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1 Introduction

As pointed out by Kuang[3], it would be of interest to investigate the existence of periodic
solutions of neutral delay interacting population models.

In 1993, Kuang [3] proposed an open problem (open problem 9.2) to obtain sufficient con-
ditions for the existence of positive periodic solutions of the following equation:

x′(t) = r(t)x(t)[a(t)− β(t)x(t)− b(t)x(t− τ(t))− c(t)x′(t− τ(t))],
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wherer(t), a(t), β(t), b(t), τ(t) andc(t) are nonnegative continuous periodic functions. Many
authors have studied this problem by various tools, such as abstract continuous theorem ofk-set
contractive operator and the theory of coincidence degree, see for examples [6–9].

By using an abstract continuous theorem ofk-set contractive operator and some analysis
techniques, Lu and Ge studied the system in [6,7] as follows:

x′(t) = x(t)[a(t)− β(t)x(t)− Σn
j=1bj(t)x(t− τj(t))− Σm

i=1ci(t)x′(t− γi(t))],

where all the functionsa(t), β(t), bj(t), τj(t), ci(t) andγi(t) are continuousω-periodic func-
tions with τj(t) ≥ 0, γi(t) ≥ 0, ∀t ∈ [0, ω],ω > 0 is a constant. Furthermore,τj , ci ∈
C1(R, R) with τ ′j(t) < 1, ∀t ∈ [0, ω] andγi ∈ C2(R, R) with γ′i(t) < 1, ∀t ∈ [0, ω],∀i ∈
{1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . , n}.

In 1991, Kuang [4] first introduced the following neutral delay competition model:
{

x′(t) = r1x(t)[1− k1x(t)− ax(t− τ1)− bx′(t− τ2)− c1y(t− τ3)],
y′(t) = r2y(t)[1− c2x(t− τ4)− k2y(t− τ5)],

(1.1)

where all parameters exceptb are assumed to be positive constants. Moreover, he also studied
the local stability, oscillation of solution of system (1.1) in [4] and obtained some sufficient
conditions for bounded solutions of system (1.1) in [5].

Motivated by these works, in this paper, we consider the existence of positive periodic solu-
tions for the following neutral delay competition model:





x′(t) =x(t)[r1(t)− k1(t)x(t)− a(t)x(t− τ1(t))− b(t)x′(t− τ2(t))
− c1(t)y(t− τ3(t))],

y′(t) = y(t)[r2(t)− c2(t)x(t− τ4(t))− k2(t)y(t− τ5(t))],
(1.2)

whereri(t), a(t), b(t), ki(t), τj(t) andci(t) are continuousω-periodic functions withτj(t) ≥
0, ∀t ∈ [0, ω], j = 1, 2, . . . , 5,ki(t) ≥ 0, ci(t) ≥ 0, ∀t ∈ [0, ω], i = 1, 2.ω > 0 is a con-
stant.Furthermore,τ1, b ∈ C1(R, R) with τ ′1(t) < 1, ∀t ∈ [0, ω] and τ2 ∈ C2(R, R) with
τ ′2(t) < 1, ∀t ∈ [0, ω].

Obviously, the system (1.2) contains the system (1.1). As far as we know, there are few
results of positiveω-periodic solutions of the system (1.2). In the present paper, we establish
the existence and nonexisting results for the system (1.2) and our methods are based on an
application of the continuation theorem of the coincidence degree theory which was proposed in
[1] by Gaines and Mawhin.

In Section 2, we introduce some notations and lemmas to study the existence of positive
periodic solutions of the system (1.2). In Section 3, we establish and prove our main results by
continuation theorem. Finally, we give a concrete example to show our main Theorem 3.1 in
Section 4.

