On a summability factor theorem

Hüseyin Bor

(Communicated by Toka Diagana)

Abstract

In this paper a main theorem on $|N, p_n|_k$ summability factors, which generalizes a known result on $|N, p_n|$ summability factors, has been proved.

AMS Subject Classification: Primary 40D15, 40F05; Secondary 40G05 **Keywords:** Nörlund summability, summability factors.

1. Introduction

Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) and $w_n = na_n$. By u_n^{α} and t_n^{α} we denote the *n*-th Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (w_n) , respectively.

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if (see [3])

$$\sum_{n=1}^{\infty} n^{k-1} \mid u_n^{\alpha} - u_{n-1}^{\alpha} \mid^k = \sum_{n=1}^{\infty} \frac{1}{n} \mid t_n^{\alpha} \mid^k < \infty.$$
 (1.1)

If we take $\alpha = 1$, then $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability. Let (p_n) be a sequence of constants, real or complex, and let us write

$$P_n = p_0 + p_1 + p_2 + \dots + p_n \neq 0, (n \ge 0).$$
 (1.2)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_{n-v} s_v \tag{1.3}$$

defines the sequence (σ_n) of the Nörlund mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|N, p_n|$, if (see [5])

$$\sum_{n=1}^{\infty} |\sigma_n - \sigma_{n-1}| < \infty, \tag{1.4}$$

and it is said to be summable $|N, p_n|_k, k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} n^{k-1} | \sigma_n - \sigma_{n-1} |^k < \infty.$$
 (1.5)

In the special case when

$$p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}, \ \alpha \ge 0$$
 (1.6)

the Nörlund mean reduces to the (C,α) mean and $\mid N,p_n\mid_k$ summability becomes $\mid C,\alpha\mid_k$ summability. For $p_n=1$, we get the (C,1) mean and then $\mid N,p_n\mid_k$ summability becomes $\mid C,1\mid_k$ summability. For any sequence (λ_n) , we write $\Delta\lambda_n=\lambda_n-\lambda_{n+1}$.

2. The Known Results

Concerning the $\mid C,1\mid$ and $\mid N,p_n\mid$ summabilities Kishore [4] has proved the following theorem.

Theorem 2.1: Let $p_0 > 0$, $p_n \ge 0$ and (p_n) be a non-increasing sequence. If $\sum a_n$ is summable |C, 1|, then the series $\sum a_n P_n (n+1)^{-1}$ is summable $|N, p_n|$.

Later on Ram [6] has proved the following theorem related to the absolute Nörlund summability factors of infinite series.

Theorem 2.2: Let (p_n) be as in Theorem 2.1. If

$$\sum_{v=1}^{n} \frac{1}{v} \mid s_v \mid = O(X_n) \text{ as } n \to \infty, \tag{2.1}$$

where (X_n) is a positive non-decreasing sequence and (λ_n) is a sequence such that

$$\sum_{n=1}^{\infty} n \mid \Delta^2 \lambda_n \mid X_n < \infty, \tag{2.2}$$

$$|\lambda_n| X_n = O(1) \text{ as } n \to \infty, \tag{2.3}$$

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

Bor [1] has proved Theorem 2.2 under weaker conditions in the following form.

Theorem 2.3: Let (p_n) be a sequence as in Theorem 2.1. If

$$\sum_{v=1}^{n} \frac{1}{v} \mid t_v \mid = O(X_n) \text{ as } n \to \infty,$$
 (2.4)

where (t_n) is the n-th (C,1)mean of the sequence (na_n) , and the sequences (λ_n) , (X_n) are such that conditions (2.2)-(2.3) of Theorem 2.2 are satisfied, then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

Remark 2.4: It should be noted that condition (2.1) implies the condition (2.4), but the converse need not be true (see [1] for details).

Also Varma [7] has proved the following summability factor theorem.

Theorem 2.5: Let $p_0 > 0$, $p_n \ge 0$ and (p_n) be a non-increasing sequence. If $\sum a_n$ is summable $|C, 1|_k$, then the series $\sum a_n P_n (n+1)^{-1}$ is summable $|N, p_n|_k$, $k \ge 1$.

3. Main Result

The aim of this paper is to generalize Theorem 2.3 for $|N, p_n|_k$ summability. Now we shall prove the following theorem.

Theorem 3.1: Let (p_n) be as in Theorem 2.1. If

$$\sum_{v=1}^{n} \frac{1}{v} |t_v|^k = O(X_n) \text{ as } n \to \infty,$$
 (3.1)

and the sequences (λ_n) and (X_n) satisfy the conditions (2.2) and (2.3) of Theorem 2.2, then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|_k$, $k \ge 1$.

Remark 3.2: It should be noted that if we take k = 1, then we get Theorem 2.3.

We need the following lemma for the proof of our theorem.

