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Abstract

Given a formal power seriesg(x) =
∑∞

n=0 bn xn and anonunitf(x) =
∑∞

n=1 an xn,
it is well-known that the derivative of the composition of formal power series satisfies the
Chain Rule, that is,(g ◦ f)′ = g′(f) · f ′. It is also proved that the right distributive law
for formal power series exists if the composed series, such asf above, is a nonunit. This
paper provides a generalized Chain Rule without the requirement ofnonunitnessfor the
composed formal power series. A generalized right distributive law for formal power series
is proved in this paper too.
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1 Introduction

The composition of formal power series or functional composition is always an interesting topic
for mathematicians and therefore many developments about it can be seen almost every year.
For example, Raney [1] investigated the functional composition patterns and created a Lagrange
inversion formula more than forty years ago, Bender [2] provided a lifting theorem in early
seventies and then Garsia and Joni [3] brought us a new expression for umbral operators and
another Lagrange inversion formula, and Li [4] studied how to commute two formal power
series in 1997. More recent applications can be found in [5], [6], and [7].

These results about the composition of formal power series require that the composed formal
power series is a nonunit, that is, the constant term of this series is zero.

In 2002, Gan and Knox [8] provided a necessary and sufficient condition for the existence
of the composition of formal power series and hence provided a possibility of removing the
requirement of nonunitness. In this paper we will use this result as our main tool to generalize
the differentiation properties for the composition of formal power series.
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For our convenience and for the consistency of the notations, we recall some definitions
below.

Definition 1.1. Let S be a ring and letl ∈ N be given,a formal power seriesonS is defined to
be a mapping fromNl to S, whereN represents the set of all natural numbers. We denote the set
of all such mappings byX(S), orX.

In this paper, we only discuss formal power series fromN to S. A formal power seriesf in
x fromN to S is usually denoted by

f(x) = a0 + a1x + . . . + anxn + . . . , where {aj}∞j=0 ⊂ S.

In this case,ak is called thek-th coefficient off, ∀k ∈ N∪{0}. If a0 = 0, f is called anonunit.
Let f andg be formal power series inx with f(x) =

∑∞
n=0 fnxn andg(x) =

∑∞
n=0 gnxn,

and letr ∈ S, theng + f, rf , andg · f are defined as

(g + f)(x) = g(x) + f(x) =
∞∑

n=0

(gn + fn) xn,

(rf)(x) = rf(x) =
∞∑

n=0

(rfn) xn,

and

(f · g)(x) = g(x) · f(x) =
∞∑

n=0

cn xn, cn =
n∑

j=0

gjfn−j , n = 0, 1, 2, . . . .

It is clear that all those operations are well defined, that is,g + f, rf , andg · f are all inX.

Definition 1.2. Let f(x) = a0 + a1x + a2x
2 + · · · be a formal power series over a ringS, the

derivative off(x) is a formal power series denoted by

f ′(x) = a′0 + a′1x + a′2x
2 + · · · = a1 + 2a2x + 3a3x

2 + · · · =
∞∑

n=0

(n + 1)an+1x
n,

that isa′n = (n + 1)an+1 for n = 0, 1, 2, . . ..

It is proved that the derivative of the product of two formal power series satisfies the Product
Rule, that is iff(x) =

∑∞
n=0 anxn andg(x) =

∑∞
n=0 bnxn are two formal power series, then

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

The Power Rule of differentiation,(fn(x))′ = nfn−1(x) · f ′(x), is just an application of
the Product Rule.

Definition 1.3. Let f(x) =
∑∞

n=0 an xn and g(x) =
∑∞

n=0 bn xn be formal power series inx
over a ringS. Write

fn(x) = [f(x)]n =
∞∑

k=0

a
(n)
k xk
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for n = 0, 1, 2, . . ., wherea
(0)
0 = 1, a

(0)
k = 0 ∀k ∈ N. Then the compositiong ◦ f in x is

defined to be a formal power series
∞∑

k=0

ck xk

whereck =
∑∞

n=0 bn a
(n)
k for k = 0, 1, 2, . . . if ck exists inS for eachk. It is convenient to

write the composition ofg with f asg ◦ f(x) =
∑∞

n=0 bn (f(x))n if it exists.

