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Abstract

Using a numerical method, we will show the existence of multiple solutions for the
well known logistic equation −�u = λf (x)u(1 − u) for x ∈ �, with Dirichlet boundary
condition.
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1 Introduction

We study the existence and multiplicity of positive solutions of the semilinear elliptic boundary
value problem { −�u(x) = λf (x)u(x)(1 − u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.
(1.1)

Here � is a bounded and smooth domain in RN , λ > 0 is a real parameter and f : � → R is a
smooth function which changes sign in �.

This problem is a well known model in population genetics, see for example [6]. The case
which is well known in the literature is when f (x) > 0 on �̄.

If u denotes the frequency of allele A1, it will be natural that we seek solutions u, 0 ≤ u ≤ 1.
The parameter λ corresponds to the reciprocal of the diffusion.

We will work in the Sobolev space X := H
1,2
0 equipped with the norm

‖u‖2
X =

∫
�

|∇u(x)|2 dx.

where here and henceforth the integrals are taken on the �, unless otherwise specified.
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We recall that the linear problem
{ −�u(x) = λf (x)u(x) x ∈ �

u(x) = 0 x ∈ ∂�,
(1.2)

has positive and negative principal eigenvalues λ+
1 (f ) and λ−

1 (f ). It was proved by Ko and
Brown [7] using a constrained optimization argument in the case λ < λ1(f ) and extended to all
λ > 0 by Delgado and Suarez [5] using global bifurcation theory. We will have a glance at these
works.

At first consider for fixed λ the eigenvalue problem
{ −�u(x) − λf (x)u(x) = µu(x) x ∈ �

u(x) = 0 x ∈ ∂�.
(1.3)

It can be proved that µ(λ) is a concave function that lim|λ|→∞ µ(λ) = −∞ and also has exactly
two zeros λ+

1 (f ) and λ−
1 (f ) and that µ(λ) > 0 if and only if λ−

1 (f ) < λ < λ+
1 (f ). Thus, when

λ−
1 (f ) < λ < λ+

1 (f ), all the eigenvalues of the linear operator corresponding to −� − λf (x)

with Dirichlet boundary conditions are positive and so u ≡ 0 is a stable solution of (1).
In the case λ > λ+

1 (f ) there exists a principal eigenvalue µ(λ) < 0 with corresponding
positive principal eigenfunction φ1 such that

−�φ1(x) − λf (x)φ1(x) = µ(λ)φ1(x) for x ∈ �; u(x) = 0 for x ∈ ∂�.

It is easy to see that εφ1 is a subsolution provided ε > 0 is sufficiently small.
Clearly u ≡ 1 is a supersolution and so there exists a minimal positive solution u0(λ)

satisfying 0 ≤ u0(λ)(x) ≤ 1 for x ∈ � whenever λ > λ+
1 (f ).

It is proved in [4] that when 0 < λ ≤ λ+
1 (f ), u ≡ 0 is the only non-negative solution

satisfying 0 ≤ u ≤ 1 and when λ > λ+
1 (f ), there exists a unique positive solution satisfying

0 ≤ u ≤ 1, i.e., λ+
1 (f ) is a bifurcation point of (1) that tends to right without any turning and so

this branch of solutions lies beneath of the line ||u||∞ = 1. Moreover it is proved in [1] that there
exists another branch of positive solutions for all λ > 0 and because of the uniqueness results
obtained in Brown and Hess [4] for this solution we have ||u||∞ > 1 (see figure 1).

The object of this paper is comparing results obtained by the numerical method presented
here and the theoritical results in [1,4] and determining λ+

1 (f ) with one decimal place.
Although the main approach in this paper is computational and based on finite difference

method, we want to have a briefly explain theoretical results that are already known in the
literature.

