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Abstract

Let f be a positive strictly increasing logarithmic convex (or logarithmic concave)
function on(0, 1], then, fork being a nonnegative integer andn a natural number,
the sequence1n

∑n+k
i=k+1 lnf( i

n+k ) is decreasing inn andk and has a lower bound∫ 1
0 f(t)dt. From this, some new inequalities involvingn

√
(n + k)!/k! are deduced.
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1. Introduction

In [1], H. Alzer, using the mathematical induction and other techniques, proved that for
r > 0 andn ∈ N ,

n

n + 1
≤

(
1

n

n∑
i=1

ir
/

1

n + 1

n+1∑
i=1

ir
)1/r

<
n
√

n!
n+1
√

(n + 1)!
. (1.1)
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By the cauchy’s mean-value theorem and the mathematical induction, F. Qi in [7]
presented that, ifn andm are natural numbers,k is a nonnegative integer,r > 0, then

n + k

n + m + k
<

(
1

n

n+k∑

i=k+1

ir
/

1

n + m

n+m+k∑

i=k+1

ir
)1/r

. (1.2)

The lower is best possible. From the stirling’s formula, for all nonnegative integers
k and natural numbersn andm, F.Qi in [8] obtained

( n+k∏

i=k+1

i

)1/n/(n+m+k∏

i=k+1

i

)1/(n+m)

≤
√

n + m

n + m + k
. (1.3)

Let f be a strictly increasing convex (or concave) function in(0, 1], J.-C. Kuang in
[2] verified that

1

n

n∑

k=1

f

(
k

n

)
>

1

n + 1

n+1∑

k=1

f

(
k

n + 1

)
>

∫ 1

0

f(x)dx. (1.4)

In [10], F. Qi, considering the convexity of a function proved that letf be a strictly
increasing convex (or concave) function in(0, 1], then the sequence1

n

∑n+k
i=k+1 f( i

n+k
)

is decreasing inn andk and has a lower bound
∫ 1

0
f(t)dt. That is

1

n

n+k∑

i=k+1

f

(
i

n + k

)
>

1

n + 1

n+k+1∑

i=k+1

f

(
i

n + k + 1

)
>

∫ 1

0

f(t)dt (1.5)

Wherek is a nonnegative integer,n a natural number.
The study of Alzer’s and Minc-Sathre’s inequality has many literature, for example,

[1]–[13]. In this article, motivated by [2, 7, 10], i.e. the inequalities in (1.2), (1.3), (1.4)
and (1.5), considering the logarithmic convexity of a function, we get

Theorem 1.1: Letf be a positive strictly increasing logarithmic convex (or logarithmic
concave) function on(0, 1], then, fork being a nonnegative integer andn a natural
number, the sequence1

n

∑n+k
i=k+1 lnf( i

n+k
) is decreasing inn and k and has a lower

bound
∫ 1

0
f(t)dt, that is

1

n

n+k∑

i=k+1

lnf

(
i

n + k

)
>

1

n + 1

n+k+1∑

i=k+1

lnf

(
i

n + k + 1

)
>

∫ 1

0

f(t)dt. (1.6)

Wherek is a nonnegative integer,n a natural number.
If let f(x) = axr

, r > 0, or let k = 0 in (1.6), then the inequalities in (1.1), (1.2)
and (1.4) could be deduced. If letf(x) = eg(x), g(x) be a strictly increasing logarithmic
convex (or logarithmic concave) function in(0, 1], the inequalities in (1.5) could be
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deduced. Therefore, inequality (1.6) generalizes Alzer’s and Kuang’s inequality in [1, 2]
and inequality (1.2) above.

Corollary 1.2 ([10]): For a nonnegative integerk and a natural numbern > 1, we
have

n + k

n + k + 1
<

[
(2n + 2k)!

(n + 2k)!

]1/n/[
(2n + 2k + 2)!

(n + 2k + 1)!

]1/(n+1)

<

[
(n + k)!

k!

]1/n/[
(n + k + 1)!

k!

]1/(n+1)

. (1.7)

Theorem 1.3: For a natural numbern > 1, then

[
n(n+1)2

/
(n + 1)n2

]1/(2n+1)

<

( n∏
i=1

ii
)2/n(n+1)

<
2n + 1

3
. (1.8)

2. Proofs of theorems

Proof (Theorem 1.): Let us first assume thatf be a positive strictly increasing logarith-
mic convex function in(0, 1]. Takingx1 = i−1

n+k
, x2 = i

n+k
, λ = i−k−1

n
and using the

logarithmic convexity and monotonicity off yields

i− k − 1

n
ln f

(
i− 1

n + k

)
+

(
1− i− k − 1

n

)
ln f

(
i

n + k

)

