On a summability factor theorem

Hüseyin Bor
(Communicated by Toka Diagana)

Abstract

In this paper a main theorem on $\left|N, p_{n}\right|_{k}$ summability factors, which generalizes a known result on $\left|N, p_{n}\right|$ summability factors, has been proved.

AMS Subject Classification: Primary 40D15, 40F05; Secondary 40G05
Keywords: Nörlund summability, summability factors.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=$ $n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and (w_{n}), respectively.

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} \neq 0, \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.3}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sigma_{n}-\sigma_{n-1}\right|<\infty \tag{1.4}
\end{equation*}
$$

and it is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

In the special case when

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \alpha \geq 0 \tag{1.6}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|_{k}$ summability becomes $|C, \alpha|_{k}$ summability. For $p_{n}=1$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|_{k}$ summability becomes $|C, 1|_{k}$ summability. For any sequence $\left(\lambda_{n}\right)$, we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

2. The Known Results

Concerning the $|C, 1|$ and $\left|N, p_{n}\right|$ summabilities Kishore [4] has proved the following theorem.

Theorem 2.1: Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Later on Ram [6] has proved the following theorem related to the absolute Nörlund summability factors of infinite series.

Theorem 2.2: Let $\left(p_{n}\right)$ be as in Theorem 2.1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|s_{v}\right|=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

where $\left(X_{n}\right)$ is a positive non-decreasing sequence and $\left(\lambda_{n}\right)$ is a sequence such that

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{2.2}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{2.3}
\end{gather*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Bor [1] has proved Theorem 2.2 under weaker conditions in the following form.

Theorem 2.3: Let $\left(p_{n}\right)$ be a sequence as in Theorem 2.1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the n -th $(\mathrm{C}, 1)$ mean of the sequence $\left(n a_{n}\right)$, and the sequences $\left(\lambda_{n}\right),\left(X_{n}\right)$ are such that conditions (2.2)-(2.3) of Theorem 2.2 are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}(n+$ $1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Remark 2.4: It should be noted that condition (2.1) implies the condition (2.4), but the converse need not be true (see [1] for details).

Also Varma [7] has proved the following summability factor theorem.
Theorem 2.5: Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem 2.3 for $\left|N, p_{n}\right|_{k}$ summability. Now we shall prove the following theorem.

Theorem 3.1: Let $\left(p_{n}\right)$ be as in Theorem 2.1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

and the sequences $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ satisfy the conditions (2.2) and (2.3) of Theorem 2.2, then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

Remark 3.2: It should be noted that if we take $k=1$, then we get Theorem 2.3.
We need the following lemma for the proof of our theorem.
Lemma 3.3 ([1]): Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$, as taken in the statement of Theorem 2.2, the following conditions hold,

$$
\begin{gather*}
n X_{n} \Delta \lambda_{n}=O(1) \text { as } n \rightarrow \infty \tag{3.2}\\
\sum_{n=1}^{\infty} \Delta \lambda_{n} X_{n}<\infty \tag{3.3}
\end{gather*}
$$

4. Proof of the Theorem

In order to prove the theorem, we need consider only the special case in which $\left(N, p_{n}\right)$ is $(C, 1)$, that is, we shall prove that $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$. Our theorem will
then follow by means of Theorem 2.5. Let T_{n} be the n -th $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$, that is,

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} \tag{4.1}
\end{equation*}
$$

Using Abel's transformation, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v}=\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v}(v+1) t_{v}+\lambda_{n} t_{n} \\
& =T_{n, 1}+T_{n, 2}, \text { say }
\end{aligned}
$$

To complete the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|^{k}<\infty \text { for } r=1,2, \text { by (1.1). } \tag{4.2}
\end{equation*}
$$

Now, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)^{k}}\left\{\sum_{v=1}^{n-1} \frac{v+1}{v} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}}\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}} \sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k} \times\left\{\frac{1}{n} \sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}} \sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right|\left(v\left|\Delta \lambda_{v}\right|\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v}
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1}|(v+1)| \Delta^{2} \lambda_{v}\left|-\left|\Delta \lambda_{v}\right|\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v} \\
& +O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem 3.1 and Lemma 3.3.
Again

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k} \frac{\left|t_{n}\right|^{k}}{n} \\
& =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|^{k}}{n}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|^{k}}{n} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem 3.1 and Lemma 3.3.

References

[1] H. Bor, Absolute Nörlund summability factors, Utilitas Math., 40, pp. 231-236, 1991.
[2] D. Borwein and F.P. Cass, Strong Nörlund summability, Math. Zeith., 103, pp. 94111, 1968.
[3] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7, pp. 113-141, 1957.
[4] N. Kishore, On the absolute Nörlund summability factors, Riv. Mat. Univ. Parma, 6, pp. 129-134, 1965.
[5] F. M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc., 41, pp. 875-880, 1935.
[6] S. Ram, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math., 2, pp. 275-282, 1971.
[7] R. S. Varma, On the absolute Nrlund summability factors, Riv. Math. Univ. Parma, 3, pp. 27-33, 1977.

