On Integral Version of Alzer's Inequality and MARTINS' InEQUALITY

Xin Li*
College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454010, China
\section*{Chao-ping Chen ${ }^{\dagger}$}
College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 454010, China

(Communicated by Hüseyin Bor)

Abstract

Let $c>b>a$ and r be real numbers, and let f be a positive, twice differentiable function such that f is strictly increasing and logarithmically convex. Then

$$
\begin{aligned}
& \frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, c]} f(x)}<\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r}<1 \text { for all real } r, \\
& \left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r} \lessgtr \frac{\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)}{\exp \left(\frac{1}{c-a} \int_{a}^{c} \ln f(x) d x\right)} \quad \text { according as } r \gtrless 0 .
\end{aligned}
$$

This solves an open problem of B.-N. Guo and F. Qi.
AMS Subject Classification: Primary: 26D10, Secondary: 26D15.
Keywords: Alzer's inequality, Martins' inequality, mean.

1 Introduction

It was shown in $[1,2,8,13,17]$ that let n be a positive integer, then for $r>0$,

$$
\begin{equation*}
\frac{n}{n+1}<\left(\frac{1}{n} \sum_{i=1}^{n} i^{r} / \frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}\right)^{1 / r}<\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \tag{1.1}
\end{equation*}
$$

[^0]We call the left-hand side of (1.1) Alzer's inequality [1], and the right-hand side of (1.1) Martins' inequality [8]. In [3, 14] Alzer's inequality is extended to all real r. In [5] it was proved that Martins' inequality is reversed for $r<0$.
F. Qi and B.-N. Guo [10,11] presented an integral version of inequality (1.1) as follows: Let $b>a>0$ and $\delta>0$, then for $r>0$,

$$
\begin{equation*}
\frac{b}{b+\delta}<\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} d x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} d x}\right)^{1 / r}<\frac{\left[b^{b} / a^{a}\right]^{1 /(b-a)}}{\left[(b+\delta)^{b+\delta} / a^{a}\right]^{1 /(b+\delta-a)}} \tag{1.2}
\end{equation*}
$$

We note that the inequality (1.2) can be written for $r>0$ as

$$
\begin{equation*}
\frac{b}{b+\delta}<\frac{L_{r}(a, b)}{L_{r}(a, b+\delta)}<\frac{I(a, b)}{I(a, b+\delta)} \tag{1.3}
\end{equation*}
$$

where $L_{r}(a, b)$ and $I(a, b)$ are respectively the generalized logarithmic mean and the exponential mean of two positive numbers a, b, defined in $[6,15,16]$ by, for $a=b$ by $L_{r}(a, b)=a$ and for $a \neq b$ by

$$
\begin{aligned}
& L_{r}(a, b)=\left(\frac{b^{r+1}-a^{r+1}}{(r+1)(b-a)}\right)^{1 / r}, \quad r \neq-1,0 \\
& L_{-1}(a, b)=\frac{b-a}{\ln b-\ln a}=L(a, b) \\
& L_{0}(a, b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}=I(a, b)
\end{aligned}
$$

$L(a, b)$ is the logarithmic mean of two positive numbers a, b. When $a \neq b, L_{r}(a, b)$ is a strictly increasing function of r. In particular,

$$
\lim _{r \rightarrow-\infty} L_{r}(a, b)=\min \{a, b\}, \quad \lim _{r \rightarrow+\infty} L_{r}(a, b)=\max \{a, b\}
$$

In [4], it was indirectly shown that the function $r \mapsto L_{r}(a, b) / L_{r}(a, b+\delta)$ is strictly decreasing with $r \in(-\infty,+\infty)$. This yields that

$$
\begin{align*}
\frac{b}{b+\delta} & <\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} d x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} d x}\right)^{1 / r} \quad \text { for all real } r, \tag{1.4}\\
\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} d x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} d x}\right)^{1 / r} & \lessgtr \frac{\left[b^{b} / a^{a}\right]^{1 /(b-a)}}{\left[(b+\delta)^{b+\delta} / a^{a}\right]^{1 /(b+\delta-a)}} \quad \text { according as } \quad r \gtrless 0 . \tag{1.5}
\end{align*}
$$

In [7], B.-N. Guo and F. Qi ask under which conditions the inequality

$$
\begin{align*}
\frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, b+\delta]} f(x)} & <\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} f^{r}(x) d x}\right)^{1 / r} \\
& <\frac{\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)}{\exp \left(\frac{1}{b+\delta-a} \int_{a}^{b+\delta} \ln f(x) d x\right)} \tag{1.6}
\end{align*}
$$

holds for $b>a>0, \delta>0$ and $r>0$.
V. Mascioni [9] showed that let f be a nondecreasing, positive, twice differentiable function on $(0, \infty)$ such that

$$
\begin{equation*}
t(\ln f(t))^{\prime \prime}+(\ln f(t))^{\prime} \geq 0 \tag{1.7}
\end{equation*}
$$

for all $t>0$. Then

$$
F(t)=\frac{\frac{1}{t-a} \int_{a}^{t} f(x) d x}{\exp \left(\frac{1}{t-a} \int_{a}^{t} \ln f(x) d x\right)}
$$

is nondecreasing on $[a, \infty]$ for every $a \geq 0$ and therefore the right-hand inequality of (1.6) holds for f and every $b>a \geq 0$, and $r, \delta>0$.

