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Abstract

In this paper, we establish further results concerning integrability of the Dunkl transform
of functionf onR and in radial case onRd, whenf satisfies a suitable condition.
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1 Introduction

On the real line, Dunkl operators are differential-difference operators introduced in 1989, by C.

Dunkl in [3] and are denoted byΛα whereα is a real parameter> −1
2

. These operators, are

associated with the reflexion groupZ2 onR. Dunkl kernelEα is used to define Dunkl transform
Fα which was introduced by C. Dunkl in [5]. R̈osler in [7] shows that Dunkl kernel verify a
product formula. This allows us to define Dunkl translationτx , x ∈ R. As a result, we have a
Dunkl convolution.

OnRd, we consider the differential-difference operatorsTj , 1 ≤ j ≤ d, associated with a
positive root systemR+ and a non negative multiplicity functionk, introduced by C. Dunkl in
[3] and called Dunkl operators. These operators can be regarded as a generalization of partial
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derivatives and lead to generalizations of various analytic structure, like the exponential function,
the Fourier transform, the translation operators and the convolution (see [2, 4, 5, 12, 14, 15]). K.
Trimèche has introduced in [15] the Dunkl translation operatorsτx, x ∈ Rd. At the moment an
explicit formula for the Dunkl translation operator of functionτx(f) is unknown in general. In
factτx may not even be a positive operator. However, a such formula is known whenf is a radial
function and theLp-boundedness ofτx for radial functions is established (see next section).

In this paper, we establish further results concerning integrability of the Dunkl transform
of functionf onR and in radial case onRd, whenf satisfies a suitable condition. Analogous
results of integrability have been obtained in Lipshitz-Hankel spaces for Hankel transform on
(0, +∞) (see[1]).

The contents of this paper are as follows.
In section 2, we collect some basic definitions and results about harmonic analysis associated

with Dunkl operators.
In section 3, we establish further results of integrability for the Dunkl transform.
In the sequelc represents a suitable positive constant which is not necessarily the same in

each occurence. Furthermore, we denote by

? E(R) the space ofC∞-functions onR.

? E(Rd) the space of infinitely differentiable functions onRd.

? D(Rd) the space of functions inE(Rd) with compact support.

? S(Rd) the Schwartz space of functions inE(Rd) which are rapidly decreasing as well as
their derivatives.

2 Preliminaries

• For a real parameterα > −1
2

andλ ∈ C, the Dunkl kernelEα(λ .) on R has been

introduced by C. Dunkl in [3] and is given by

Eα(λx) = jα(iλx) +
λx

2(α + 1)
jα+1(iλx), x ∈ R, (2.1)

wherejα is the normalized Bessel function of the first kind and orderα (see [16]). The
Dunkl kernelEα(λ .) is the unique solution onR of initial problem for the Dunkl operator
(see [3]).

Let µα the weighted Lebesgue measure onR given by

dµα(x) =
|x|2α+1

2α+1Γ(α + 1)
dx.

For every1 ≤ p ≤ +∞, we denote byLp(µα) the spaceLp(R, dµα) and we use‖ ‖p,α

as a shorthand for‖ ‖Lp(µα).
The Dunkl transformFα which was introduced by C. Dunkl in [5], is defined forf ∈
L1(µα) by

Fα(f)(x) =
∫

R
Eα(−ixy)f(y)dµα(y), x ∈ R.
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According to [7], forx, y ∈ R andf a continuous function onR, the Dunkl translation
operatorτx is given by

τx(f)(y) =
∫

R
f(z)dγx,y(z)

whereγx,y is a signed measure onR.

For x ∈ R, τx is a continuous linear operator fromE(R) into itself . According to [11],
the operatorτx can be extended toLp(µα), 1 ≤ p ≤ 2 and forf ∈ Lp(µα) we have

‖τx(f)‖p,α ≤ 4‖f‖p,α. (2.2)

• Let W be a finite reflexion group onRd, associated with a root systemR andR+ the
positive subsystem ofR (see [2, 4, 5, 8, 12]). We denote byk a nonnegative multiplicity
function defined onR with the property thatk is W -invariant. We associate withk the
index

γ = γ(R) =
∑

ξ∈R+

k(ξ) ≥ 0,

and the weight functionwk defined by

wk(x) =
∏

ξ∈R+

|〈ξ, x〉|2k(ξ), x ∈ Rd,

where〈 , 〉 denotes the usual Euclidean inner product. Further, we introduce the Mehta-
type constantck by

ck =
(∫

Rd

e−
‖x‖2

2 wk(x)dx

)−1

.

For every1 ≤ p ≤ +∞, we denote byLp
k(R

d) the spaceLp(Rd, wk(x)dx), Lp
k(R

d)rad

the subspace of thosef ∈ Lp
k(R

d) that are radial and we use‖ ‖p,k as a shorthand for
‖ ‖Lp

k(Rd).

