
Communications in Mathematical Analysis
Volume 1, Number 2, pp. 121–136, 2006

ISSN 0973-3841
© 2006 Research India Publications

Convergence of the Cesàro-like Means on
p-adic Hilbert Spaces

Sandra N. Farrier∗
Department of Mathematics, Howard University,

2441 6th Street N.W., Washington, DC 20059, USA

(Communicated by Toka Diagana)

Abstract

Let T : Eω �→ Eω be a nonexpansive mapping (possibly nonlinear) on the p-adic Hilbert
space (Eω, ‖ · ‖, 〈·, ·〉). We introduce the Cesàro-like means:

Fnx := 1

Pn

n∑
k=1

αkT
kx, x ∈ Eω,

where Pn = α1+···+αn and (αk)k∈N ⊂ K is a sequence of nonzero elements satisfying some
additional assumptions. And, we provide results on both the strong and weak convergence
of the Cesàro-like means to a fixed point y of T .
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1 Introduction

In the development of the field of non-Archimedean Functional analysis, there has been particular
interest in defining an analogue to the notion of a Hilbert Space. In fact, several definitions have
been proposed and an outline of these can be found in [1]. The definition that we consider in our
study of nonexpansive mappings is the one given in [7] of a p-adic Hilbert space.
Let K be a complete ultrameteric field and ω = (ωi)i≥0 ⊂ K be a sequence of nonzero terms.
Consider

Eω := c0

(
N, K, (|ωi | 1

2 )i≥0

)
=

{
x = (xi)i≥0 ⊂ K : lim

n→+∞ |xi ||ωi | 1
2 = 0

}
.

We define the basis (ei)i≥0 by letting ei = (δi,j )j≥0 where δi,j is the Kronecker symbols, δi,i = 1
and δi,j = 0 if i �= j . Eω is a free Banach space with (ei)i≥0 as an orthogonal basis, that is
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every x ∈ Eω can be written as, x =
∑
i≥0

xiei, where ‖x‖ = sup
i≥0

|xi ||ωi | 1
2 . The bilinear form

〈·, ·〉 : Eω × Eω → K defined as,

〈x, y〉 =
∑
i≥0

xiyiωi,

for all x =
∑
i≥0

xiei ∈ Eω, and y =
∑
i≥0

yiei ∈ Eω is symmetric, non-degenerate, and satisfies the

Cauchy-Schwartz inequality, ∣∣〈x, y〉∣∣ ≤ ‖x‖‖y‖.
The space (Eω, ‖ · ‖, 〈·, ·〉) is called a p-adic Hilbert space.

The p-adic Hilbert space defined above coincides with the definition given by
Khrennikov in [2] in his study of p-adic Hilbert spaces and their applications to p-adic Quantum
Mechanics.

In general, p-adic Hilbert spaces do not posses many of the fundamental characteristics
of Hilbert spaces. For example, the property that given any Hilbert space H , if D ⊂ H ,
D = D⊥⊥ ⇐⇒ D ⊕ D⊥ = H ; does not always hold in the p-adic setting. Furthermore,
properties such as the Parallelogram Law and Parseval’s Inequality fail (see [8]). Moreover,
there are also several notable differences between the basic topological notions of p-adic Hilbert
spaces and their classical counterpart. For example, in p-adic Hilbert spaces all balls are clopen
(both open and closed), and all points contained in a ball lie at its center. One of the most
notable differences between Hilbert spaces and p-adic Hilbert spaces is the fact that the norm
‖x‖ �= √|〈x, x〉|K in general. The only connection that we have thus far between the norm and
the inner product is given by the Cauchy-Schwartz inequality.

The dissimilarities between the structure of p-adic Hilbert spaces and Hilbert spaces give
rise to the following questions in the context of nonexpansive mappings. Does the structure of
p-adic Hilbert spaces affect the behavior of nonexpansive mappings defined on these spaces?
And, can we generate results in the p-adic setting on the convergence of these mappings and
there associated Cesàro means that parallels the results for Hilbert spaces?