The existence of the positive solutions of the boundary value problem
{ −�u(x) + q(x)u(x) = λf (x)|u|p−1u x ∈ �

u(x) = 0 x ∈ ∂�,

where p > 1, is investigated by Afrouzi and Brown in [1], first by showing that the operator
−�+q together with Dirichlet boundary conditions generates a self-adjoint operator with lowest
eigenvalue ≥ 0, and finding positive solutions of the above problem as critical points of the
functional J : X → R such that

J (u) = 1

2

∫
�

[|∇u|2 + q(x)u2
]

dx − 1

p + 1

∫
�

f (x) |u|p+1 dx.
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They have shown the following version of the Mountain Pass Lemma that was introduced by
Ambrosetti and Rabinowitz in 1973, can be applied to the functional J under the standard com-
pactness assumption that p < N+2

N−2 ( Sobolev critical exponent).

Mountain Pass Lemma [2]: Let E be a Banach space over 
. Let Br = {u ∈ E : ||u|| < r} and
Sr = ∂Br ; B1 and S1 will be denoted by B and S, respectively. Let I ∈ C1(E, 
). If I satisfies
I (0) = 0 and
(I1) there exist ρ > 0 and α > 0, such that I > 0 in Bρ − {0} and

I ≥ α > 0

on Sρ .
(I2) there exists e ∈ E, e �= 0 with I (e) = 0;
(I3) If {um} ⊂ E with the properties that I (um) is bounded above, and I ′(um) → 0 as m → ∞,
then {um} possesses a convergent subsequence. Let

	 = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.
Then

b :≡ inf
g∈	

max
y∈[0,1] I (g(y))

is a critical value of I with 0 < α ≤ b < +∞.

Thus by showing that all of the conditions of the Mountain Pass Lemma are satisfied, there
exists a critical point û of J such that

J (û) = inf
φ∈	

max t∈[0,1]J (φ(t)) > 0.

Since J (u) = J (|u|), we may assume without loss of generality, replacing û by
∣∣û∣∣ if necessary,

that û ≥ 0 and hence they proved the following theorem in general case:

Theorem 1.1 [1]: The semilinear boundary value problem

−�u(x) + q(x)u(x) = λf (x) |u|p−1 u for x ∈ �; u(x) = 0 for x ∈ ∂�

where p > 1, f : � → R is a smooth function which is somewhere positive and −�+q together
with Dirichlet boundary conditions generates a self-adjoint operator has a positive solution if
either
(i) the principal eigenvalue of −� + q > 0;
(ii) the principal eigenvalue of −� + q = 0 and

∫
�

f φ
p+1
1 dx < 0 where φ1 denotes the

corresponding principal eigenfunction.

Now by using Theorem 1.1 in special case p = 2 and N < 6 it can be proved the following
theorem:

Theorem 1.2: Consider the semilinear boundary value problem
{ −�u(x) = λf (x)u(x)(1 − u(x)) x ∈ �

u(x) = 0 x ∈ ∂�.
(1.4)
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where N < 6, f : � → R is a smooth function which changes sign in �. Then (4) has two
different branches of positive solutions with the following properties:

1. one of them bifurcates from λ+
1 (f ) and tends to right without any turning back and all of

the solutions u on this branch are such that ||u||∞ < 1.

2. another branch is such that for every λ > 0 there exists a positive solution with ||u||∞ > 1.

By numerical approach we can show that all of the obtained results by theoretical method are
satisfied and moreover we shall find some interesting properties of these branches and the range
of that λ+

1 (f ) belongs to it.
In the next section we state basic concepts of the numerical method that we want to apply

it for solving our problem and at the end of this section we provide some examples and obtain
their numerical solutions and produce the graph of bifurcation diagram.

2 Numerical Results

In this section we present a numerical results is based on “finite difference method”.
The essence of the method of differences for the solution of differential equations is that

instead of solving a differential equation one solves a corresponding finite difference equation
that is obtained by substituting differences expressions with higher or lower level of accuracy for
the derivatives.

At first we state the basic concepts of this approach. For simplicity we consider � be a region
like a cube in 
N , and f (x) : � → 
 be a sign changing smooth function in �.

