frac{1}{n} \sum_{i=k+1}^{n+k} f\left(\frac{i}{n+k}\right)$ is decreasing in n and k and has a lower bound $\int_{0}^{1} f(t) d t$. That is

$$
\begin{equation*}
\frac{1}{n} \sum_{i=k+1}^{n+k} f\left(\frac{i}{n+k}\right)>\frac{1}{n+1} \sum_{i=k+1}^{n+k+1} f\left(\frac{i}{n+k+1}\right)>\int_{0}^{1} f(t) d t \tag{1.5}
\end{equation*}
$$

Where k is a nonnegative integer, n a natural number.
The study of Alzer's and Minc-Sathre's inequality has many literature, for example, [1]-[13]. In this article, motivated by [2, 7, 10], i.e. the inequalities in (1.2), (1.3), (1.4) and (1.5), considering the logarithmic convexity of a function, we get

Theorem 1.1: Let f be a positive strictly increasing logarithmic convex (or logarithmic concave) function on (0,1], then, for k being a nonnegative integer and n a natural number, the sequence $\frac{1}{n} \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right)$ is decreasing in n and k and has a lower bound $\int_{0}^{1} f(t) d t$, that is

$$
\begin{equation*}
\frac{1}{n} \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right)>\frac{1}{n+1} \sum_{i=k+1}^{n+k+1} \ln f\left(\frac{i}{n+k+1}\right)>\int_{0}^{1} f(t) d t \tag{1.6}
\end{equation*}
$$

Where k is a nonnegative integer, n a natural number.
If let $f(x)=a^{x^{r}}, r>0$, or let $k=0$ in (1.6), then the inequalities in (1.1), (1.2) and (1.4) could be deduced. If let $f(x)=e^{g(x)}, g(x)$ be a strictly increasing logarithmic convex (or logarithmic concave) function in (0,1], the inequalities in (1.5) could be
deduced. Therefore, inequality (1.6) generalizes Alzer's and Kuang's inequality in [1, 2] and inequality (1.2) above.

Corollary 1.2 ([10]): For a nonnegative integer k and a natural number $n>1$, we have

$$
\begin{align*}
\frac{n+k}{n+k+1} & <\left[\frac{(2 n+2 k)!}{(n+2 k)!}\right]^{1 / n} /\left[\frac{(2 n+2 k+2)!}{(n+2 k+1)!}\right]^{1 /(n+1)} \\
& <\left[\frac{(n+k)!}{k!}\right]^{1 / n} /\left[\frac{(n+k+1)!}{k!}\right]^{1 /(n+1)} \tag{1.7}
\end{align*}
$$

Theorem 1.3: For a natural number $n>1$, then

$$
\begin{equation*}
\left[n^{(n+1)^{2}} /(n+1)^{n^{2}}\right]^{1 /(2 n+1)}<\left(\prod_{i=1}^{n} i^{i}\right)^{2 / n(n+1)}<\frac{2 n+1}{3} \tag{1.8}
\end{equation*}
$$

2. Proofs of theorems

Proof (Theorem 1.): Let us first assume that f be a positive strictly increasing logarithmic convex function in $(0,1]$. Taking $x_{1}=\frac{i-1}{n+k}, x_{2}=\frac{i}{n+k}, \lambda=\frac{i-k-1}{n}$ and using the logarithmic convexity and monotonicity of f yields

$$
\begin{gathered}
\frac{i-k-1}{n} \ln f\left(\frac{i-1}{n+k}\right)+\left(1-\frac{i-k-1}{n}\right) \ln f\left(\frac{i}{n+k}\right) \\
\geq \ln f\left(\frac{i-k-1}{n} \cdot \frac{i-1}{n+k}+\frac{n-i+k+1}{n} \cdot \frac{i}{n+k}\right) \\
\quad=\ln f\left(\frac{n i-i+k+1}{n(n+k)}\right)>\ln f\left(\frac{i}{n+k+1}\right)
\end{gathered}
$$