Nonexpansive mappings on uniformly convex spaces, particularly Hilbert spaces have been
extensively studied. Early contributions to the theory of nonexpansive mappings were made
by Baillon [4], Pazy [12], and Reich [13]. The development of the theory of nonexpansive
mappings on Hilbert spaces has relied on the geometric structure of the space.Uniform convexity
is a geometric property of Banach spaces which was introduced by Clark in 1936 as a result
of attempts made to classify Banach spaces according to the convexity of their unit balls, and
Hilbert spaces are classic examples of them. We will see shortly that in the non-Archimedean
setting the geometric structure of p-adic Hilbert spaces does not play as significant a role as it
did in the classical setting.

The Cesàro means of nonexpansive mappings on uniformly convex Banach spaces E are
defined as,

Snx = 1

n

n∑
k=1

T kx, for x ∈ E.

This definition does not always make sense in our study of nonexpansive mappings over p-adic

Hilbert spaces. To address this we replace
1

n
by

1

α1 + · · · + αn

in the definition of the Cesàro
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means, where (αk)k∈N is a sequence of non-zero elements of K, and we introduce an analogue to
the Cesàro means which we refer to as the Cesàro-like means.

For an arbitrary element x ∈ Eω, and a nonexpansive map T : Eω → Eω, the Cesàro-like
means are defined as,

Fnx := 1

Pn

n∑
k=1

αkT
kx, x ∈ Eω,

where Pn = α1 + · · · + αn and (αk)k∈N ⊂ K is a sequence of nonzero elements satisfying
some additional assumptions. The sequence (αk)k∈N plays a significant role in our work. Under
suitable conditions on the sequence we are able to prove that for x ∈ Eω if the iterates T nx

converge strongly or weakly to a point y ∈ Eω, then the sequence of Cesàro-like means Fnx also
converges to y, which is a fixed point of T . And, the convergence of the Cesàro-like means is
independent of the sequence (αk)k∈N ⊂ K.

In this paper we study nonexpansive mappings on p-adic Hilbert spaces (Eω, ‖ ·‖, 〈·, ·〉), and
provide results on both the strong and weak convergence of their associated Cesàro-like means.
We begin with a few definitions and basic notions of nonexpansive mappings, ultrametric Banach
spaces, and p-adic Hilbert spaces. This is followed by a discussion on the Cesàro-like means
in section three. In section four we prove that the Cesàro-like means converge strongly to a
fixed point of T , and characterize the relationship between x ∈ Eω and limn→∞ Fnx. We also
demonstrate that the theorem on the strong convergence of the Cesàro-like means can be applied
to the algebraic sum of bounded operators. Section five contains a result on the weak convergence
of the Cesàro-like means. The sixth and final section contains several examples which illustrate
our work.

2 Preliminaries

This section contains a few definitions and basic notions of nonexpansive mappings, ultrametric
Banach spaces, and p-adic Hilbert spaces.

Definition 2.1. Let (M, d) be a metric space. A mapping T : M → M is a Lipschitzian if there
exists a number λ > 0 such that,

d(T x, T y) ≤ λ d(x, y), for all x, y ∈ M.

The smallest such λ is said to be the Lipschitz constant of T , and we denote it by L(T ).
The map T : M → M is said to be nonexpansive if L(T ) ≤ 1. It is called a contraction if

L(T ) < 1.

The Lipschitz constant of the n-th iterate T n of a nonexpansive map T is such that

L(T n) ≤ [L(T )]n.
Throughout our discussion we let FT = {x ∈ M : T x = x} denote the set of fixed points of T .

Definition 2.2. A field K is said to be an ultrametric valued field if there exists a map |·| : K → R+
such that

(i) |a| = 0 if and only if a = 0,
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(ii) |ab| = |a||b|, ∀ a, b ∈ K,

(iii) |a + b| ≤ max {|a|, |b|}, ∀ a, b, ∈ K.

The norm | · | induces a metric d on K, which is defined by d(a, b) = |a − b|. When (K, d)

is complete with respect to the metric d, K is called a complete ultrametric valued field. The
ultrametric norm satisfies:

(i) ∀ a ∈ K, | − a| = |a|;
(ii) If |a| �= |b|, then |a + b| = max {|a|, |b|} ;

(iii) ∀ a, b ∈ K, if |a| < |b|, then |b − a| = |b|;
(iv) A sequence (an)n∈N ⊂ K is a Cauchy sequence if and only if (an −an+1) is a null sequence

in K, i.e. lim
n→∞ |an − an+1| = 0;

A classic example of an ultrametric field is (Qp, |.|p) the field of p-adic numbers (see [10]).