2 Notations and Lemmas

In this section, we shall introduce some notations and lemmas. LetX, Z be real Banach spaces,
L : DomL ⊂ X → Z be a linear Fredholm mapping of index 0, andN : X → Z be continuous.
Let P : X → X, Q : Z → Z be continuous projectors such thatImP = KerL,KerQ = ImL
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andX = KerL
⊕

KerP,Z = ImL
⊕

ImQ. Obviously,L : DomL ∩KerP → ImL is
one to one, so its inverseKP : ImL → DomL∩KerP . J : ImQ → KerL is an isomorphism
of ImQ ontoKerL.

In the sequel, we introduce the continuation theorem in [1] as follows:

Lemma 2.1. Let Ω ⊂ X be an open bounded set and letN : X → Z be continuous operator
which isL-compact on̄Ω(i.e,QN andKP (I −Q)N are relatively compact on̄Ω). Assume that

1. for eachλ ∈ (0, 1),x ∈ DomL ∩ ∂Ω, Lx 6= λNx;

2. for eachλ ∈ (0, 1),x ∈ KerL ∩ ∂Ω,QNx 6= 0 anddeg{JQN,KerL ∩ Ω, 0} 6= 0.

Then the equationLx = Nx has at least one solution inDomL ∩ Ω̄.

For convenience, we use the notations:Cω = {x : x(t) = (x1(t), x2(t))T ∈ C(R; R2), x(t) ≡
x(t + ω), ∀t ∈ R} with norm defined by|x|0 = max

t∈[0,ω]
{|x1(t)|,

|x2(t)|}, andC1
ω = {x : x(t) = (x1(t), x2(t))T ∈ C1(R; R2), x(t) ≡ x(t + ω), ∀t ∈ R}

with the norm defined by|x|1 = max
t∈[0,ω]

{|x|0, |x′|0}. ThenCω andC1
ω are Banach spaces with

the norm| · |0 and| · |1, respectively. We denotēf =
1
ω

∫ ω

0
f(t)dt andf̄∗ =

1
ω

∫ ω

0
|f(t)|dt,

whereverf is a continuousω-periodic function.
Take the transformationx(t) = ex1(t) andy(t) = ex2(t), then Eqns (1.2) can be rewritten as

follows: 



x′1(t) =r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t))

− b(t)x′1(t− τ2(t))ex1(t−τ2(t)) − c1(t)ex2(t−τ3(t)),

x′2(t) = r2(t)− c2(t)ex1(t−τ4(t)) − k2(t)ex2(t−τ5(t)).

(2.1)

Remark2.2. Obviously, if Eqns (2.1) has aω-periodic solutionx(t) = (x1(t), x2(t))T , then
(ex1(t), ex2(t))T is a positiveω-periodic solution of Eqns (1.2). So we need only to show that
Eqns (2.1) has at least oneω-periodic solution.

Let

f1(t, x1(t), x2(t)) = r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t)) − c1(t)ex2(t−τ3(t))

and
f2(t, x1(t), x2(t)) = r2(t)− c2(t)ex1(t−τ4(t)) − k2(t)ex2(t−τ5(t)).

Then Eqns (2.1) can be rewritten in the following form:
{

x′1(t) = f1(t, x1(t), x2(t))− b(t)x′1(t− τ2(t))ex1(t−τ2(t)),
x′2(t) = f2(t, x1(t), x2(t)).

In order to apply Lemma 2.1 to study Eqns (1.2), we setX = C1
ω, Z = Cω. Let L : C1

ω → Cω

defined by

Lx =
dx

dt
=




dx1(t)
dt

dx2(t)
dt



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andN : C1
ω → Cω defined by

Nx =
(

f1(t, x1, x2)− b(t)x′1(t− τ2(t))ex1(t−τ2(t))

f2(t, x1, x2)

)
.

Denote continuous projective operatorsP andQ as

Px =
1
ω

∫ ω

0
x(t)dt =




1
ω

∫ ω

0
x1(t)dt

1
ω

∫ ω

0
x2(t)dt


 , x ∈ X,

and

Qz =
1
ω

∫ ω

0
z(t)dt =




1
ω

∫ ω

0
z1(t)dt

1
ω

∫ ω

0
z2(t)dt


 , z ∈ Z.