Our main purpose is replacing the approximation by the derivative. By using Taylor expansion
for the function u(x1, x2, · · · , xi + �xi, · · · , xN) around (x1, x2, · · · , xN) we have:

u(x1, x2, · · · , xi + �xi, · · · , xN) = u(x1, x2, · · · , xN) + �xi

∂u

∂xi

(x1, x2, · · · , xN)+

(�xi)
2

2!
∂2u

∂x2
i

(x1, x2, · · · , xN) + · · ·

After dividing by �xi we can obtain forward difference for the partial derivative of i-th variable:

∂u

∂xi

(x1, · · · , xN) ∼= 1

�xi

[u(x1, · · · , xi + �xi, · · · , xN) − u(x1, · · · , xN)].

The backward difference is gained by using the same approach i.e.

∂u

∂xi

(x1, · · · , xN) ∼= 1

�xi

[u(x1, · · · , xN) − u(x1, · · · , xi − �xi, · · · , xN)].

By putting together these formula we have the “central difference” that is the best approximation
for ∂u

∂xi
:

∂u

∂xi

(x1, · · · , xN) ∼= 1

2�xi

[u(x1, · · · , xi + �xi, · · · , xN) − u(x1, · · · , xi − �xi, · · · , xN)].
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We can continue this procedure to gain higher derivative such as:

∂2u

∂x2
i

(x1, · · · , xN) ∼= 1

(�xi)2
[u(x1, · · · , xi + �xi, · · · , xN)

− 2u(x1, · · · , xN) + u(x1, · · · , xi − �xi, · · · , xN)].
We substitute these approximations for the first and second derivatives in ordinary and partial
differential equation for n = 1 and n > 1 respectively. It is important to note, moreover, that
on substitution of the differential equation, a difference equation is obtained that combines the
value of the required function only in individual, discretely distributed points. The points are
usually chosen so to form a quadrate network, i.e., we find an array u of real numbers agreeing
with solution u on a grid � ⊂ � and then one can study behavior of solution by considering this
numerical solution.

The method of differences is especially suitable for the solution of boundary value problems,
for instance, the problem of determining a function that satisfies the Laplace equation in the inte-
rior of a given field � and possesses given values at the boundary of the field; such problems arise
in the exploration of stationary temperature distribution when the temperature at the boundary of
the field is known, in investigating the tension in a twisted rod of prismatic section, etc. In this
cases the procedure is as above.

In the following subsections we look for the solutions that the existence and behavior of them
is proved in section 1.

2.1 Numerical Results: ODE case

Let � = [0, 1] and f (x) = 1
2 − x a sign changing function in �, we want to obtain a numerical

solution for the problem

−u′′ = λf (x)u(1 − u) for x ∈ �, u(0) = u(1) = 0

By choosing h = �x = 1
10 we divide � into 10 section that according to the Dirichlet condition

we have u0 = u(0) = 0 and u10 = u(1) = 0. Suppose that xi = ih and ui = u(xi). By using
above discussion we have the following system of equations:

− 1

h2
[ui+1 − 2ui + ui−1] = λf (xi)ui(1 − ui) i = 1, 2, · · · , 9 (2.1)

Our main purpose is obtaining variables u1, u2, · · · , u9. For solving this system of equations we
have used “Matlab toolbox” and a useful algorithm that can solve any (n − 1) × (n − 1) system
of equation and find the position of the bifurcation point “λ+

1 (f )”. The obtained results shows
there are two array of solutions that before λ+

1 (f ) one of them is identically zero (in Mathlab
toolbox we assume that the numbers less than d1.d2d3 · · · × 10−6 is identical zero) and another
has the norm above the horizontal asymptote 1 when we define

||u|| = ||u||∞ = sup
x∈[0,1]

u(x),

and after λ+
1 (f ) one of the array of solutions has values less than 1 and again another greater than

1 (see the first and second tables) for brevity we express just some of those numerical results.
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Table 1.