Definition 2.3. Let E be a vector space over a complete ultrametric valued field K. The map
‖ · ‖ : E �→ R+ is an ultra (or non-Archimedean) norm on E if the following conditions are
satisfied ∀ x, y, ∈ E and ∀ a ∈ K.

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖ax‖ = |a|‖x‖;

(iii) ‖x + y‖ ≤ max{‖x‖, ‖y‖} (ultrametric inequality).

If (E, ‖ · ‖) is complete, then E is said to be an ultrametric Banach space over K.

The space

c0(I, K, α) :=
{
x = (xi)i∈I ∈ KI : lim

i∈I
|xi | αi = 0

}
,

where I is the index set, is an example of an ultrametric Banach space. Its norm is given by,

‖x‖ = sup
i∈I

|xi |αi.

Definition 2.4. An ultrametric Banach space (E, ‖ · ‖) over a non-Archimedean valued field K,
is said to be a free Banach space if there exists a family (ei)i∈I ⊂ E such that any x ∈ E can be
written as x = ∑

i∈I xiei, i.e.

lim
i

|xi |‖ei‖ = 0, and ‖x‖ = sup
i∈I

|xi |‖ei‖.

We say that (ei)i∈I is an orthogonal base of E. If in addition ‖ei‖ = 1, for all i ∈ I then
(ei)i∈I is said to be an orthonormal base.
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For a free Banach space E, let E∗denote its topological dual and B(E) the set of all bounded
linear operators on E. Both E∗ and B(E) are endowed with their respective usual norms.

Let (ei)i∈N be an orthogonal base for E, then one can define e′
i ∈ E∗ by:

e′
i (x) = xi, x =

∑
i∈N

xiei.

Let E and F be free Banach spaces over K with respective bases (ej )j∈J and (fi)i∈I . For
x

′ ∈ E∗(the dual of E) and y ∈ F, define the operator x ′ ⊗ y : E → F by,

x ′ ⊗ y(x) = 〈x ′, x〉y
where ‖x ′ ⊗ y‖ = ‖x ′‖‖y‖.

Each operator A on E can be expressed as a pointwise convergent series, that is, there exists an
infinite matrix (aij )(i,j)∈N×N with coefficients in K, such that for any j ∈ N, lim

i→∞
∣∣aij

∣∣ ‖ei‖ = 0,

and
Ax =

∑
ij

aij (e
′
j ⊗ ei)x.

Moreover, for any s ∈ N,

Aes =
∑
i∈N

aisei

and

‖A‖ = sup
i,j

∣∣aij

∣∣ ‖ei‖∥∥ej

∥∥ .

If ‖A‖ is finite then A is said to be bounded.

Definition 2.5. Let ω = (ωi)i≥0 ⊂ K be a sequence of nonzero terms. Consider

Eω := c0

(
N, K, (|ωi | 1

2 )i≥0

)
=

{
x = (xi)i≥0 ⊂ K : lim

n→+∞ |xi ||ωi | 1
2 = 0

}
.

We define the basis (ei)i≥0 by letting ei = (δi,j )j≥0 where δi,j is the Kronecker symbols, δi,i = 1
and δi,j = 0 if i �= j . Eω is a free Banach space with (ei)i≥0 as an orthogonal basis. (The
orthogonality described here is with respect to the norm (see [1])). Indeed, every x ∈ Eω can be
written as, x =

∑
i≥0

xiei, where ‖x‖ = sup
i≥0

|xi ||ωi | 1
2 . From this, we conclude that ‖ei‖ = |ωi | 1

2 .

Let 〈·, ·〉 : Eω × Eω → K be the bilinear form defined by,

〈x, y〉 =
∑
i≥0

xiyiωi,

for all x =
∑
i≥0

xiei ∈ Eω, and y =
∑
i≥0

yiei ∈ Eω. The bilinear form 〈·, ·〉 is a symmetric and

non-degenerate bilinear form on Eω × Eω, and it is satisfies the Cauchy-Schwartz inequality,∣∣〈x, y〉∣∣ ≤ ‖x‖‖y‖.
The space (Eω, ‖ · ‖, 〈·, ·〉) is called a p-adic Hilbert space.
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Further discussion on Free Banach spaces and p-adic Hilbert spaces can be found in [5]
and [7].