If f is a nonunit formal power series, the Chain Rule for the formal power series is true.
Henrici provided the following theorem in his book [9].

Theorem A. If A is a formal power series andQ a nonunit, then(A ◦Q)′ exists and

(A ◦Q)′ = (A′ ◦Q) ·Q′.

Is it really necessary forQ above to be a nonunit formal power series? If it is not, what can be
said?

Theorem B below gives a necessary and sufficient condition for existence of the composition
of some formal power series.

Theorem B [8]. LetS be a field with a metric. LetX be the set of all formal power series from
N to S. Letf, g ∈ X be given with the forms

f(x) = a0 + a1x + · · ·+ anxn + · · · , g(x) = b0 + b1x + · · ·+ bnxn · · · ,

and deg(f) 6= 0. Then the compositiong ◦ f exists if and only if

∞∑

n=k

( n
k) bnan−k

0 ∈ S ∀k ∈ N ∪ {0}.

where(n
k) = n(n−1)···(n−k+1)

k! .

2 A Generalized Chain Rule

Theorem B provides a necessary and sufficient condition for the existence of the composition of
formal power series. Can we generalize the Chain Rule for formal power series in Theorem A
and no longer require the nonunitness for the composed series? In order to answer this question,
not only we have to show that the existence ofg(f(x)) implies the existence ofg′(f(x)) , but
also we need to show that these two compositions are equal, that is,

(g ◦ f)′(x) = g′(f(x)) · f ′(x).

Lemma 2.1. Let g(x) =
∑∞

n=0 bnxn andf(x) =
∑∞

n=0 anxn be two formal power series in
x overR. Theng(m)(f(x)) exists if and onlyg(f(x)) exists wherem ∈ N andg(m) is themth
derivative ofg.
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Proof. Let f(x) =
∑∞

n=0 anxn be a formal power series overR. Let n ∈ N be given and write

fn(x) =
∞∑

k=0

a
(n)
k xk,

we first show that

a
(n)
k+1 =

n

k + 1

k∑

j=0

(k + 1− j)a(n−1)
j ak+1−j ∀k ∈ N ∪ {0}. (1)

By the power rule of derivatives and the product rule for the formal power series, we have

(fn(x))′ = n fn−1(x)f ′(x)

= n(
∞∑

j=0

a
(n−1)
j xj)

( ∞∑

i=0

(i + 1)ai+1x
i
)

= n

∞∑

k=0

[
k∑

j=0

a
(n−1)
j (k + 1− j)ak+1−j ]xk.

On the other hand,

(fn(x))′ =
∞∑

k=0

(k + 1)a(n)
k+1x

k.

Then,(k + 1)a(n)
k+1 = n [

∑k
j=0 a

(n−1)
j (k + 1− j)ak+1−j ].

Thus,

a
(n)
k+1 =

n

k + 1

k∑

j=0

(k + 1− j)a(n−1)
j ak+1−j ∀k ∈ N ∪ {0}.

Next, letg(x) =
∑∞

n=0 bnxn andf(x) =
∑∞

n=0 anxn be two formal power series inx over
R, we show that

g(f(x)) exists if and onlyg′(f(x)) exists. (2)

Supposeg′(f(x)) exists. By Definition 1.2 and Theorem B, we have

∞∑

n=k

(n
k)(n + 1)bn+1a

n−k
0 ∈ R ∀k ∈ N ∪ {0}. (3)

For the existence ofg(f(x)), by the Theorem B again, we need only show that

∞∑

n=k

(n
k)bnan−k

0 ∈ R ∀k ∈ N ∪ {0}. (4)

If a0 = 0, (4) is trivial. We suppose thata0 6= 0. Let k ∈ N ∪ {0} be given. Define

φ(x) =
∞∑

n=k

(n
k)(n + 1)bn+1a

n−k
0 xn−k.
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Since (3) is true,φ(x) converges uniformly on[0, 1] by Abel’s Limit Theorem. Letφm(x)
be the partial sum of this power series form = k, k + 1, . . .. The uniform convergence of the
power seriesφ(x) on [0, 1] yields that

