Communications in M athematicaIAnaIysis ISSN 0973-3841
Volume 2, Number 1, pp. 1-12, 2007 (© 2007 Research India Publications

THE EXISTENCE AND NONEXISTENCE OF POSITIVE
PERIODIC SOLUTIONS FOR NEUTRAL DELAY
COMPETITION MODEL

X1A0 WANG*
Department of Mathematics and System Science, College of Science,
National University of Defense Technology, Changsha, Hunan,
People’s Republic of China 410073

ZHIXIANG L1
Department of Mathematics and System Science, College of Science,
National University of Defense Technology,Changsha, Hunan,
People’s Republic of China 410073

(Communicated by Xiao-Xiong Gan)

Abstract

By using the theory of coincidence degree, sufficient conditions for the existence and
nonexistence of positive periodic solutions of a class of neutral delay competition model
are obtained.
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1 Introduction

As pointed out by Kuang]3], it would be of interest to investigate the existence of periodic
solutions of neutral delay interacting population models.

In 1993, Kuang [3] proposed an open problem (open problem 9.2) to obtain sufficient con-
ditions for the existence of positive periodic solutions of the following equation:

2(t) = r@x(®)a(t) — Bz (t) = bt)z(t — 7(t)) — c(t)a’(t — 7(1))],
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wherer(t), a(t), 5(t), b(t), 7(t) andc(t) are nonnegative continuous periodic functions. Many
authors have studied this problem by various tools, such as abstract continuous thebrssh of
contractive operator and the theory of coincidence degree, see for examples [6-9].

By using an abstract continuous theoremkiefet contractive operator and some analysis
techniques, Lu and Ge studied the system in [6,7] as follows:

(1) = x(t)[a(t) — B (t) — Tj_ib; (Dt — 7(t) — Ty ci(D)a'( — 7i(t))];

where all the functions(t), 5(t), b;(t), 7;(t), c;i(t) and~;(t) are continuousu-periodic func-
tions with 7;(t) > 0,7;(t) > 0,Vt € [0 wlw > 0 is a constant. Furthermore;,c; €
C'(R, R) with 7j(t) < 1,vt € [0,w] andy; € C*(R, R) with v/(t) < 1,Vt € [0,w],Vi €
{1,2,...,m},Vj€{1,2,...,n}.

In 1991, Kuang [4] first introduced the following neutral delay competition model:

{ 2 (t) = rmat)[1 — kao(t) —ax(t — 1) — b2’ (t — ) — cry(t — 73)],
Y'(t) = ray(t)[1 — cox(t — 1a) — koy(t — 75)],

where all parameters excelpaire assumed to be positive constants. Moreover, he also studied
the local stability, oscillation of solution of system (1.1) in [4] and obtained some sufficient
conditions for bounded solutions of system (1.1) in [5].

Motivated by these works, in this paper, we consider the existence of positive periodic solu-
tions for the following neutral delay competition model:

2(8) =a(Dlr1 () — ki (D(t) — alt)a(t —na(6) — b(t)a'(t — 7a(1))
—a(ty(t - (1)), (1.2)
Y/ () = y(Ora(t) — ea(a(t — 7a(t)) — ka()y(t — 75(0)],

wherer;(t),a(t), b(t), ki(t), 7;(t) andc;(t) are continuousvs-periodic functions withr;(t) >
0,Vt € [0,w],7 = 1,2,...,5,ki(t) > 0,¢;(t) > 0,Vt € [0,w],i = 1,2.w > 0 is a con-
stant.Furthermorer;,b € C'(R, R) with 7{(t) < 1,¥t € [0,w] andm € C?*(R, R) with
To(t) < 1,Vt € [0, w].

Obviously, the system (1.2) contains the system (1.1). As far as we know, there are few
results of positivev-periodic solutions of the system (1.2). In the present paper, we establish
the existence and nonexisting results for the system (1.2) and our methods are based on an
application of the continuation theorem of the coincidence degree theory which was proposed in
[1] by Gaines and Mawhin.

In Section 2, we introduce some notations and lemmas to study the existence of positive
periodic solutions of the system (1.2). In Section 3, we establish and prove our main results by
continuation theorem. Finally, we give a concrete example to show our main Theorem 3.1 in
Section 4.