Definition 2.6. Let u, v ∈ B(Eω), say, u = ∑
i,j αij e

′
j ⊗ ei and v = ∑

i,j βij e
′
j ⊗ ei, where

lim
i→+∞ |αij ||ωi | 1

2 = 0, and lim
i→+∞ |βij ||ωi | 1

2 = 0 for all j ≥ 0.

The operator v ∈ B(Eω), is the adjoint of u with respect to 〈·, ·〉 if 〈u(x), y〉 = 〈x, v(y)〉,
for all x, y ∈ Eω.

Notice that v is also the adjoint of u since 〈·, ·〉 is symmetric. Furthermore, the adjoint of an
operator u, if it exists, is unique, since 〈·, ·〉 is nondegenerate.

Theorem 2.7. Let (ωi)i≥0 ⊂ K be a sequence of nonzero terms and letu =
∑
i,j

αij e
′
j ⊗ ei ∈ B(Eω).

Then u has an adjoint v = u∗ ∈ B(Eω) if and only if

lim
j→+∞ |ωj |− 1

2 |αij | = 0, ∀ i ≥ 0.

In this event, u∗ =
∑
ij

ω−1
i ωjαij e

′
j ⊗ ei.

Proof. See [7]. �

Theorem 2.7 demonstrates that contrary to classical Hilbert spaces, not all continuous linear
operators on p-adic Hilbert spaces have an adjoint. Let

B0(Eω) =
{
u =

∑
i,j

αij e
′
j ⊗ ei ∈ B(Eω) : lim

j→+∞ |ωj |− 1
2 |αij | = 0, ∀ i ≥ 0

}

denote the space of continuous operators u ∈ B(Eω) which have an adjoint.
The definition for the weak convergence is similar to what is used in the classical setting. It

is stated here for p-adic Hilbert spaces.

Definition 2.8. Let E be a p-adic Hilbert space. The sequence (xn)n∈N ⊂ E converges weakly
to x ∈ E if for all y ∈ E,

lim
n→∞〈xn, y〉 = 〈x, y〉.

This is denoted by xn ⇀ x.

Definition 2.9. A mapping T on a p-adic Hilbert space is asymptotically regular if T nx −
T n+1x → 0 as n → ∞. It is said to be weakly asymptotically regular, if T nx − T n+1x ⇀

0 as n → ∞.

Note that for a nonexpansive map T : Eω → Eω, asymptotically regularity implies weak
asymptotic regularity.

Lemma 2.10. Let x be an arbitrary element of Eω and let T be a strict contractive linear mapping
on Eω. Then, T is weakly asymptotically regular.

Proof. See [8]. �
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3 The Cesàro - like Means

In the classical setting(i.e. Banach spaces over R or C), the Cesàro means of a nonexpansive
map T are defined by

Sn = 1

n

n∑
k=1

T kx, for x ∈ E, n ∈ N

where T : E �→ E is a nonexpansive map on a uniformly convex Banach space E. However, when
attempting to study the convergence of these maps in the ultrametric setting a few problems arise.
First, we find that this definition does not always make sense, because, the asymptotic behavior

of
1

n
may vary depending on the valuation. Take for instance the ultrametric field (Qp, | · |p) for

a fixed prime p ≥ 2. We have that

∣∣∣∣1

n

∣∣∣∣
p

= pordp(n) → ∞ as n → ∞.

To address these difficulties we will replace
1

n
by

1

α1 + · · · + αn

in the definition of the Cesàro

mean, where (αk)k∈N ⊂ K is a sequence of nonzero terms satisfying additional assumptions. We
can now introduce an analogue to the Cesàro means which we will refer to as the Cesàro-like
means. Let (E, ‖ · ‖) be an ultrametric Banach space over a complete ultrametric field (K, | · |),
and let T : E �→ E be a nonexpansive mapping. The Cesàro-like means are defined as,

Fnx := 1

Pn

n∑
k=1

αkT
kx, x ∈ E,

where Pn = α1 +· · ·+αn with (αk)k∈N ⊂ K being a sequence of nonzero elements. We suppose

(H.1) |Pn| := |αn|, where Pn = α1 + · · · + αn;

(H.2) lim
n→∞

( |αn|
|αn+1|

)
= 0.