By using the homogeneity ofwk, it is shown in [8] that forf ∈ L1
k(Rd)rad, there exists a

functionF on [0,+∞) such thatf(x) = F (‖x‖), for all x ∈ Rd. The functionF is integrable
with respect to the measurer2γ+d−1dr on [0, +∞) and we have

∫

Sd−1

wk(x)dσ(x) =
c−1
k

2γ+d/2−1Γ(γ + d
2)

, (2.3)

whereSd−1 is the unit sphere onRd with the normalized surface measuredσ and

∫

Rd

f(x)wk(x)dx =
∫ +∞

0

(∫

Sd−1

wk(ry)dσ(y)
)
F (r)rd−1dr

=
c−1
k

2γ+ d
2
−1Γ(γ + d

2)

∫ +∞

0
F (r)r2γ+d−1dr.

(2.4)
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The Dunkl kernelEk on Rd × Rd has been introduced by C. Dunkl in [4]. Fory ∈ Rd, the
functionx 7→ Ek(x, y) can be viewed as the solution onRd of initial problem for Dunkl opera-
tors (see [3]). This kernel has a unique holomorphic extension toCd ×Cd. Below, let us collect
some properties of Dunkl kernel which we can find in [4, 8, 9, 10, 12, 14].

Properties 2.1.

1. For allx, y ∈ Cd, Ek(x, y) = Ek(y, x).

2. For allx, y ∈ Cd andλ ∈ C, Ek(λx, y) = Ek(x, λy).

The Dunkl transformFk which was introduced and studied by C. Dunkl in [5] (see also [2]) is
defined forf ∈ D(Rd) by

Fk(f)(x) =
∫

Rd

f(y)Ek(−ix, y)wk(y)dy, x ∈ Rd.

According to ([8], Proposition 2.4), we have the following results:
∫

Sd−1

Ek(ix, y)wk(y)dσ(y) =
c−1
k

2γ+ d
2
−1Γ(γ + d

2)
jγ+ d

2
−1(‖x‖), x ∈ Rd (2.5)

and forf in L1
k(Rd)rad,

Fk(f)(x) = c−1
k Hγ+ d

2
−1(F )(‖x‖), x ∈ Rd, (2.6)

whereF is the function defined on[0, +∞) by F (‖x‖) = f(x), x ∈ Rd andHγ+ d
2
−1 is the

Hankel transform of orderγ +
d

2
− 1.

K. Trimèche has introduced in [15] the Dunkl translation operatorsτx, x ∈ Rd on E(Rd).
As un operator onL2

k(Rd), τx is bounded. A priori it is not at all clear whether the translation
operator can be defined forLp- functions forp different from 2. However, according to [12] the
operatorτx can be extended toLp

k(R
d)rad, 1 ≤ p ≤ 2 and forf ∈ Lp

k(R
d)rad we have

‖τx(f)‖p,k ≤ ‖f‖p,k. (2.7)

3 Integrability of the Dunkl Transform of Function

In this section, we establish further results concerning integrability of the Dunkl transform of
functionf onR and in radial case onRd, whenf satisfies a suitable condition.

Putq =
p

p− 1
the conjugate ofp for 1 < p ≤ 2.

Theorem 3.1. Letβ > 0, A > 0, 1 < p ≤ 2 andf ∈ Lp(µα). If f satisfies

sup
x∈(0,+∞)

‖τx(f)− f‖p,α

xβ
< A , (3.1)
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then

1. For 0 < β ≤ 2(α + 1)
p

, we have

Fα(f) ∈ Lp′(µα) provided that
2(α + 1)p

βp + 2(α + 1)(p− 1)
< p′ ≤ q .

2. For β >
2(α + 1)

p
, we haveFα(f) ∈ L1(µα).

Proof. Sincef ∈ Lp(µα), by [11] and (2.2) we have

Fα(τx(f)− f)(y) = (Eα(ixy)− 1)Fα(f)(y),

x ∈ (0,+∞) and a.ey ∈ R . Then according to [2] and (2.2) we can assert by the Marcinkiewicz
interpolation theorem (see [13]), that

‖Fα(τx(f)− f)‖q,α =
(∫

R
|Fα(f)(y)|q|Eα(ixy)− 1|qdµα(y)

)1/q

≤ c ‖τx(f)− f‖p,α.

Moreover there existsa, b ∈ (0, +∞), such that

|jα(xy)− 1| ≥ a(xy)2, for each 0 < |xy| < b. (3.2)

Hence by (2.1), we can write

|Eα(ixy)− 1| ≥ |jα(xy)− 1|
≥ a(xy)2 , 0 < |xy| < b,

so using (3.1), it follows that forx ∈ (0,+∞),

x2
(∫

|y|≤ b
x

|Fα(f)(y)|q|y|2qdµα(y)
)1/q

≤ c ‖τx(f)− f‖p,α ≤ c xβ. (3.3)

Let p′ ∈
]

2(α + 1)p
βp + 2(α + 1)(p− 1)

, q

]
, we define the function

g(t) =
∫

1≤|y|≤t
|Fα(f)(g)|p′ |y|2p′dµα(y), t > 1.