So we have

KerL = {x : x ∈ X, x = c, c ∈ R2}, ImL =
{

z : z ∈ Z,

∫ ω

0
z(t)dt = 0

}

andL is a Fredholm mapping of index 0. It is not difficult to see thatP andQ satisfy

ImP = KerL, KerQ = ImL = Im(I −Q)

and there is an inverseKP : ImL → DomL ∩KerP of L defined as

KP (z)(t) =
∫ t

0
z(s)ds− 1

ω

∫ ω

0

∫ t

0
z(s)dsdt.

Let b1(t) =
b(t)

1− τ ′(t)
, it follows that

QN(x)(t) =




1
ω

∫ ω

0
[f1(t, x1(t), x2(t))− b(t)x′1(t− τ2(t))ex1(t−τ2(t))]dt

1
ω

∫ ω

0
f2(t, x1(t), x2(t))dt




=




1
ω

∫ ω

0

[
f1(t, x1(t), x2(t)) + b′1(t)e

x1(t−τ2(t))
]
dt

1
ω

∫ ω

0
f2(t, x1(t), x2(t))dt


 .

(2.2)
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Moreover, by direct computation,we obtain

KP (I −Q)N(x)(t) =




∫ t

0

[
f1(s, x1(s), x2(s)) + b′1(s)e

x1(s−τ2(s))
]
ds

∫ t

0
f2(s, x1(s), x2(s))ds




−
(

b1(t)ex1(t−τ2(t)) − b1(0)ex1(0−τ2(0))

0

)

−




1
ω

∫ ω

0

∫ t

0
f1(s, x1(s), x2(s))dsdt

1
ω

∫ ω

0

∫ t

0
f2(s, x1(s), x2(s))dsdt




+




1
ω

∫ ω

0

∫ t

0
b(s)x′1(s− τ2(s))ex1(s−τ2(s))dsdt

0




−




(
t

ω
− 1

2

)
1
ω

∫ ω

0

∫ t

0
f1(s, x1(s), x2(s))dsdt

(
t

ω
− 1

2

)
1
ω

∫ ω

0

∫ t

0
f2(s, x1(s), x2(s))dsdt




+




(
t

ω
− 1

2

)
1
ω

∫ ω

0

∫ t

0
b(s)x′1(s− τ2(s))ex1(s−τ2(s))dsdt

0


.

(2.3)

Lemma 2.3. Let R1, R2 be two positive constants andΩ = {x : x ∈ C1
ω, |x|0 < R1, |x′|0 <

R2}, thenN : Ω → Cω is L-compact on̄Ω.

Proof. We need only prove thatQN andKP (I − Q)N are relatively compact on̄Ω. By (2.2),
we conclude thatQN is relatively compact on̄Ω.

Next, we shall proveKP (I −Q)N is relatively compact on̄Ω by using Ascoli-Arzela theo-
rem. It is not difficult to see thatKP (I −Q)N is uniformly bounded on̄Ω, so we need only to
show that function familyKP (I −Q)N(Ω̄) is equi-continuous.
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Considering
d

dt
[KP (I −Q)N(x)(t)],∀x ∈ Ω̄. From (2.3), we have

d

dt
[KP (I −Q)N(x)(t)]

=
(

f1(t, x1(t), x2(t)) + b(t)x′1(t− τ2(t))ex1(t−τ2(t))

f2(t, x1(t), x2(t))

)

−




1
ω2

∫ ω

0

∫ t

0
f1(s, x1(s), x2(s))− b(s)x′1(s− τ2(s))ex1(s−τ2(s))dsdt

1
ω2

∫ ω

0

∫ t

0
f2(s, x1(s), x2(s))dsdt


 .

