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Abstract

Let ¢ > b > a and r be real numbers, and let f be a positive, twice differentiable
function such that f is strictly increasing and logarithmically convex. Then
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This solves an open problem of B.-N. Guo and F. Qi.

) < 1 for all real r,

according as r 2 0.
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1 Introduction

It was shown in [1,2, 8,13, 17] that let n be a positive integer, then for r > 0,

n+1 nn!
L Z /nle < (L1
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We call the left-hand side of (1.1) Alzer’s inequality [1], and the right-hand side of (1.1)
Martins’ inequality [8]. In [3, 14] Alzer’s inequality is extended to all real ». In [5] it was proved
that Martins’ inequality is reversed for r < 0.

F. Qi and B.-N. Guo [10, 11] presented an integral version of inequality (1.1) as follows: Let
b>a>0andé > 0, then forr > O,

1/r
b ﬁ abxrdx / [bb/aa]l/(bfa)
b+§ < 1 b+3 rd < [(b+ 5)b+8/aa]1/(b+5—a)' (1.2)
b+é—a fa X ax
We note that the inequality (1.2) can be written for r > 0 as
b Lr ’ b I ) b
(a, b) (a,b) (1.3)
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where L, (a, b) and I (a, b) are respectively the generalized logarithmic mean and the exponential
mean of two positive numbers a, b, defined in [6, 15, 16] by, for a = b by L, (a, b) = a and for

a # b by
br+1_ar+1 1/r
L.(a,b)=——"——— , -1,0;
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-1 " Inb—1Ina @0
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L(a, b) is the logarithmic mean of two positive numbers a, b. Whena # b, L, (a, b) is a strictly
increasing function of r. In particular,

lim L,(a,b) = min{a, b}, lim L,(a,b) = max{a, b}.
r——0o0 r——+00

In [4], it was indirectly shown that the function r +— L,(a, b)/L,(a, b + §) is strictly de-
creasing with r € (—oo, +00). This yields that

1/r
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PR < . 53 for all real r, (1.4)
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In [7], B.-N. Guo and F. Qi ask under which conditions the inequality
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holds forb >a > 0,6 >0andr > 0.

V. Mascioni [9] showed that let f be a nondecreasing, positive, twice differentiable function
on (0, co) such that

t(In f(1))" + (n f(r)) > 0 (L.7)
for all + > 0. Then
1Lt d
Py = LI
exp (ﬁ fa In f(x)dx)

is nondecreasing on [a, oo] for every a > 0 and therefore the right-hand inequality of (1.6) holds
for f andevery b > a > 0,andr,§ > 0.

A positive function is side to be logarithmically convex (concave) on [ if its logarithm
In f is convex (concave). It follows that a logarithmically convex function is convex, but the
converse may not necessarily be true. A twice differentiable function is convex on [/ if and only
if f(x) > 0.

Motivated by the paper of Mascioni [9], we establish the following

Theorem 1.1. Let ¢ > b > a and r be real numbers, and let f be a positive, twice differentiable
function such that f is strictly increasing and logarithmically convex. Then

U, cio f ) _ (5 Ju ST (@)
SUP, .1 J (X) ﬁ fac fr(x)dx

s L preoax\ e (55 [ r @)
L[ fr(x)dx = exp (== [“In f(x)dx)

1/r
) < 1 forall real r, (1.8)

according as r 2 0. (1.9

Both bounds in (1.8) are best possible.

2 Lemmas

Lemma 2.1. Let the function f be a positive and twice differentiable on (a, +00), where a is a
given real number, and let

e Jo f()dx

Git) = ,
® 0]

Then we have

(i) If f is strictly increasing and logarithmically convex, then the function G is strictly de-
creasing on (a, +00).

(ii) If f is strictly decreasing and logarithmically concave, then the function G is strictly
increasing on (a, +00).
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Proof. Easy calculation reveals that

2/ 2 t
[ —a)f(®)] G/(t) _ (t—a)f (t)/ _f F) 2 H@),
fO+—a)f'@®) fO+e—a)f @) J
O+ E—afOPH® _ S OFO - OF O
(t—a)f3) 20 f@
= —[(t —a)(n f(t))" + (In f(1))'].

If (In £(¢)) > (<)0 and (In(f(z))” > (=)0 fort > a, then H'(t) < (>)0 for t > a, and then,
H(t) < (>)H(a) =0and G'(t) < (>)0 fort > a. The proof is complete. |

Lemma 2.2 ( [12]). If F(t) is a strictly increasing (decreasing) integrable function on an
interval I C R, then the arithmetic mean G(r, s) of function F(t),

1 s
Gor,s)=1s—rJ F@)dt, r#s,
F(r), F=s.

is also strictly increasing (decreasing) with both r and s on 1.

3 Proof of Theorem

For r = 0, (1.8) can be interpreted as

ray o (55 [ foodx) 1
Flo) exp (== [“In f(x)dx) =

(3.1)

Define for ¢t > a,
exp (ﬁ fat In f(x)dx)

P —
© 10

A simple computation yields

P/ t
P((;)) = (t —a)ln f(1) —/ In f(x)dx — (t —a)(In f(1))" £ Q(1),

Q'(t) =~ —a)[(n f(1) + (t —a)(In(f(1))"] < 0.

Hence, we have Q(t) < Q(a) = 0and P’(t) < 0 fort > a. This means the left-hand inequality
of (3.1) holds for ¢ > b > a. By Lemma 2.2, the right-hand inequality of (3.1) holds clearly.
For r # 0, (1.8) is equivalent to

(t —a)?

£10) _ g fy fr@dx
1)~ L rodx

c—

1, accordingas r 2 0. (3.2)

Define for ¢t > a,
1 t rr
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It is easy to see that

(In f"(t)); 20 and (In(f"(1))/ % 0, accordingas r = 0. (3.3)

decreases
increases
according as r 2 0. This produces the left-hand inequality of (3.2). By Lemma 2.2, the right-
hand inequality of (3.2) holds clearly.

Both bounds in (1.8) are best possible because of

By Lemma 2.1, the function t +— G,(t) strictly with respect to ¢ € (a, +00)

1/r
i (B2l @A supga )
r—+400 ﬁ fac fr(x)dx Supxe[a,c] f(X),

1/r
lim (M) _ infrctan OO _

" = - = 1.
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The inequality (1.9) is equivalent to
by or
bth fr(x)dx  €xp (ﬁ [ In f (x)dx)
a-4d for r # 0. (3.4)

— [ fr(x)dx = exp (== [ In f(x)dx)

Define for t > a,
ﬁfat fr(x)dx
exp (ﬁ f; In fr(x)dx>
It is easy to see from the proof of Theorem 1.1 of [9] that if f'(z) > Oand (In f(z))” > 0, then the

function F is strictly increasing on (a, +00); If /() < 0 and (In f(¢))” < 0, then the function
F) is strictly decreasing on (a, +00). Applying this result, together with (3.3), we obviously

Fr(t) =

. . . increases . .
imply the function ¢ +— F,(¢) strictly decreases with respect to ¢ € (a, +00) according as
r 2 0. This produces (3.4). The proof is complete. |
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