(1.1)

2 Notations and Lemmas

In this section, we shall introduce some notations and lemmasX | Btbe real Banach spaces,
L: DomL C X — Z be alinear Fredholm mapping of index 0, aiid X — Z be continuous.
LetP: X — X,Q : Z — Z be continuous projectors such tiat P = KerL, Ker@Q = ImL
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andX = KerL P KerP, Z = ImL ) ImQ. Obviously,L : DomL N KerP — ImL is
one to one, soitsinverd€p : ImL — DomLNKerP. J: ImQ — KerL isanisomorphism
of ImQ onto KerL.

In the sequel, we introduce the continuation theorem in [1] as follows:

Lemma 2.1. Let2 C X be an open bounded set and lét: X — Z be continuous operator
which isL-compact orf)(i.e, QN and Kp(I — Q)N are relatively compact of2). Assume that

1. for each\ € (0,1),x € DomL N O, Lx # ANx;
2. foreach\ € (0,1),x € KerL N 9Q,QNx # 0 anddeg{JQN, KerL N ,0} # 0.
Then the equatioz = Nz has at least one solution iRomL N €.

For convenience, we use the notatiofis: = {z : x(t) = (z1(t), z2(t))T € C(R; R?),z(t) =
z(t +w), vt € R} with norm defined byz|y = rr%gx]{|x1(t)|,
te|Ow

lzo(t)[}, andCL = {z : z(t) = (x1(t),z2(t))T € CY(R;R?),z(t) = x(t + w),Vt € R}
with the norm defined byz|; = r%ix]ﬂx\o, |2’|o}. ThenC,, andC. are Banach spaces with
te|Ow

the norm| - |o and| - |1, respectively. We denotg = 1/ f(t)dt and f* = 1/ | f(t)|dt,
w Jo w Jo

whereverf is a continuousv-periodic function.
Take the transformation(t) = ¢***) andy(t) = ¢**(*), then Eqns (1.2) can be rewritten as

follows:
2 (t) =r1(t) — k1 (£)e™ @ — q(t)e™r -1 0)

_ b(t)ajll (t— 7—2(75))6&:1(15—72(15)) — e (t)eacg(t—m(t))’ 2.1)
IIQ (t) = Tg(t) — CQ(t)eivl(thzL(t)) _ kQ(t)exz(t7T5(t)).

Remark2.2. Obviously, if Eqns (2.1) has a-periodic solutionz(t) = (z1(t), z2(t))?, then
(em1) 22T is a positivew-periodic solution of Eqns (1.2). So we need only to show that
Eqns (2.1) has at least oneperiodic solution.

Let
Filt, z1(t), m2(t)) = 11 (t) — k1 (£)e™® — a(£)e™ E10) ¢ (¢)eP2(t=3(1)

and
fo(t, z1(t), 2a(t)) = ra(t) — ca(t)e™ 7] — ko (1)e2(t=Ts(D),

Then Egns (2.1) can be rewritten in the following form:

{ :Ell (t) = fi (t, T (t), ) (t)) — b(t);pll (t — Ty (t))efﬂl(t—72(t))’
zh(t) = fa(t, z1(t), za(t)).

In order to apply Lemma 2.1 to study Eqns (1.2), weXet C1 Z = C,,. LetL : C. — C,,
defined by

dz (t)
Lx = dj = di
dt dl‘z(t)
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andN : C! — C,, defined by

No — < Fi(t,z1, 2) — b(E)2h (t — mo(t)) e (t=72(1) ) |
f2(t7$1,1‘2)

Denote continuous projective operatétand( as

1 w
/ 1 (1)t
1 (¢ w Jo
Pac:/ z(t)dt = x € X,
o 1/wx (t)dt
w Jo 2
and
1 w
/ Zl(t)dt
1 /v w Jo
Qz:/ z(t)dt = 2 € Z.
w0 1/w (t)dt
w Jo =2
So we have

KerL={z:2€ X,r=c,cc€ R*},ImL = {z:zeZ,/ z(t)dt—O}
0

andL is a Fredholm mapping of index 0. It is not difficult to see tRand( satisfy
ImP = KerL,KerQ = ImL = Im(I — Q)

and thereis aninvers€p : ImL — DomL N KerP of L defined as

Kp(2)(t) = /Ot z(s)ds — % /Ow /Ot z(s)dsdt.