Obviously, there is a positive constantM such that

∣∣∣∣
d

dt
[KP (I −Q)N(x)(t)]

∣∣∣∣
0

≤ M,∀x ∈ Ω̄.

This implies that function familyKP (I − Q)N(Ω̄) is equi-continuous. SoKP (I − Q)N is
relatively compact on̄Ω andN is L-compact on̄Ω. The proof of Lemma 2.3. is complete.¥

The following Lemma and Remark will be used in the sequel.

Lemma 2.4. ([6,7]). Supposeτ ∈ C1(R, R), τ(t + ω) = τ(t),∀t ∈ R and τ ′(t) < 1, ∀t ∈
[0, ω]. Then the functiont − τ(t) has a unique inverseµ(t) satisfyingµ ∈ C(R, R) with
µ(t) = µ(t + ω),∀t ∈ R.

Remark2.5. ([6,7]). By using Lemma 2.4, we see that ifg ∈ Cω, τ ∈ C1(R, R), τ(t + ω) =
τ(t), ∀t ∈ R andτ ′(t) < 1,∀t ∈ [0, ω], theng(µ(t + ω)) = g(µ(t) + ω) = g(µ(t)),∀t ∈ R,
whereµ(t) is the inverse function oft − τ(t), which together withµ ∈ C(R, R) implies that
g(µ(t)) ∈ Cω.

3 Existence of Positive Periodic Solutions

In this section, we will give and prove our main results.

Let µ(t) andγ(t) are inverses oft − τ1(t), t − τ2(t), respectively.b1(t) =
b(t)

1− τ ′2(t)
and

Γ(t) = k1(t) +
a(µ(t))

1− τ ′1(t)
− b′1(γ(t)).

We propose the following two assumptions:

(H1) r̄i > 0, i = 1, 2 andΓ̄ ≥ 0.

(H2)
r̄1

c̄1
>

r̄2

k̄2
e(r̄2+r̄2

∗)ω and
r̄2

c̄2
> max

{
r̄1

Γ̄
e(r̄1+r̄1

∗)ω,
r̄1

k̄1 + ā

}
.

Suppose (H2) holds, letB1 =
∣∣∣ln

( r̄1

Γ̄

)∣∣∣ + (r̄1 + r̄1
∗)ω, B2 =

∣∣∣∣ln
(

r̄2

k̄2

)∣∣∣∣ + (r̄2 + r̄2
∗)ω,

B3 =

∣∣∣∣∣ln
r̄1 − c̄1

r̄2

k̄2
e(r̄2+r̄2

∗ω)

Γ̄

∣∣∣∣∣+(r̄1+ r̄1
∗)ω andB4 =

∣∣∣∣∣ln
r̄2 − c̄2

r̄1

Γ̄
e(r̄1+r̄1

∗ω)

k̄2

∣∣∣∣∣+(r̄2+ r̄2
∗)ω.
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Theorem 3.1. For Eqns (1.2), suppose (H1) and (H2) hold, in addition, we assume that: (H3)
there exists a constantR1 > max{Bi + 1, i = 1, 2, 3, 4.} such that|b|0eR1 < 1 and |x|0 < R1

for the unique solutionx = (x1, x2)T of the system
{

k̄1e
x1 + āex1 + c̄1e

x2 = r̄1,
c̄2e

x1 + k̄2e
x2 = r̄2.

(3.1)

Then Eqns (1.2) has at least one positiveω-periodic solution.

Remark3.2. It is easy to verify that if (H2) holds, then Eqns (3.1) has a unique solutionx =
(x1, x2)T .