≥ ln f

(
i− k − 1

n
· i− 1

n + k
+

n− i + k + 1

n
· i

n + k

)

= ln f

(
ni− i + k + 1

n(n + k)

)
> ln f

(
i

n + k + 1

)

for i = k + 1, k + 2, . . . , n + k + 1. Summing up leads to

n+k∑

i=k+1

[
i− k − 1

n
lnf

(
i− 1

n + k

)
+

n− i + k + 1

n
lnf

(
i

n + k

)]

>

n+k∑

i=k+1

lnf

(
i

n + k + 1

) (2.1)

n+k∑

i=k+1

[
(i− k − 1)lnf(

i− 1

n + k
) + (n− i + k + 1)lnf(

i

n + k
)

]

> n

n+k∑

i=k+1

lnf

(
i

n + k + 1

) (2.2)
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(n + 1)
n+k∑

i=k+1

lnf

(
i

n + k

)
− nlnf(1) > n

n+k∑

i=k+1

lnf

(
i

n + k + 1

)
(2.3)

(n + 1)
n+k∑

i=k+1

lnf

(
i

n + k

)
> nlnf(1) + n

n+k∑

i=k+1

lnf

(
i

n + k + 1

)

= n

n+k+1∑

i=k+1

lnf

(
i

n + k + 1

) (2.4)

the left inequality in (1.6) is proved.
By similar procedure, iff is a strictly increasing logarithmic concave function in

(0, 1], then fori = k + 1, k + 2, . . . , n + k + 1, we have

i− k

n + 1
lnf

(
i + 1

n + k + 1

)
+

(
1− i− k

n + 1

)
lnf

(
i

n + k + 1

)

≤ lnf

(
i− k

n + 1
· i + 1

n + k + 1
+

n− i + k + 1

n + 1
· i

n + k + 1

)

= lnf

(
ni + 2i− k

(n + 1)(n + k + 1)

)
< lnf

(
i

n + k

)
(2.5)

Summing up leads to

n+k∑

i=k+1

[
i− k

n + 1
lnf

(
i + 1

n + k + 1

)
+

(
1− i− k

n + 1

)
lnf

(
i

n + k + 1

)]

=
n

n + 1

n+k∑

i=k+1

lnf

(
i

n + k + 1

)
+

n

n + 1
lnf(1)

<

n+k∑

i=k+1

lnf

(
i

n + k

)
(2.6)

n

n + 1

n+k+1∑

i=k+1

lnf

(
i

n + k + 1

)
<

n+k∑

i=k+1

lnf

(
i

n + k

)
. (2.7)

The final line in (2.7) implies the left inequality in (1.6).
Finally, by definition of definite integral, the right inequality in (1.6) follows.
The proof is complete. ¥

Proof (Corollary 1.): Substitutingf by (x + 1)r, r > 0 or by x
x+1

in (1.6) and simpli-
fying yields the first or the second inequality in (1.7), respectively.

Proof (Theorem 2.): Substitutingf by xx andk = 0 in Theorem 1, we have

1

n

n∑
i=1

(
i

n

)
ln

(
i

n

)
>

1

n + 1
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i=1

(
i

n + 1

)
ln

(
i

n + 1

)
(2.8)
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1

n2

n∑
i=1

[
i(lni− lnn)

]
>

1

(n + 1)2

n+1∑
i=1

[
i(lni− ln(n + 1))

]
(2.9)

[
1

n2
− 1

(n + 1)2

] n∑
i=1

(ilni) >

[
lnn

n2
− ln(n + 1)

(n + 1)2

] n∑
i=1

i

=

[
lnn

n2
− ln(n + 1)

(n + 1)2

]
n(n + 1)

2

(2.10)

(2n + 1)ln

( n∏
i=1

ii
)

>
n(n + 1)

2
ln

[
n(n+1)2

/
(n + 1)n2

]
. (2.11)

In [3, P. 89],the following inequalities were given forn > 1, n ∈ N .

(
n + 1

2

)an

<

n∏
i=1

ii <

(
2n + 1

3

)an

, an =
n(n + 1)

2
. (2.12)

Taking the logarithm yields

anln

(
n + 1

2

)
< ln

( n∏
i=1

ii
)

< anln

(
2n + 1

3

)
. (2.13)

By substituting the inequalities in (2.13) into the left term of inequality (2.11), we obtain

(2n + 1)
n(n + 1)

2
ln

(
2n + 1

3

)
> (2n + 1)ln

( n∏
i=1

ii
)

>
n(n + 1)

2
ln

[
n(n+1)2

/
(n + 1)n2

] (2.14)

[
n(n+1)2

/
(n + 1)n2

]1/(2n+1)

<

( n∏
i=1

ii
)2/n(n+1)

<
2n + 1

3
. (2.15)

The proof is complete. ¥
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