, it follows that

b(t)

Letb; (t) = 1_77_/(75)

- /w [F1(t, 21 (1), 32 (2)) — b(t)x! (t — To(t))e™ 2] g¢
0

i/ow fo(t,x1(t), x2(t))dt
1

il /"” {fl (t, w1 (L), z2(t)) + ) (t)exl(t_ﬁ(t)) it
0

w

i/ow Folt, 21(1), () dt

(2.2)
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Moreover, by direct computation,we obtain

Z)(1 = 2

0

j}/o‘” /Ot fi(s,m1(s), z2(s))dsdt
:}/0“ /Ot fa(s,21(s), z2(s))dsdt

<b1 (t)em(tffz(t)) —b (0)811(0772(0)) )

(5)2 (5 — mo(5))e =72 dsqi )
0

( i_, /flsxl s), xa(s))dsdt

- — = / fa(s,z1(s), z2(s))dsdt

+(<Z> / [ bortts —matone w1<srz<s>>dsdt)_

(2.3)

Lemma 2.3. Let Ry, B> be two positive constants aftl= {z : z € Clllzlo < Ry, |20 <
Ry}, thenN : Q — C,, is L-compact o).

Proof. We need only prove tha N and Kp(I — Q)N are relatively compact of. By (2.2),
we conclude tha@Q N is relatively compact ofi.

Next, we shall provek p(I — Q)N is relatively compact of2 by using Ascoli-Arzela theo-
rem. It is not difficult to see thak'p (I — Q) N is uniformly bounded o2, so we need only to
show that function familyp (I — Q)N (2) is equi-continuous.



6 Xiao Wang and Zhixiang Li

Considering%[[(p([ — Q)N (x)(t)], Vo € Q. From (2.3), we have

d
5 [EPU = Q)N (2)(t)]

- (e Om0) s n@)en )
fQ(tv x1<t)7 $2(t>)

w t
wlg/o /0 f1(s,z1(8), ma(s)) — b(s)x} (s — 72(3))6$1(3—T2(5))d5dt

S a1 (s), a(s)dsd

Obviously, there is a positive constaht such tha#jt[l{p(l —Q)N(z)(t)]| < M,vz € Q.
0

This implies that function familyK'p(I — Q)N () is equi-continuous. S&p(I — Q)N is
relatively compact o2 and NV is L-compact orf). The proof of Lemma 2.3. is complete. R

The following Lemma and Remark will be used in the sequel.

Lemma 2.4. ([6,7]). Supposer € CY(R,R),7(t + w) = 7(t),¥Vt € Rand7/(t) < 1,Vt €
[0,w]. Then the function — 7(¢) has a unique inversg(t) satisfyingu € C(R, R) with
wu(t) = p(t +w), vt € R.

Remark2.5. ([6,7]). By using Lemma 2.4, we see thatifc C,,, 7 € C*(R, R), 7(t + w) =
7(t),Vt € Rand7'(t) < 1,Vt € [0,w], theng(u(t + w)) = g(u(t) + w) = g(u(t)),Vt € R,
wherep(t) is the inverse function of — 7(¢), which together with, € C(R, R) implies that
9(u(t)) € Co.

3 Existence of Positive Periodic Solutions

In this section, we will give and prove our main results.

Let u(t) and~(t) are inverses of — 7i(t),t — 72(t), respectivelyy (t) = 1b(t,)(t) and
-7

T(t) = ki (t) + % — b (v(1)).

We propose the following two assumptions:
(H1) 7 > 0,i = 1,2 andl’ > 0.

(H2) 7:—1 > 12 tatr)w and? > max Qe(r_1+r_1*)w, 7?"717 .
1 ko Co r ki +a

Suppose (H2) holds, leB; = ’111 (%)’ + (1 + 1w, By = + (r2 + ™" )w,

In (7:2)
ko

_ _ = EIE ey
To — 02%6(”‘”1 “)
In =

ko

- o pelrY)
Bg = |ln =

T +(m+7m%)wandBy =

+(ra+72"w.
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Theorem 3.1. For Eqns (1.2), suppose (H1) and (H2) hold, in addition, we assume that: (H3)
there exists a constait; > max{B; + 1,7 = 1,2,3,4.} such thatb|oe™ < 1 and|z|y < Ry
for the unique solutior = (7, :CQ)T of the system

k1€ + ae™ + ¢ e™ =7,
{ coe™l + ]2’26382 = T9. (3.1)
Then Eqgns (1.2) has at least one positivperiodic solution.

Remark3.2 It is easy to verify that if (H2) holds, then Egns (3.1) has a unique solutien
(xl, xg)T.