The sequence (αk)k∈N plays a significant role in our work.
Notice that condition (H.1) implies that (|Pn|)n∈N is a strictly increasing sequence. Indeed,

by definition |Pn| = |αn| = max
1≤k≤n

|αk| implies that for all i, j = 1, . . . , n, |αi | �= |αj | for all

i �= j . So we have,

|αn+1| = |Pn+1| = max
1≤k≤n+1

|αk|

= max
{

max
1≤k≤n

|αk|, |αn+1|
}

= max
{
|Pn|, |αn+1|

}
,

by (H.1). And therefore, |Pn| < |αn+1| = |Pn+1|.
For the consistency of our work, we give examples of sequences (αk)k∈N ⊂ K satisfying both

(H.1) and (H.2).

Example 3.1. Take K = Qp, the p-adic number field. An example of such a sequence (αk)k∈N ⊂
Qp is given by

αk = p−pk

, k ∈ N.
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Let us check that conditions (H.1) and (H.2) are satisfied. Indeed,

|Pn|p = max
1≤k≤n

|αk|p = max
1≤k≤n

ppk = ppn = |αn|p.

And,

lim
n→∞

|αn|p
|αn+1|p = lim

n→∞
|p−pn |p

|p−pn+1 |p = lim
n→∞

ppn

ppn+1 = 0.

A more generalized family of sequences satisfying the conditions above is given by αk =
p−pf (k)

, where f : N �→ N is a strictly increasing function.

Example 3.2. Let K = Qp. The sequence (αk)k∈N ⊂ Qp given by

αk = p−k!, k ∈ N,

satifies both (H.1) and (H.2).

4 Strong Convergence of the Cesàro – like Means on
p-adic Hilbert Spaces

Before formally stating the theorem on the strong convergence of Cesàro-like means (Fnx)n∈N,
let us first look to following lemmas and theorem.

Lemma 4.1. The map Fn : Eω → Eω is nonexpansive.

Proof. For arbitrary x, y ∈ Eω,

‖Fnx − Fny‖ =
∥∥∥ 1

α1 + · · · + αn

n∑
k=1

αk

(
T kx − T ky

)∥∥∥
≤ 1

|Pn| max
1≤k≤n

∥∥∥αk

(
T kx − T ky

)∥∥∥
≤ 1

|Pn| · |Pn| max
1≤k≤n

‖T kx − T ky‖

≤ ‖x − y‖.
�

Lemma 4.2. Let x be an arbitrary element of a p-adic Hilbert space Eω and let T be a contractive
mapping (possibly nonlinear) on Eω. Then Fnx − T nx → 0 as n → ∞.
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Proof. Let x be an arbitrary element of Eω,

‖Fnx − T nx‖ =
∥∥∥ 1

Pn

n∑
k=1

αkT
kx − T nx

∥∥∥
= 1

|Pn|
∥∥∥ n∑

k=1

αkT
kx − PnT

nx

∥∥∥
= 1

|Pn|
∥∥∥n−1∑

k=1

αkT
kx + (αn − Pn)T

nx

∥∥∥
= 1

|Pn|
∥∥∥n−1∑

k=1

αkT
kx − Pn−1T

nx

∥∥∥
≤ 1

|Pn| max
{∥∥∥n−1∑

k=1

αkT
kx

∥∥∥, ‖Pn−1T
nx‖

}

≤ 1

|Pn| max
{

max
1≤k≤n−1

‖αkT
kx‖, |Pn−1|‖T nx‖

}
≤ 1

|Pn| max
{
|Pn−1| max

1≤k≤n−1
‖T kx‖, |Pn−1|‖T nx‖

}
≤ |Pn−1|

|Pn| ‖x‖.

Since lim
n→∞

|αn|
|αn+1| = 0 and ‖x‖ < ∞, ∀ x ∈ Eω, as n → ∞ we have

‖Fnx − T nx‖ → 0. �

The following theorem is due to Banach (see [9]).

Theorem 4.3. Let T be a self-mapping of a complete metric space (M, d). If T is a contraction,
then it has a unique fixed point y, and

lim
n→∞T nx = y, ∀x ∈ M.

We now state and prove the theorem on the strong convergence of the Cesàro-like means.

Theorem 4.4. Let x be an arbitrary element of a p-adic Hilbert space Eω and let T be a
contractive mapping (possibly nonlinear) on Eω. If FT �= φ, then the ultrametric Cesàro-like
means (Fnx)n∈N converge strongly to a fixed point y ∈ FT .