∫ 1

0
φ(x) dx = lim

m→∞

∫ 1

0

m∑

n=k

(n
k)(n + 1)bn+1a

n−k
0 xn−k dx

= lim
m→∞

m∑

n=k

(n
k)(n + 1)bn+1a

n−k
0

1
n− k + 1

= lim
m→∞

m∑

n=k

(n+1
k )bn+1a

n−k
0

= lim
m→∞

m∑

j=k+1

(j
k)bja

j−k−1
0

=
1
a0

∞∑

j=k+1

(j
k)bja

j−k
0

=
1
a0

∞∑

j=k

(j
k)bja

j−k
0 − 1

a0
bk.

Then
∑∞

j=k(
j
k)bja

j−k
0 ∈ R. Sincek is arbitrary, (4) is true for allk, and henceg(f(x)) exists

by Theorem B.
Now supposeg(f(x)) exists. Then (4) is true by Theorem B. We need only show that (3) is

true. Notice that for anyk ∈ N ∪ {0},
∞∑

n=k

(n
k)(n + 1)bn+1a

n−k
0 = (k + 1)

∞∑

n=k

(n+1
k+1) bn+1 a

n+1−(k+1)
0

= (k + 1)
∞∑

m=k+1

(m
k+1) bm a

m−(k+1)
0

= r
∞∑

m=r

(m
r ) bm am−r

0

for everyr ∈ N if we write r = k + 1.
Thus, (3) is true.
Applying mathematical induction, we can easily have the conclusion that themth order

derivativeg(m)(f(x)) exists if and only ifg(f(x)) exists. ¥

Notice that the formula (1) applies to any formal power series over a ringS.
We now introduce a generalized Chain Rule for formal power series.

Theorem 2.2. Let g(x) =
∑∞

n=0 bnxn andf(x) =
∑∞

n=0 anxn be two formal power series in
x overR. Then(g ◦ f)′ exists if and only ifg ◦ f exists and

(g ◦ f)′(x) = g′(f(x)) f ′(x). (5)
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Proof. The first part of the conclusion of the theorem is true by Lemma 2.1 above. We need
only show that the equality (5) is true, that is, the corresponding coefficients on both sides of (5)
are equal.

Sinceg ◦ f(x) exists, by Definition 1.3, we have

g ◦ f(x) =
∞∑

k=0

( ∞∑

n=0

bna
(n)
k

)
xk,

wherea
(n)
k is thekth coefficient offn(x), n ∈ N ∪ {0}; a

(0)
0 = 1, a

(0)
k = 0 ∀ k ∈ N; and∑∞

n=0 bna
(n)
k ∈ R∀k ∈ N ∪ {0}. Then

(g ◦ f)′(x) =
∞∑

k=1

k

( ∞∑

n=0

bna
(n)
k

)
xk−1

=
∞∑

k=1

k

( ∞∑

n=1

bna
(n)
k

)
xk−1

=
∞∑

m=0

(m + 1)(
∞∑

n=1

bna
(n)
m+1)x

m.

If we write (g ◦ f)′(x) =
∑∞

m=0 rm xm, then

rm = (m + 1)
∞∑

k=1

bka
(k)
m+1,m = 0, 1, 2, . . . . (6)

On the other hand,g′(x) =
∑∞

n=0(n + 1)bn+1x
n, and then

g′(f(x)) =
∞∑

k=0

[ ∞∑

n=0

(n + 1)bn+1a
(n)
k

]
xk.

If we write g′(f(x)) · f ′(x) =
∑∞

m=0 cmxm, then apply the product rule and Formula (1), we
have

cm =
m∑

j=0

[ ∞∑

n=0

(n + 1)bn+1a
(n)
j

]
· (m + 1− j)am+1−j

=
∞∑

n=0

(n + 1)bn+1 ·
m∑

j=0

(m + 1− j)a(n)
j am+1−j

=
∞∑

n=0

(n + 1)bn+1 · a(n+1)
m+1 · m + 1

n + 1

=
∞∑

n=0

(m + 1)bn+1a
(n+1)
m+1

for m = 0, 1, 2, . . .. Applying (6), we have

cm =
∞∑

n=0

(m + 1)bn+1a
(n+1)
m+1 =

∞∑

k=1

(m + 1)bka
(k)
m+1 = rm, m = 0, 1, 2, . . . .