Lemma 3.3 ([1]): Under the conditions on (X_n) and (λ_n) , as taken in the statement of Theorem 2.2, the following conditions hold,

$$nX_n\Delta\lambda_n = O(1) \text{ as } n\to\infty,$$
 (3.2)

$$\sum_{n=1}^{\infty} \Delta \lambda_n X_n < \infty. \tag{3.3}$$

4. Proof of the Theorem

In order to prove the theorem, we need consider only the special case in which (N, p_n) is (C, 1), that is, we shall prove that $\sum a_n \lambda_n$ is summable $|C, 1|_k$. Our theorem will

then follow by means of Theorem 2.5. Let T_n be the n-th (C, 1) mean of the sequence $(na_n\lambda_n)$, that is,

$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v. \tag{4.1}$$

Using Abel's transformation, we have

$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v = \frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_v (v+1) t_v + \lambda_n t_n$$

= $T_{n,1} + T_{n,2}$, say.

To complete the proof of the theorem, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n} |T_{n,r}|^k < \infty \text{ for } r = 1, 2, \text{ by (1.1)}.$$
 (4.2)

Now, we have that

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n} \mid T_{n,1} \mid^k &\leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)^k} \left\{ \sum_{v=1}^{n-1} \frac{v+1}{v} v \mid \Delta \lambda_v \mid \mid t_v \mid \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}} \left\{ \sum_{v=1}^{n-1} v \mid \Delta \lambda_v \mid \mid t_v \mid \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \sum_{v=1}^{n-1} (v \mid \Delta \lambda_v \mid)^k \mid t_v \mid^k \times \left\{ \frac{1}{n} \sum_{v=1}^{n-1} 1 \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \sum_{v=1}^{n-1} (v \mid \Delta \lambda_v \mid)^k \mid t_v \mid^k \\ &= O(1) \sum_{v=1}^{m} (v \mid \Delta \lambda_v \mid)^k \mid t_v \mid^k \sum_{n=v+1}^{m+1} \frac{1}{n^2} \\ &= O(1) \sum_{v=1}^{m} v \mid \Delta \lambda_v \mid (v \mid \Delta \lambda_v \mid)^{k-1} \frac{\mid t_v \mid^k}{v} \\ &= O(1) \sum_{v=1}^{m} v \mid \Delta \lambda_v \mid \frac{\mid t_v \mid^k}{v} \\ &= O(1) \sum_{v=1}^{m} \Delta (v \mid \Delta \lambda_v \mid) \sum_{v=1}^{v} \frac{\mid t_v \mid^k}{r} + O(1) m \mid \Delta \lambda_m \mid \sum_{v=1}^{m} \frac{\mid t_v \mid^k}{v} \end{split}$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v | \Delta \lambda_{v} |) | X_{v} + O(1)m | \Delta \lambda_{m} | X_{m}$$

$$= O(1) \sum_{v=1}^{m-1} |(v+1)| \Delta^{2} \lambda_{v} | - |\Delta \lambda_{v} | |X_{v} + O(1)m | \Delta \lambda_{m} | X_{m}$$

$$= O(1) \sum_{v=1}^{m-1} v | \Delta^{2} \lambda_{v} | X_{v}$$

$$+ O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v} | X_{v} + O(1)m | \Delta \lambda_{m} | X_{m}$$

$$= O(1) as m \to \infty,$$

by virtue of the hypotheses of the Theorem 3.1 and Lemma 3.3. Again

$$\sum_{n=1}^{m} \frac{1}{n} |T_{n,2}|^{k} = \sum_{n=1}^{m} |\lambda_{n}|^{k} \frac{|t_{n}|^{k}}{n}$$

$$= \sum_{n=1}^{m} |\lambda_{n}|^{k-1} |\lambda_{n}| \frac{|t_{n}|^{k}}{n} = O(1) \sum_{n=1}^{m} |\lambda_{n}| \frac{|t_{n}|^{k}}{n}$$

$$= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_{n}| \sum_{v=1}^{n} \frac{|t_{v}|^{k}}{v} + O(1) |\lambda_{m}| \sum_{n=1}^{m} \frac{|t_{n}|^{k}}{n}$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_{n}| X_{n} + O(1) |\lambda_{m}| X_{m}$$

$$= O(1) as m \to \infty,$$

by virtue of the hypotheses of the Theorem 3.1 and Lemma 3.3.

References

- [1] H. Bor, Absolute Nörlund summability factors, *Utilitas Math.*, **40**, pp. 231–236, 1991.
- [2] D. Borwein and F.P. Cass, Strong Nörlund summability, *Math. Zeith.*, **103**, pp. 94–111, 1968.
- [3] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, *Proc. London Math. Soc.*, **7**, pp. 113–141, 1957.
- [4] N. Kishore, On the absolute Nörlund summability factors, *Riv. Mat. Univ. Parma*, **6**, pp. 129–134, 1965.

- [5] F. M. Mears, Some multiplication theorems for the Nörlund mean, *Bull. Amer. Math. Soc.*, **41**, pp. 875–880, 1935.
- [6] S. Ram, On the absolute Nörlund summability factors of infinite series, *Indian J. Pure Appl. Math.*, **2**, pp. 275–282, 1971.
- [7] R. S. Varma, On the absolute Nrlund summability factors, *Riv. Math. Univ. Parma*, **3**, pp. 27–33, 1977.