Proof. To prove that (Fnx)n∈N is Cauchy it suffices to show that

lim
n→ ∞‖Fnx − Fn+1x‖ = 0.

For an arbitrary x ∈ Eω,

‖Fnx − Fn+1x‖ = ‖Fnx − T nx + T nx − T n+1x + T n+1x − Fn+1x‖
≤ ‖Fnx − T nx‖ + ‖T nx − T n+1x‖ + ‖T n+1x − Fn+1x‖.
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By Lemma 4.2: ‖Fnx − T nx‖ → 0 as n → ∞, and by Theorem 4.3:
‖T nx − T n+1x‖ → 0 as n → ∞, therefore

lim
n→∞‖Fnx − Fn+1x‖ = 0.

Hence (Fnx)n∈N is Cauchy in Eω and therefore converges to a point g(x) ∈ Eω. Since
‖Fnx − T nx‖ → 0 as n → ∞, both (Fnx)n∈N and (T nx)n∈N converge to the same limit; and, by
Theorem 4.3, g(x) is a fixed point of T . �

The following theorem characterizes the map g which takes

x �→ g(x) = lim
n→∞ Fnx.

Theorem 4.5. The mapping g on Eω which takes x �→ g(x) is uniformly continuous.

Proof. For x ∈ Eω, lim
n→∞Fnx = g(x) ∈ Eω. Thus the operator g maps Eω into Eω. For

x, y ∈ Eω, and ∀ n ∈ N,

‖g(x) − g(y)‖ ≤ ‖g(x) − Fnx‖ + ‖Fnx − Fny‖ + ‖Fny − g(y)‖
≤ ‖g(x) − Fnx‖ + ‖x − y‖ + ‖Fny − g(y)‖ + ‖Fny − g(y)‖,

Since Fn is nonexpansive ‖Fnx − Fny‖ ≤ ‖x − y‖. Now if we take the limit as n → ∞, we
have that ∀ x, y ∈ E, ‖g(x) − g(y)‖ ≤ ‖x − y‖. �

We can apply the results on the strong convergence of the Cesàro-like means to the algebraic
sum of bounded operators. Namely, we perturb a contraction by a bounded linear operator in an
ultrametric Banach space E.

Consider the operator, �α,β : E → E,

�α,β = αT + βB, (4.1)

where E is an ultrametric Banach space over a complete ultrametric field K,
T : E → E is a linear contraction, B : E → E is a bounded linear operator, and α, β ∈ K are
nonzero elements.

The following assumptions will be made:

(H.3): ‖αT + βB‖ < ‖B‖;

(H.4): ‖B‖ <
1

max(1, |β|) .

Theorem 4.6. Under assumptions (H.3) − (H.4), �α,β is a contraction on E.

Proof. We have

‖αT ‖ = ‖αT + βB − βB‖ ≤ max
{
‖αT + βB‖, |β|‖B‖

}
≤ max(1, |β|). max

{
‖αT + βB‖, ‖B‖

}
= max

{
1, |β|

}
‖B‖, (4.2)
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by (H.3).

‖αT + βB‖ ≤ max
{
‖αT ‖, |β|‖B‖

}
≤ max

{
max{1, |β|}‖B‖, |β|‖B‖

}
(by (4.2))

= max
{

1, |β|
}
‖B‖

< 1,

by (H.4).
So the iterates

(
�n

α,β(x)
)
n∈N

as well as the corresponding Cesàro-like means (Fnx)n∈N for
x ∈ E converge strongly to the unique fixed-point of �α,β . Notice that F�α,β

= N(I − �α,β).

5 Weak Convergence of the Cesàro-like means on
p-adic Hilbert Spaces

We begin with the following lemmas.

Lemma 5.1. Let Eω be a p-adic Hilbert space over a complete ultrametric valued field K, and
(xn)n∈N be a sequence in Eω. If xn ⇀ y in Eω, then

1

Pn

n∑
k=1

αkxk ⇀ y.