u in

λ x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

1 1.88×10−16 1.70×10−15 4.62×10−15 7.23×10−15 4.33×10−15

10 2.27×10−10 7.35×10−10 1.40×10−9 1.98×10−9 1.09×10−9

100 1.00×10−7 4.53×10−7 1.13×10−6 1.43×10−6 1.01×10−6

100.1 0.000027 0.000123 0.000308 0.000474 0.000275

100.2 0.000090 0.000407 0.00102 0.00156 0.00091

105 0.00288824 0.0132691 0.0336236 0.0517604 0.0303053

110 0.00537165 0.0250811 0.0642849 0.0993022 0.0585243

200 0.017342 0.106881 0.332809 0.541458 0.352052

500 0.00715019 0.0913763 0.473675 0.843527 0.649998

105 1.47×10−6 0.00197915 0.499998 0.997986 0.975604

Figure 1. Bifurcation diagram

For any value of λ we can draw the interpolation diagram of numerical values of the solution
but it is not important that for any λ what is the diagram of solution. In fact we are looking for
the behavior of bifurcation diagram (a diagram in (λ, ||u||)- plane).

According to the above tables we can determine the bifurcation point with a good accuracy,
i.e., λ+(f ) is around 100.1 that before it there is not any nonzero solution with ||u||∞ < 1 and
for small λ the values of solutions tends to ∞, moreover when we consider large λ the solutions
with ||u||∞ < 1 and other solution achieve same values in each case (see figure 1).
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Table 2.

u in

λ x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

0.001 55308. 112417. 79703.2 40143. 12336.1

1 55.7605 113.566 80.5946 40.6831 12.5421

10 5.97384 12.3945 8.87244 4.56917 1.44939

100 4.29464 2.59059 1.68119 1.2703 0.538632

105 0.862761 2.25422 1.76872 1.08568 0.448388

110 0.83322 2.20715 1.73967 1.07533 0.449291

200 0.511211 1.77038 1.50136 1.0148 0.502894

500 1.71038 0.477379 0.656528 0.890166 0.658966

105 1.02565 1.00005 0.999995 0.999965 0.975606

Moreover we find another numerical behavior of the bifurcation point 100.1. By using
“Matlab toolbox” we find the eigenvalues of the following problem

AU = λBU (2.2)

where A is tridiagonal matrix with elements determined by the right hand side of the system (5),
and B is a diagonal matrix with elements f (xi) on the principal diagonal.

As such as theoretical arguments the first eigenvalue of (6) is exactly the bifurcation point of
the problem (5), i.e. 100.1! In this case our main idea is finding the numerical positive solutions
and drawing the bifurcation diagram, in this way we can approximate the value of λ+

1 (f ). If we
only want to find position of λ+

1 (f ), the easier way is investigating of (6).

2.2 Numerical Results: PDE case

Let � = [0, 1] × [0, 1] and f (x) = 0.1 − xy that changes sign in �. The grid � ⊆ � be a
division of � and h = �x = �y = 1

10 and we solve numerically the problem (1). Drichlet
boundary condition leads us to have u0,j = ui,0 = ui,10 = u10,j = 0 for i, j = 0, 1, 2, · · · , 10.
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Table 3.