The proof is completed. ¥
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3 A Generalized Right Distributive Law

Theright distributive lawfor formal power series is a very interesting result. This law says

(A ·B) ◦ P = (A ◦ P ) · (B ◦ P )

for formal power seriesA,B, andP if the compositions involved exist.
It is proved[9] that the right distributive law is true if the formal power seriesP above is a

nonunit. The following theorem tells us that the right distributive law may also be true even if
the composed formal power series is not a nonunit.

Theorem 3.1. LetA(x) =
∑∞

n=0 anxn, B(x) =
∑∞

n=0 bnxn andP (x) =
∑∞

n=0 pnxn be three
formal power series overR. The right distributive law, that is,

(A ◦ P )(B ◦ P ) = (AB) ◦ P

holds if bothA ◦ P andB ◦ P exist.

Proof. We suppose that bothA ◦ P andB ◦ P exist. LetPn(x) =
∑∞

k=0 p
(n)
k xk for all n ∈ N

as in Definition 1.3, and write

(A ◦ P (x))(B ◦ P (x)) =
∞∑

m=0

rmxm.

SincePn+i = Pn ·P i, it follows thatp(n+i)
m =

∑m
j=0 p

(n)
j p

(i)
m−j for eachm = 0, 1, 2, . . .. Then

rm =
m∑

j=0

( ∞∑

n=0

anp
(n)
j

)
·
( ∞∑

i=0

bip
(i)
m−j

)

=
∞∑

n=0

an

∞∑

i=0

bi




m∑

j=0

p
(n)
j p

(i)
m−j




=
∞∑

n=0

an

∞∑

i=0

bi p
(n+i)
m

is a real number for eachm because bothA ◦ P andB ◦ P exist.
On the other hand, if we write(AB) ◦ P (x) =

∑∞
m=0 smxm, then

sm =
∞∑

n=0




n∑

j=0

ajbn−j


 p(n)

m

=
∞∑

j=0

aj

∞∑

n=j

bn−jp
(n)
m

=
∞∑

j=0

aj

∞∑

n=0

bnp(n+j)
m

= rm,

for m = 0, 1, 2, . . .. Thensm ∈ R andsm = rm for eachm. This completes the proof. ¥
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The theorems in this paper helps us to establish a method to compute the coefficients of the
composition of formal power series no matter the composed formal power series is a nonunit
or not. That will alow us to extend many computation formulas in the related fields. We will
discuss these in a forthcoming paper.

References

[1] G. Raney, Functional Composition Patterns and Power Series Reversion.Trans. Amer. Math.
Soc., 94(3), pp. 441–451, 1960.

[2] E. Bender, A Lifting Theorem for Formal Power Series,Proc. Amer. Math. Soc., 42(1),
pp. 16–22, 1974.

[3] A. Garsia and S. Joni, A New Expression for Umbral Operators and Power Series Inversion,
Proc. Amer. Math. Soc., 64(1), pp. 179–185, 1977.

[4] H. Li, p-Adic Power Series which Commute Under Composition,Trans. Amer. Math. Soc.,
349(4), pp. 1437–1446, 1997.

[5] M. Droste and G. Zhang, On Transformation of Formal Power Series,Inform. and Comput.,
184(2), pp. 369–383, 2003.

[6] Y. Siuya, Formal Power Series Solutions in a Parameter,J. Diff. Eq., 190(2), pp. 559–578,
2003.

[7] D. Parvica and M. Spurr, Unique summing of formal power series solutions to advanced and
delayed defferential equations,Discrete Contin. Dyn. Syst., 2005, suppl. 730–737.

[8] X. Gan and N. Knox, On Composition of Formal Power Series,Intern. J. Math. and Math.
Sci., 30(12), pp. 761–770, 2002.

[9] P. Henrici,Appl. and Computational Complex Analysis, John Wiley and Sons, pp. 35–42,
1988.