Proof. Let z(t) be an arbitraryv-periodic solution of the operator equation as follows
Lz = ANz, \ € (0,1),
whereL and N defined as in Section 2, respectively. So we have

xll (t) :)\[7‘1 (t) —kp (t)exl(t) — a(t)eml(t*ﬁ ) _ b(t)xll (t — Ty (t))eml(tf'rz(t))

—q (t)e“(t_m(t))], (3.2)

and

2h(t) = N[ra(t) — ea(£)e™ ) _ ko (1) 27510, (3.3)
Integrating both sides of (3.2) and (3.3) oy@rw], respectively, we obtain

Flw = /0 [k1(£)e™® 4 q(t)e™ 1) — pr (1)em E20) 4 o) ()1 =2 dt, (3.4)
and "
Fow = / [ca(£)e™ ™) o ko ()20 gt (3.5)
0

Lett — 71 (t) = s,i.e.,t = u(s), then we get
w w—p(0))
/ a(t)em(t—ﬁ(t))dt = / Mem@)d& (3.6)
0 —uoy 1= 11(u(s)))

According to Lemma 2.4 and Remark 2.5, we have

“ e —m) gy [ au(s) s
/Oa(t)e dt—/o 71_7_{(“(8))6 ds. (3.7)

Similarly, we achieve

’ i @ (y(s))
B (1)t (t TQ(t))dt_/ _N0S)) ) g
/o 1) ) T-m03(9)

So, from (3.4), (3.6), (3.7) and (H1), we have

Frw = / (e ® £ oy (£)e™ =) gy. (3.9)
0
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Sincex(t) = (z1(t), z2(t))T € C,, there aréy, t5 € [0,w] andsy, so € [0,w] such that

wi(t) = min 21(), 21(t2) = meax @ (¢); 9)
x2(s1) = min x9(t), z2(s2) = max xa(t). -
te0,w] te[0,w]

According to (3.5), (3.8), and (3.9), we have

Twe™ ) < 7w and kowe™2(1) < Tow,

z1(t1) <Iln (

By (3.2) and (3.8), we have

) and x2(51)§1n<_2>. (3.10)

s/l

/ |z (t)|dt = X / Ir1(t) — kr (£)e*® — g(t)e™ (= (®)
0 0
— () (t — Tz(t))eml(t—m(t)) — cl(t)e$2(t—7'3(t))|dt
S/ ‘Tl(t)|dt+/ [k‘l(t)exl(t) +(Z(t)exl(t77—1(t))
0 0

_ b'l (t)exl(t—fz(t)) +e (t)ean(t—rz(t))]dt

=(n+m"w.

(3.11)

Similarly, from (3.3) and (3.5), we have
/ x5 (t)]dt < (72 + 12" )w. (3.12)
0

By (3.10) and (3.11), we have

=3

1

x1(t) < a1(t1) + /Ow |7 (t)|dt < In ( ) +(r+m1")w. (3.13)

!l

Similarly, we can get

xo(t) < wa(sy) + /Ow |25 (t)|dt < In <£‘Z> + (12 + 12" )w. (3.14)

From (3.8) (3.9) and (3.14), we have

Fiw < Twe™ (2) 4 g we™(52) < Twe™ (2) 4 Elw%e(ﬁ‘LFZ*)”

)

2
i.e.,
L —C1 %6(6“72*)“’
x1(t2) > In -
Similarly, we have
Fo A Lo (r1+r T )w
T9 Cor=¢€
x2(s2) > In L

ko
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So, we have
w 71 — ¢ 2elr2trt)w
xl(t) > xl(tZ) - / |5L'/1(t)|dt > In k2f‘ _ (,,:l + 7:1*)(4()
0
and )
v Fg — Gy Lemtm™)w
2a(t) 2 ma(sw) — [ (o)t = 2L 4
0 2

LetQ = {z:x € CL, |20 < Ri,|2'|o < Ra}, whereR; is given by (H3) and

I71]o 4 |k1loe® + |aloef 4 |c1|oef™
1-— |b|0€R1

Ry >max{ +1,‘7’2|0+|62|0€R1 +|]€2|0€R1 —l—l}.
From Lemma 2.3, we know tha{ : Q — C,, is L-compact orf.
In what follows, we will prove that

Lx # ANz, (3.15)

forany A € (0,1) andz € 99Q. In view of z € 09, we see eithefz|y = Ry, |2'|op < Rq or
|zlo < R1,|2'|o = Ra. If |z]o = Ry, |2"|o < R, itis not difficult see that (3.15) is true, since
Ry isindependent of € (0,1).