for $i=k+1, k+2, \ldots, n+k+1$. Summing up leads to

$$
\begin{align*}
\sum_{i=k+1}^{n+k}\left[\frac{i-k-1}{n} \ln f\left(\frac{i-1}{n+k}\right)+\right. & \left.\frac{n-i+k+1}{n} \ln f\left(\frac{i}{n+k}\right)\right] \\
& >\sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k+1}\right) \tag{2.1}\\
\sum_{i=k+1}^{n+k}\left[(i-k-1) \ln f\left(\frac{i-1}{n+k}\right)+\right. & \left.(n-i+k+1) \ln f\left(\frac{i}{n+k}\right)\right] \tag{2.2}\\
> & n \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k+1}\right)
\end{align*}
$$

$$
\left.\begin{array}{rl}
(n+1) \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right) & -n \ln f(1)
\end{array}>n \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k+1}\right)\right) ~ \begin{aligned}
(n+1) \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right)>n \ln f(1) & +n \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k+1}\right) \\
& =n \sum_{i=k+1}^{n+k+1} \ln f\left(\frac{i}{n+k+1}\right)
\end{aligned}
$$

the left inequality in (1.6) is proved.
By similar procedure, if f is a strictly increasing logarithmic concave function in $(0,1]$, then for $i=k+1, k+2, \ldots, n+k+1$, we have

$$
\begin{array}{r}
\frac{i-k}{n+1} \ln f\left(\frac{i+1}{n+k+1}\right)+\left(1-\frac{i-k}{n+1}\right) \ln f\left(\frac{i}{n+k+1}\right) \\
\leq \ln f\left(\frac{i-k}{n+1} \cdot \frac{i+1}{n+k+1}+\frac{n-i+k+1}{n+1} \cdot \frac{i}{n+k+1}\right) \tag{2.5}\\
=\ln f\left(\frac{n i+2 i-k}{(n+1)(n+k+1)}\right)<\ln f\left(\frac{i}{n+k}\right)
\end{array}
$$

Summing up leads to

$$
\begin{array}{r}
\sum_{i=k+1}^{n+k}\left[\frac{i-k}{n+1} \ln f\left(\frac{i+1}{n+k+1}\right)+\left(1-\frac{i-k}{n+1}\right) \ln f\left(\frac{i}{n+k+1}\right)\right] \\
=\frac{n}{n+1} \sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k+1}\right)+\frac{n}{n+1} \ln f(1) \\
<\sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right) \\
\frac{n}{n+1} \sum_{i=k+1}^{n+k+1} \ln f\left(\frac{i}{n+k+1}\right)<\sum_{i=k+1}^{n+k} \ln f\left(\frac{i}{n+k}\right) \tag{2.7}
\end{array}
$$

The final line in (2.7) implies the left inequality in (1.6).
Finally, by definition of definite integral, the right inequality in (1.6) follows.
The proof is complete.
Proof (Corollary 1.): Substituting f by $(x+1)^{r}, r>0$ or by $\frac{x}{x+1}$ in (1.6) and simplifying yields the first or the second inequality in (1.7), respectively.

Proof (Theorem 2.): Substituting f by x^{x} and $k=0$ in Theorem 1, we have

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right) \ln \left(\frac{i}{n}\right)>\frac{1}{n+1} \sum_{i=1}^{n+1}\left(\frac{i}{n+1}\right) \ln \left(\frac{i}{n+1}\right) \tag{2.8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{n^{2}} \sum_{i=1}^{n}[i(\ln i-\ln n)]>\frac{1}{(n+1)^{2}} \sum_{i=1}^{n+1}[i(\ln i-\ln (n+1))] \tag{2.9}\\
& {\left[\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right] \sum_{i=1}^{n}(i \operatorname{lni})>\left[\frac{\ln n}{n^{2}}-\frac{\ln (n+1)}{(n+1)^{2}}\right] \sum_{i=1}^{n} i} \tag{2.10}\\
& =\left[\frac{\ln n}{n^{2}}-\frac{\ln (n+1)}{(n+1)^{2}}\right] \frac{n(n+1)}{2} \\
& (2 n+1) \ln \left(\prod_{i=1}^{n} i^{i}\right)>\frac{n(n+1)}{2} \ln \left[n^{(n+1)^{2}} /(n+1)^{n^{2}}\right] . \tag{2.11}
\end{align*}
$$