By using Ḧolder inequality and (3.3), we have

g(t) ≤
(∫

1≤|y|≤t
|Fα(f)(y)|q|y|2qdµα(y)

)p′/q(∫

1≤|y|≤t
dµα(y)

)1− p′
q

≤ c t
(2−β)p′+2(α+1)(1− p′

q
)
, t > 1.
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Then we get

∫

1≤|y|≤t
|Fα(f)(y)|p′dµα(y) =

∫ t

1
y−2p′g′(y)dy

= t−2p′g(t) + 2p′
∫ t

1
y−2p′−1g(y)dy

≤ c
(
t
−βp′+2(α+1)(1− p′

q
) + 1

)
, t > 1,

sinceFα(f) ∈ Lq(µα) andLq(]−1, 1[, dµα) ⊂ Lp′(]−1, 1[, dµα), we obtain the desired result
(1).

By proceeding in the same manner as in the proof on (1) whenβ >
2(α + 1)

p
andp′ = 1,

we deduce (2). ¥

Theorem 3.2. Letβ > 0 , A > 0, 1 < p ≤ 2 andf ∈ Lp
k(R

d)rad. If f satisfies

sup
t∈(0,+∞)

wp(f)(t)
tβ

< A (3.4)

where

wp(f)(t) =
∫

Sd−1

‖τtu(f)− f‖p,kdσ(u),

then

1. For 0 < β ≤ 2(γ + d
2)

p
, we have

Fk(f) ∈ Lp′
k (Rd) provided that

2(γ + d
2)p

βp + 2(γ + d
2)(p− 1)

< p′ ≤ q.

2. For β >
2(γ + d

2)
p

, we haveFk(f) ∈ L1
k(Rd).

Proof. Let f ∈ Lp
k(R

d)rad, by [15] and (2.7) we can write

Fk(τtu(f)− f)(x) = (Ek(itu, x)− 1)Fk(f)(x),

u ∈ Sd−1, t ∈ (0,∞) and a.ex ∈ Rd, then according to [2, 5, 8] and (2.7), we can assert by
Marcinkiewicz interpolation theorem (see [13]), that

(∫

Rd

|Fk(f)(x)|q|Ek(itu, x)− 1|qwk(x)dx
) 1

q ≤ c‖τtu(f)− f‖p,k. (3.5)

On the other hand, from (2.3), (2.4), (Properties 2.1. (1), (2)) and (2.6) we have
∫

Rd

|Fk(f)(x)|q|Ek(itu, x)− 1|qwk(x)dx (3.6)
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= hk

∫ +∞

0
|Hγ+ d

2
−1(F )(r)|q

(∫

Sd−1

|Ek(itru, z)− 1|qwk(z)dσ(z)
)
× r2γ+d−1dr,

wherehk =
c−1
k

2γ+ d
2
−1Γ(γ + d

2)
andF is the function defined on(0, +∞) by F (‖x‖) = f(x),

for all x ∈ Rd.
By (2.5) and Ḧolder’s inequality, we get

hk|jγ+ d
2
−1(rt)− 1| = |

∫

Sd−1

[Ek(itru, z)− 1]wk(z)dσ(z)|

≤
(∫

Sd−1

wk(z)dσ(z)
)1/p(∫

Sd−1

|Ek(itru, z)− 1|qwk(z)dσ(z)
)1/q

,

so using (2.3) we obtain

|jγ+ d
2
−1(rt)− 1|q ≤ c

∫

Sd−1

|Ek(itru, z)− 1|qwk(z)dσ(z).

Then according to (3.5) and (3.6) it follows that
∫ +∞

0
|Hγ+ d

2
−1(F )(r)|q|jγ+ d

2
−1(rt)− 1|qr2γ+d−1dr ≤ c ‖τtu(f)− f‖p,k.

From (3.2) and (3.4), we can write

t2

(∫ b/t

0
|Hγ+ d

2
−1(F )(r)|qr2qr2γ+d−1dr

)1/q

≤ c wp(f)(t) ≤ c tβ.

Let p′ ∈
]

2(γ + d
2)p

βp + 2(γ + d
2)(p− 1)

, q

]
, we define the function

g(δ) =
∫ δ

1
|Hγ+ d

2
−1(F )(r)|p′r2p′r2γ+d−1dr, δ > 1.

By reasoning as in the proof on Theorem 3.1, we can assert that
∫ δ

1
|Hγ+ d

2
−1(F )(r)|p′r2γ+d−1dr ≤ c

(
δ
−βp′+2(γ+ d

2
)(1− p′

q
) + 1

)
, δ > 1.

Since
Hγ+ d

2
−1(F ) ∈ Lq

(
(0, +∞), r2γ+d−1dr

)
,

we obtain ∫ +∞

0
|Hγ+ d

2
−1(F )(r)|p′r2γ+d−1dr < +∞,

thus using (2.4) and (2.6), we conclude that
∫

Rd

|Fk(f)(x)|p′wk(x)dx < +∞.

By proceeding in the same manner as in the proof on (1) whenβ >
2(γ + d

2)
p

andp′ = 1, we

deduce (2). ¥
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