Proof. Let (xn)n∈N be a sequence in Eω which is weakly convergent to y ∈ Eω. Here M is the
bound on the sequence of real numbers {|〈xn, z〉|}n∈N in R. ∀ z ∈ Eω,

∣∣∣∣∣
〈 1

Pn

n∑
k=1

αkxk − y, z
〉∣∣∣∣∣ =

∣∣∣∣∣
〈 1

Pn

(
n∑

k=1

αkxk − Pny

)
, z

〉∣∣∣∣∣
=

∣∣∣∣∣
〈 1

Pn

(
n−1∑
k=1

αkxk + αnxn − Pny

)
, z

〉∣∣∣∣∣
=

∣∣∣∣∣
〈 1

Pn

(
n−1∑
k=1

αkxk + (Pn − Pn−1)xn − Pny

)
, z

〉∣∣∣∣∣
= 1

|Pn|

∣∣∣∣∣
〈n−1∑
k=1

αkxk − Pn−1xn + Pn(xn − y), z
〉∣∣∣∣∣

≤ 1

|Pn|

∣∣∣∣∣
〈n−1∑
k=1

αkxk, z
〉∣∣∣∣∣ +

∣∣∣∣〈Pn−1

Pn

xn, z
〉∣∣∣∣

+ |〈xn − y, z〉|
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= 1

|Pn|

∣∣∣∣∣
n−1∑
k=1

αk〈xk, z〉
∣∣∣∣∣ + |Pn−1|

|Pn| |〈xn, z〉|

+ |〈xn − y, z〉|
≤ |Pn−1|

|Pn| max
1≤k≤n−1

|〈xk, z〉| + |Pn−1|
|Pn| |〈xn, z〉|

+ |〈xn − y, z〉|
≤ 2M

|Pn−1|
|Pn| + |〈xn − y, z〉|.

Taking the limit as n → ∞ we observe∣∣∣〈 1

Pn

n∑
k=1

αkxk − y, z
〉∣∣∣ → 0,

and therefore
1

Pn

n∑
k=1

αkxk ⇀ y.

�
Lemma 5.2. If T : Eω → Eω is a bounded linear mapping and the adjoint T ∗ of T exists, then
T is weakly continuous.

Proof. Assume that for some sequence (xn)n∈N in Eω, xn ⇀ x. We want to show that T xn ⇀ T x

as n → ∞. In fact,∣∣∣〈T xn − T x, y
〉∣∣∣ =

∣∣∣〈xn − x, T ∗y
〉∣∣∣ −→ 0, as n → ∞, (5.1)

since 〈xn − x, z〉 → 0, as n → ∞ for all z ∈ Eω. Therefore, T xn converges weakly to T x. This
completes the proof. �

We now state and prove the main result on the weak convergence of the Cesàro-like means
on p-adic Hilbert spaces.

Theorem 5.3. Let T be a contractive linear mapping on Eω whose adjoint T ∗ exists. If T nx ⇀ y,
then Fnx = 1

Pn

∑n
k=1 αkxk ⇀ y and y ∈ FT .

Proof. By Lemma 5.1,

T nx ⇀ y �⇒ Fnx = 1

Pn

n∑
k=1

αkxk ⇀ y.

Now we prove that y is a fixed point of T .∣∣∣〈y − Ty, z
〉∣∣∣ =

∣∣∣〈y − T nx + T nx − T n+1x + T n+1x − Ty, z
〉∣∣∣ (5.2)

≤
∣∣∣〈y − T nx, z

〉∣∣∣ +
∣∣∣〈T nx − T n+1x, z

〉∣∣∣
+

∣∣∣〈T n+1x − Ty, z
〉∣∣∣ (5.3)

=
∣∣∣〈y − T nx, z

〉∣∣∣ +
∣∣∣〈T nx − T n+1x, z

〉∣∣∣
+

∣∣∣〈T (T nx) − Ty, z
〉∣∣∣. (5.4)
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By Lemma 5.1: ∣∣∣〈T nx − T n+1x, z
〉∣∣∣ → 0 as n → ∞,

and by Lemma 5.2, ∣∣∣〈T (T nx) − Ty, z
〉∣∣∣ → 0 as n → ∞.

Passing to the limit in (5.4) we have∣∣∣〈y − Ty, z
〉∣∣∣ → 0 as n → ∞,

so y is a fixed point of T . �

6 Examples

In this section we provide examples for contractions on p-adic Hilbert spaces. We also provide
examples of contractions defined on clopen, bounded, and convex subsets of ultrametric Banach
spaces.

Example 6.1. Consider the p-adic Hilbert space Eω, where ω = (ωi)i∈N and ωi = pi , ∀i ≥ 0.
Define T : Eω → Eω by,

T x =
∞∑

k=0

λkxkek+1,

where x = (xi)i∈N ∈ Eω, and the sequence (λk)k∈N in Qp is defined as λk = ppk

.