Proof. Let x(t) be an arbitraryω-periodic solution of the operator equation as follows

Lx = λNx, λ ∈ (0, 1),

whereL andN defined as in Section 2, respectively. So we have

x′1(t) =λ[r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t)) − b(t)x′1(t− τ2(t))ex1(t−τ2(t))

− c1(t)ex2(t−τ3(t))],
(3.2)

and
x′2(t) = λ[r2(t)− c2(t)ex1(t−τ4(t)) − k2(t)ex2(t−τ5(t))]. (3.3)

Integrating both sides of (3.2) and (3.3) over[0, ω], respectively, we obtain

r̄1ω =
∫ ω

0
[k1(t)ex1(t) + a(t)ex1(t−τ1(t)) − b′1(t)e

x1(t−τ2(t)) + c1(t)ex1(t−τ2(t))]dt, (3.4)

and

r̄2ω =
∫ ω

0
[c2(t)ex1(t−τ4(t)) + k2(t)ex2(t−τ5(t))]dt. (3.5)

Let t− τ1(t) = s, i.e., t = µ(s), then we get

∫ ω

0
a(t)ex1(t−τ1(t))dt =

∫ ω−µ(0))

−µ(0))

a(µ(s))
1− τ ′1(µ(s)))

ex1(s)ds. (3.6)

According to Lemma 2.4 and Remark 2.5, we have
∫ ω

0
a(t)ex1(t−τ1(t))dt =

∫ ω

0

a(µ(s))
1− τ ′1(µ(s))

ex1(s)ds. (3.7)

Similarly, we achieve
∫ ω

0
b′1(t)e

x1(t−τ2(t))dt =
∫ ω

0

b′1(γ(s))
1− τ ′2(γ(s))

ex1(s)ds.

So, from (3.4), (3.6), (3.7) and (H1), we have

r̄1ω =
∫ ω

0
[Γ(t)ex1(t) + c1(t)ex2(t−τ3(t))]dt. (3.8)
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Sincex(t) = (x1(t), x2(t))T ∈ Cω, there aret1, t2 ∈ [0, ω] ands1, s2 ∈ [0, ω] such that

x1(t1) = min
t∈[0,ω]

x1(t), x1(t2) = max
t∈[0,ω]

x1(t);

x2(s1) = min
t∈[0,ω]

x2(t), x2(s2) = max
t∈[0,ω]

x2(t).
(3.9)

According to (3.5), (3.8), and (3.9), we have

Γ̄ωex1(t1) ≤ r̄1ω and k̄2ωex2(s1) ≤ r̄2ω,

i.e.

x1(t1) ≤ ln
( r̄1

Γ̄

)
and x2(s1) ≤ ln

(
r̄2

k̄2

)
. (3.10)

By (3.2) and (3.8), we have
∫ ω

0
|x′1(t)|dt = λ

∫ ω

0
|r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t))

− b(t)x′1(t− τ2(t))ex1(t−τ2(t)) − c1(t)ex2(t−τ3(t))|dt

≤
∫ ω

0
|r1(t)|dt +

∫ ω

0
[k1(t)ex1(t) + a(t)ex1(t−τ1(t))

− b′1(t)e
x1(t−τ2(t)) + c1(t)ex1(t−τ2(t))]dt

= (r̄1 + r̄1
∗)ω.

(3.11)

Similarly, from (3.3) and (3.5), we have
∫ ω

0
|x′2(t)|dt ≤ (r̄2 + r̄2

∗)ω. (3.12)

By (3.10) and (3.11), we have

x1(t) ≤ x1(t1) +
∫ ω

0
|x′1(t)|dt ≤ ln

( r̄1

Γ̄

)
+ (r̄1 + r̄1

∗)ω. (3.13)

Similarly, we can get

x2(t) ≤ x2(s1) +
∫ ω

0
|x′2(t)|dt ≤ ln

(
r̄2

k̄2

)
+ (r̄2 + r̄2

∗)ω. (3.14)

From (3.8) (3.9) and (3.14), we have

r̄1ω ≤ Γ̄ωex1(t2) + c̄1ωex2(s2) ≤ Γ̄ωex1(t2) + c̄1ω
r̄2

k̄2
e(r̄2+r̄2

∗)ω,

i.e.,

x1(t2) ≥ ln
r̄1 − c̄1

r̄2

k̄2
e(r̄2+r̄2

∗)ω

Γ̄
.