If |20 < R1,|2'|o = Ra, (3.15) is also true. Suppose the contrary, then there must be a
A € (0,1) and anz € 99 such that

Lxr = ANu,
i.e.,
2L (1) =\ (1) = b (£)e™©) — a(t)en -m(0) (3.16)
_ b(t)x/l (t — TQ(t))eml(t_TQ(t)) — (t)eocg(t—Tg(zt))]7
and

h(t) = A[ra(t) — ca(t)e™ T4 _ gy (t)em2(t=s(E)],
From (3.16), we have
|z1(t))]
= Nra(1) = ki (") — a(p)ens(-n )
—b(t)z(t — 7.2(t))€:c1(t—m(t)) _ Cl(t)e:v2(t—T3(t))|
< |rio + [k1loe™ + |aloe®™ + |ei]oe™ + |blo|z) (t)]eft,

‘7“1‘0 + ‘kl‘oeRl + ‘a|06R1 + |C1|06R1

|21 (1) <

1—‘b‘0€R1

110 1/0€ alpe C1|o0€

rilo+ [kiloe™ + laloe™ +Jerloe™ | |,
1— [bloe =

This implies thatz)| < Ro. Similarly, we havez)| < Rg, SORs = |2'|o = max{|x]], |zh|} <
Ry, which is a contradiction.
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Forz € KerL N 09Q, thenz = (x1,22)7 € R? and|z|o = Ry, so by (H2) and (H3), we
have

i /w[fl(t 21(t), 22(t)) — b(t)x!h (t — To(t))e™ 2] gg
s
fa(t,z1(t), x2(t))dt

B kie®t + c‘ze“ﬁ +c1e™ — 7 y 0
- Coe™l + koe™? — 7y 0

deg{JQN, KerL N Q,0} = sign(det(a;;) # 0,

(a“) . ]_ﬂ +a ?1
L C2 ko '

So, Egns (2.1) has at least angperiodic solutionz*(t) = (7% (t), z3(¢))? by Lemma 2.1, that
is, Eqns (1.2) has at least one positivgeriodic solution(z(t), y(¢)) = (¢*1®, 2T The
proof of Theorem 3.1 is complete. |

QNzx =

and

where

Theorem 3.3.1f 7; > 0,T'(¢) < 0 and (H2) holds, then Eqgns (1.2) does not exist any positive
w-periodic solution.

Proof. We need only to prove that Egns (2.1) does not exigeriodic solution. If Egns (2.1)
has aw-periodic solutionz(t) = (x1(t),z2(t))T, then by integrating both sides of the first
formula of Egns (2.1) ovelb, w|, we get that

Flw = / (k1 (8)e®1®) 4 a(t)em1 1) gl (#)e21=20) ¢y (1)emr (=720 gt
0

Flw = /0 ) [D(t)e™®) 4 ¢ (t)em2( =0 gy,
From (3.14) and (H2), we have
/O P )en Odt = o — /0 Y (et ) gp 5 [ _ & <kz + emww)] -0,
So thereis & € [0, w] such that
NG /Ow e®1Wdt > 0,

which implies thafl’(£) > 0. It is impossible. This contradiction implies that Eqns (2.1) does
not have anyw-periodic solution. The proof of Theorem 3.3 is complete. |
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4 Example

Considering the following system:

() = 2(t) [1 C o) -2 (t - ;sint) bt — 1) — 26147Ty(t)} S
41

/=01

1 .
26ﬁx(t —sint) — y(t — cos t)} ,
whereb is a parameter and = 27.Then we may choose a suitalblsuch that the Eqns (4.1)
has at least one positi@ar-periodic solution.

In order to apply Theorem 3.1, we only to show that the conditions (H1)—(H3) hold.

1 1

For Eqgns (4.1), we havE(t) = 1 + ——=——,t € [0,27] and3 > I'(t) > 2 > 0, - <
1 —5cost 3

-1 "

I'< 3 therefore, condition (H1) holds.

Moreover,

1 T (e e 79 T (e o r 1
— =2 > Zelratrtw 64“, = =2¢Y > max Zelrtrntw 64”, - =— 5.
C1 kg Co T

So, condition (H2) is true. Solving the equation

2e"! + e*? =1,

2e4ﬂ

1 T2 __
2eim ¢ rer =1,

we can get
1-— C1

r1 =In ,
2 — C1C2

2—02

To = In
2 — 61627

1 . .
wherec; = ¢y = Syl Let My = |z|p = max{|z1]o, |z2|0}. By direct computation, we have
(&

By <In2+4n,By =4n,B3 <In6+4n and Bj <In6 + 4m.

. 1 " .
Let Ry = max{M; + 1,In6 + 47 + 2}, if [b| < —-, then condition (H3) is correct. So by
(&
Theorem 3.1, Egns (4.1) has at least one positiwperiodic solution.
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