In $[3, P .89]$, the following inequalities were given for $n>1, n \in N$.

$$
\begin{equation*}
\left(\frac{n+1}{2}\right)^{a_{n}}<\prod_{i=1}^{n} i^{i}<\left(\frac{2 n+1}{3}\right)^{a_{n}}, \quad a_{n}=\frac{n(n+1)}{2} . \tag{2.12}
\end{equation*}
$$

Taking the logarithm yields

$$
\begin{equation*}
a_{n} \ln \left(\frac{n+1}{2}\right)<\ln \left(\prod_{i=1}^{n} i^{i}\right)<a_{n} \ln \left(\frac{2 n+1}{3}\right) . \tag{2.13}
\end{equation*}
$$

By substituting the inequalities in (2.13) into the left term of inequality (2.11), we obtain

$$
\begin{array}{r}
(2 n+1) \frac{n(n+1)}{2} \ln \left(\frac{2 n+1}{3}\right)>(2 n+1) \ln \left(\prod_{i=1}^{n} i^{i}\right) \\
>\frac{n(n+1)}{2} \ln \left[n^{(n+1)^{2}} /(n+1)^{n^{2}}\right] \\
{\left[n^{(n+1)^{2}} /(n+1)^{n^{2}}\right]^{1 /(2 n+1)}<\left(\prod_{i=1}^{n} i^{i}\right)^{2 / n(n+1)}<\frac{2 n+1}{3} .} \tag{2.15}
\end{array}
$$

The proof is complete.

References

[1] H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl., 179, pp. 396-402, 1993.
[2] Ji-Chang Kuang, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz., 83, pp. 123-127, 1999.
[3] Ji-Chang Kuang, ChangYong Bu dengshi, Applied Inequalities, 3rd edition, Shangdong Technology Press, Shangdong, China, 2004. (Chinese)
[4] D. Smitrinovic, J. E. Pecaric and A.M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht/Boston/London,1993.
[5] F. Qi, An algebraic inequality, J. Inequal. Pure Appl. Math., 2 (1), Art. 13, 2001.
[6] F. Qi, Further generalization of H. Alzer's inequality, Inter. J. Math and Math. Sci., 25, (2000).
[7] F. Qi, Generalization of H. Alzer's inequality, J. Math. Anal. Appl., 240, pp. 294297, 1999.
[8] F. Qi, Inequalities and monotonicity of sequences involving $\sqrt[n]{(n+k)!/ k!}$, Soochw J. Math., 29 (4), pp. 353-361, 2004.
[9] F. Qi and Q.-M. Luo, Generalizations of H. Minc and L. Sathre's inequality, Tamkang J. Math., 31 (2), pp. 145-148, 2000.
[10] F. Qi, Generalization of H. Alzer's and Kuang's inequality, Tamkang J. Math., 31 (3), pp. 223-227, 2000.
[11] F. Qi and B.-N. Guo, Monotonicity of sequences involving convex function and sequence, RGMIA Res. Rep. Coll., 3 (2), Art. 14, pp. 321-329, 2000.
[12] F. Qi and N. Towghi, Inequalities for the ratio of the mean values of functions, Nonlinear Funct. Anal. Appl. 9 (1), pp. 15-23, 2004.
[13] N. Towghi and F. Qi, An inequality for the ratio of the arithmetic means of functions with a positive pamameter, RGMIA Res. Rep. Coll., 4 (2), Art. 15, pp. 305309, 2001.

[^0]: Zhengzhou university, Daxue Road 75, zhengzhou city, Henan 450052, China. Jiaozuo Teacher's College, Jiaozuo city, Henan 454150, China, E-mail: sunjianshe@ 126.com

 The author was supported in part by NSF of Henan Province (0511012000), SF for Pure Research of Natural Science of the Education Department of Henan Province (200512950001), china.