Similarly, we have

x2(s2) ≥ ln
r̄2 − c̄2

r̄1

Γ̄
e(r̄1+r̄1

∗)ω

k̄2
.
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So, we have

x1(t) ≥ x1(t2)−
∫ ω

0
|x′1(t)|dt ≥ ln

r̄1 − c̄1
r̄2

k̄2
e(r̄2+r̄2

∗)ω

Γ̄
− (r̄1 + r̄1

∗)ω

and

x2(t) ≥ x2(s2)−
∫ ω

0
|x′2(t)|dt ≥ ln

r̄2 − c̄2
r̄1

Γ̄
e(r̄1+r̄1

∗)ω

k̄2
− (r̄2 + r̄2

∗)ω.

Let Ω = {x : x ∈ C1
ω, |x|0 < R1, |x′|0 < R2}, whereR1 is given by (H3) and

R2 > max
{ |r1|0 + |k1|0eR1 + |a|0eR1 + |c1|0eR1

1− |b|0eR1
+ 1, |r2|0 + |c2|0eR1 + |k2|0eR1 + 1

}
.

From Lemma 2.3, we know thatN : Ω → Cω is L-compact on̄Ω.
In what follows, we will prove that

Lx 6= λNx, (3.15)

for anyλ ∈ (0, 1) andx ∈ ∂Ω. In view of x ∈ ∂Ω, we see either|x|0 = R1, |x′|0 ≤ R2 or
|x|0 ≤ R1, |x′|0 = R2. If |x|0 = R1, |x′|0 ≤ R2, it is not difficult see that (3.15) is true, since
R1 is independent ofλ ∈ (0, 1).

If |x|0 ≤ R1, |x′|0 = R2, (3.15) is also true. Suppose the contrary, then there must be a
λ ∈ (0, 1) and anx ∈ ∂Ω such that

Lx = λNx,

i.e.,

x′1(t) =λ[r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t))

− b(t)x′1(t− τ2(t))ex1(t−τ2(t)) − c1(t)ex2(t−τ3(t))],
(3.16)

and
x′2(t) = λ[r2(t)− c2(t)ex1(t−τ4(t)) − k2(t)ex2(t−τ5(t))].

From (3.16), we have

|x′1(t)|
= λ|r1(t)− k1(t)ex1(t) − a(t)ex1(t−τ1(t))

−b(t)x′1(t− τ2(t))ex1(t−τ2(t)) − c1(t)ex2(t−τ3(t))|
≤ |r1|0 + |k1|0eR1 + |a|0eR1 + |c1|0eR1 + |b|0|x′1(t)|eR1 ,

i.e.,

|x′1(t)| ≤
|r1|0 + |k1|0eR1 + |a|0eR1 + |c1|0eR1

1− |b|0eR1

<
|r1|0 + |k1|0eR1 + |a|0eR1 + |c1|0eR1

1− |b|0eR1
+ 1 ≤ R2.

This implies that|x′1| < R2. Similarly, we have|x′2| < R2, soR2 = |x′|0 = max{|x′1|, |x′2|} <
R2, which is a contradiction.
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For x ∈ KerL ∩ ∂Ω, thenx = (x1, x2)T ∈ R2 and|x|0 = R1, so by (H2) and (H3), we
have

QNx =




1
ω

∫ ω

0
[f1(t, x1(t), x2(t))− b(t)x′1(t− τ2(t))ex1(t−τ2(t))]dt

1
ω

∫ ω

0
f2(t, x1(t), x2(t))dt




=
(

k̄1e
x1 + āex1 + c̄1e

x2 − r̄1

c̄2e
x1 + k̄2e

x2 − r̄2

)
6=

(
0
0

)

and

deg{JQN,KerL ∩ Ω, 0} = sign(det(aij) 6= 0,

where

(aij) =
(

k̄1 + ā c̄1

c̄2 k̄2

)
.