λ u

u11 = 3.06 × 10−21 u22 = 1.23 × 10−20 u33 = 2.83 × 10−20

10−4 u44 = 5.30 × 10−20 u55 = 8.69 × 10−20 u66 = 1.20 × 10−19

u77 = 1.29 × 10−19 u88 = 9.30 × 10−20 u99 = 3.01 × 10−20

u11 = 3.06 × 10−15 u22 = 1.23 × 10−14 u33 = 2.83 × 10−14

0.01 u44 = 5.29 × 10−14 u55 = 8.67 × 10−14 u66 = 1.20 × 10−13

u77 = 1.29 × 10−13 u88 = 9.31 × 10−14 u99 = 3.01 × 10−14

u11 = 1.32 × 10−10 u22 = 2.47 × 10−10 u33 = 1.39 × 10−10

1000 u44 = 4.18 × 10−11 u55 = 7.82 × 10−12 u66 = 9.47 × 10−13

u77 = 7.60t imes10−14 u88 = 4.13 × 10−15 u99 = 1.46 × 10−16

u11 = 4.33 × 10−10 u22 = 7.59 × 10−10 u33 = 4.39 × 10−10

1400 u44 = 1.20 × 10−10 u55 = 1.81 × 10−11 u66 = 1.61 × 10−12

u77 = 8.91 × 10−14 u88 = 3.20 × 10−15 u99 = 7.40 × 10−17

u11 = 5.29 × 10−5 u22 = 9.29 × 10−5 u33 = 5.35 × 10−5

1409.2 u44 = 1.47 × 10−5 u55 = 2.20 × 10−6 u66 = 1.94 × 10−7

u77 = 1.06 × 10−8 u88 = 3.79 × 10−10 u99 = 8.70 × 10−12

u11 = 0.000065 u22 = 0.00011 u33 = 0.000066

1409.3 u44 = 0.000018 u55 = 2.72 × 10−6 u66 = 2.40 × 10−7

u77 = 1.31 × 10−8 u88 = 4.69 × 10−10 u99 = 1.07 × 10−11

u11 = 0.04593 u22 = 0.07930 u33 = 0.04609

1500 u44 = 0.01245 u55 = 0.00178 u66 = 0.000147

u77 = 7.51 × 10−6 u88 = 2.47 × 10−7 u99 = 5.20 × 10−9

u11 = 0.7985 u22 = 0.95044 u33 = 0.63679

10000 u44 = 0.05842 u55 = 0.00112 u66 = 8.76 × 10−6

u77 = 3.6 × 10−7 u88 = 9.63 × 10−11 u99 = 1.63 × 10−13

By using the approximation of uxx and uyy we have again a linear system of equations of this
type

100(u21 + u12 − 4u11) + λ(0.1 − 0.1 ∗ 0.1)(u11 − u2
11) = 0 for i = j = 1 (2.3)
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Table 4.

λ u

u11 = 28888.8 u22 = 116450. u33 = 269273.

10−4 506199. u55 = 846495. u66 = 1.22 × 106

u77 = 1.30 × 106 u88 = 805470. u99 = 213902.

u11 = 124048 u22 = 263286. u33 = 1.26 × 106

0.01 u44 = 1.00 × 106 u55 = 25727.6 u66 = 168078

u77 = 178700 u88 = 178337 u99 = 87317.7

u11 = 0.32021 u22 = 1.28483 u33 = 2.95689

10 u44 = 5.5528 u55 = 9.34157 u66 = 13.643

u77 = 14.6001 u88 = 8.79291 u99 = 2.25532

u11 = 0.204221 u22 = 0.750349 u33 = 1.58515

100 u44 = 2.66565 u55 = 3.14669 u66 = 2.50618

u77 = 1.7146 u88 = 2.85901 u99 = 1.84918

u11 = 0.799268 u22 = 0.969581 u33 = 0.990234

10000 u44 = 1.00707 u55 = 1.00159 u66 = 1.00001

u77 = 1.00002 u88 = 0.999371 u99 = 1.02851

100(u22 + u13 + u11 − 4u12) + λ(0.1 − 0.1 ∗ 0.2)(u12 − u2
12) = 0 for i = 1, j = 2 (2.4)

...

100(u89 + u98 − 4u99) + λ(0.1 − 0.9 ∗ 0.9)(u99 − u2
99) = 0 for i = 9, j = 9 (2.5)

After solving this system that has 81 equation and 81 by “Matlab toolbox” we obtain u in grid
� that leads us to understand the behavior of solution branches. We express just some of values
of uij s in the following tables. It is easy to see that λ+

1 (f ) in this case is 1409.3 with decimal
accuracy.
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