First we check that T is well defined, i.e. lim
k→∞ |λk|p|xk|p|ωk+1|

1
2
p = 0.

lim
k→∞ |λk|p |xk|p |ωk+1|1/2

p = lim
k→∞ p−pk |xk|p p−k/2p−1/2

≤ ‖x‖ lim
k→∞ p−pk

p−1/2

= 0.

Clearly, T is a linear contraction on Eω, and FT = {�0}.
Example 6.2. Consider Eω where ωi = pi . Its canonical orthogonal base (es)s∈N has the property

that ‖es‖ = |ωi |
1
2
p . (We can instead take any ωi such that {|ωi |p}i≥0 is a decreasing sequence of

real numbers.)
Define the operator T : Eω → Eω as follows:

T es = pses + (1 − ps)es+1, ∀s ∈ N. (6.1)

For every x = ∑
s xses ∈ Eω,

T x =
+∞∑
s=0

xsT es. (6.2)
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One can easily check that,

‖T ‖ = sup
s∈N

‖T es‖
‖es‖ = p− 1

2 < 1, (6.3)

hence T is a contraction of Eω.
Now we calculate the fixed points of T .

T x − x =
+∞∑
s=1

(
xsp

s + (1 − ps−1)xs−1
)
es − xses (6.4)

=
+∞∑
s=1

(
xs(p

s − 1) + (1 − ps−1)xs−1
)
es. (6.5)

The equation in (6.4) equals zero when,

(ps − 1)xs + (1 − ps−1)xs−1 = 0 ∀s ≥ 1. (6.6)

The fixed points of T are given by

FT =
{
x = (x0, 0, 0, . . .) ∈ Eω, where x0 ∈ K

}
.

The following are examples of a nonlinear, contractive operator with a nontrivial fixed point
set FT .

Example 6.3. Consider the p-adic Hilbert space Eω with the complete ultrametric field K = Qp

defined above and the sequence ω = (ωs)s∈N and ωs = ps , ∀s ≥ 0. Let λ ∈ K, where |λ| > 1
and fix v0 ∈ Eω, such that v0 �≡ 0. For x ∈ Eω, let

Tv0(x) = x − v0

λ
.

Clearly, Tv0 is a non-linear self-mapping on Eω. And,

∥∥Tv0(x) − Tv0(y)
∥∥ =

∥∥∥∥x − y

λ

∥∥∥∥
= 1

|λ| · ‖x − y‖
< ‖x − y‖

implies that Tv0 is a strict contraction, with fixed point set

FTv0
=

{
v0

1 − λ

}
.

The iterates ofTv0 are given byT n
v0

(x) = x + v0 · ∑n−1
i=0 λi

λn
. By Theorem 4.3 and Theorem 4.4,

the iterates and the corresponding Cesáro-like means converge to the unique fixed point of Tv0 .
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Now we look to an example of a linear contraction on a p-adic Hilbert space, with adjoint
that satisfies the assumptions of the theorem on the weak convergence of the Cesàro-like means.

Example 6.4. Consider Eω where ωs = ps for each s ∈ N. Define the p-adic unilateral shift by:
Ues = es+1 for each s ∈ N.

Clearly,
‖Ues‖
‖es‖ = 1√

p
< 1. So U is a contraction on Eω. It is also clear that the adjoint U ∗

of U does exist and that U ∗es+1 = es for each s ∈ N. In addition to that, the U iterates are given
by:

Unx =
∑
s≥0

xses+n,

for each n ∈ N, and each x = (xs)s∈N ∈ Eω. Fix x = (xs)s∈N ∈ Eω. If y = (ys)s∈N ∈ Eω, then

〈Unx, y〉 =
∑
s≥0

ωn+sxsys+n.

In view of the above,
|〈Unx, y〉| ≤ p−n/2‖x‖ · ‖y‖,

hence, 〈Unx, y〉 → 0 as n → ∞. In other words, Unx ⇀ 0 in Eω. Using Theorem 5.3 it follows
that the corresponding Cesàro-like means (Fnx)n∈N defined by

Fnx = 1

Pn

n∑
k=1

αk

(∑
s≥0

xsek+s

)

converges weakly to 0.
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