So, Eqns (2.1) has at least oneω-periodic solutionx∗(t) = (x∗1(t), x
∗
2(t))

T by Lemma 2.1, that
is, Eqns (1.2) has at least one positiveω-periodic solution(x(t), y(t))T = (ex∗1(t), ex∗2(t))T . The
proof of Theorem 3.1 is complete. ¥

Theorem 3.3. If r̄1 > 0,Γ(t) ≤ 0 and (H2) holds, then Eqns (1.2) does not exist any positive
ω-periodic solution.

Proof. We need only to prove that Eqns (2.1) does not existω-periodic solution. If Eqns (2.1)
has aω-periodic solutionx(t) = (x1(t), x2(t))T , then by integrating both sides of the first
formula of Eqns (2.1) over[0, ω], we get that

r̄1ω =
∫ ω

0
[k1(t)ex1(t) + a(t)ex1(t−τ1(t)) − b′1(t)e

x1(t−τ2(t)) + c1(t)ex1(t−τ2(t))]dt,

i.e.,

r̄1ω =
∫ ω

0
[Γ(t)ex1(t) + c1(t)ex2(t−τ3(t))]dt.

From (3.14) and (H2), we have

∫ ω

0
Γ(t)ex1(t)dt = r̄1ω −

∫ ω

0
c1(t)ex2(t−τ3(t))dt > ω

[
r̄1 − c̄1

(
r̄2

k̄2
+ e(r̄2+r̄2

∗)ω
)]

> 0.

So there is aξ ∈ [0, ω] such that

Γ(ξ)
∫ ω

0
ex1(t)dt > 0,

which implies thatΓ(ξ) > 0. It is impossible. This contradiction implies that Eqns (2.1) does
not have anyω-periodic solution. The proof of Theorem 3.3 is complete. ¥
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4 Example

Considering the following system:





x′(t) = x(t)
[
1− x(t)− x

(
t− 1

2
sin t

)
− bx′(t− 1)− 1

2e4π
y(t)

]
,

y′(t) = y(t)
[
1− 1

2e4π
x(t− sin t)− y(t− cos t)

]
,

(4.1)

whereb is a parameter andω = 2π.Then we may choose a suitableb such that the Eqns (4.1)
has at least one positive2π-periodic solution.

In order to apply Theorem 3.1, we only to show that the conditions (H1)–(H3) hold.

For Eqns (4.1), we haveΓ(t) = 1 +
1

1− 1
2 cos t

, t ∈ [0, 2π] and3 ≥ Γ(t) ≥ 2 > 0,
1
3
≤

Γ̄ ≤ 1
2

, therefore, condition (H1) holds.

Moreover,

r̄1

c̄1
= 2e4π >

r̄2

k̄2
e(r̄2+r̄2

∗)ω = e4π,
r̄2

c̄2
= 2e4π > max

{
r̄2

Γ̄
e(r̄2+r̄2

∗)ω < e4π,
r̄1

k̄1 + ā
=

1
2

}
.

So, condition (H2) is true. Solving the equation





2ex1 +
1

2e4π
ex2 = 1,

1
2e4π

ex1 + ex2 = 1,

we can get 



x1 = ln
1− c1

2− c1c2
,

x2 = ln
2− c2

2− c1c2
,

wherec1 = c2 =
1

2e4π
. Let M1 = |x|0 = max{|x1|0, |x2|0}. By direct computation, we have

B1 < ln 2 + 4π, B2 = 4π,B3 < ln 6 + 4π and B4 < ln 6 + 4π.

Let R1 = max{M1 + 1, ln 6 + 4π + 2}, if |b| <
1

eR1
, then condition (H3) is correct. So by

Theorem 3.1, Eqns (4.1) has at least one positive2π-periodic solution.
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