A positive function is side to be logarithmically convex (concave) on I if its logarithm $\ln f$ is convex (concave). It follows that a logarithmically convex function is convex, but the converse may not necessarily be true. A twice differentiable function is convex on I if and only if $f^{\prime \prime}(x) \geq 0$.

Motivated by the paper of Mascioni [9], we establish the following

Theorem 1.1. Let $c>b>a$ and r be real numbers, and let f be a positive, twice differentiable function such that f is strictly increasing and logarithmically convex. Then

$$
\begin{align*}
& \frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, c]} f(x)}<\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r}<1 \text { for all real } r, \tag{1.8}\\
& \left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r} \lessgtr \frac{\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)}{\exp \left(\frac{1}{c-a} \int_{a}^{c} \ln f(x) d x\right)} \quad \text { according as } r \gtrless 0 \text {. } \tag{1.9}
\end{align*}
$$

Both bounds in (1.8) are best possible.

2 Lemmas

Lemma 2.1. Let the function f be a positive and twice differentiable on $(a,+\infty)$, where a is a given real number, and let

$$
G(t)=\frac{\frac{1}{t-a} \int_{a}^{t} f(x) d x}{f(t)}, \quad t>a
$$

Then we have
(i) If f is strictly increasing and logarithmically convex, then the function G is strictly decreasing on $(a,+\infty)$.
(ii) If f is strictly decreasing and logarithmically concave, then the function G is strictly increasing on $(a,+\infty)$.

Proof. Easy calculation reveals that

$$
\begin{aligned}
\frac{[(t-a) f(t)]^{2} G^{\prime}(t)}{f(t)+(t-a) f^{\prime}(t)} & =\frac{(t-a) f^{2}(t)}{f(t)+(t-a) f^{\prime}(t)}-\int_{a}^{t} f(x) \triangleq H(t) \\
\frac{\left[f(t)+(t-a) f^{\prime}(t)\right]^{2} H^{\prime}(t)}{(t-a) f^{3}(t)} & =-(t-a) \frac{f^{\prime \prime}(t) f(t)-\left[f^{\prime}(t)\right]^{2}}{f^{2}(t)}-\frac{f^{\prime}(t)}{f(t)} \\
& =-\left[(t-a)(\ln f(t))^{\prime \prime}+(\ln f(t))^{\prime}\right]
\end{aligned}
$$

If $(\ln f(t))^{\prime}>(<) 0$ and $\left(\ln (f(t))^{\prime \prime} \geq(\leq) 0\right.$ for $t>a$, then $H^{\prime}(t)<(>) 0$ for $t>a$, and then, $H(t)<(>) H(a)=0$ and $G^{\prime}(t)<(>) 0$ for $t>a$. The proof is complete.

Lemma 2.2 ([12]). If $\mathcal{F}(t)$ is a strictly increasing (decreasing) integrable function on an interval $I \subseteq \mathbb{R}$, then the arithmetic mean $\mathcal{G}(r, s)$ of function $\mathcal{F}(t)$,

$$
\mathcal{G}(r, s)= \begin{cases}\frac{1}{s-r} \int_{r}^{s} \mathcal{F}(t) \mathrm{d} t, & r \neq s \\ \mathcal{F}(r), & r=s\end{cases}
$$

is also strictly increasing (decreasing) with both r and s on I.

3 Proof of Theorem

For $r=0$, (1.8) can be interpreted as

$$
\begin{equation*}
\frac{f(b)}{f(c)}<\frac{\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)}{\exp \left(\frac{1}{c-a} \int_{a}^{c} \ln f(x) d x\right)}<1 \tag{3.1}
\end{equation*}
$$

Define for $t>a$,

$$
P(t)=\frac{\exp \left(\frac{1}{t-a} \int_{a}^{t} \ln f(x) d x\right)}{f(t)}
$$

A simple computation yields

$$
\begin{aligned}
(t-a)^{2} \frac{P^{\prime}(t)}{P(t)} & =(t-a) \ln f(t)-\int_{a}^{t} \ln f(x) d x-(t-a)(\ln f(t))^{\prime} \triangleq Q(t) \\
Q^{\prime}(t) & =-(t-a)\left[(\ln f(t))^{\prime}+(t-a)\left(\ln (f(t))^{\prime \prime}\right]<0\right.
\end{aligned}
$$

Hence, we have $Q(t)<Q(a)=0$ and $P^{\prime}(t)<0$ for $t>a$. This means the left-hand inequality of (3.1) holds for $c>b>a$. By Lemma 2.2, the right-hand inequality of (3.1) holds clearly.

For $r \neq 0$, (1.8) is equivalent to

$$
\begin{equation*}
\frac{f^{r}(b)}{f^{r}(c)} \lessgtr \frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x} \lessgtr 1, \quad \text { according as } \quad r \gtrless 0 \tag{3.2}
\end{equation*}
$$

Define for $t>a$,

$$
G_{r}(t)=\frac{\frac{1}{t-a} \int_{a}^{t} f^{r}(x) d x}{f^{r}(t)}
$$

It is easy to see that

$$
\begin{equation*}
\left(\ln f^{r}(t)\right)_{t}^{\prime} \gtrless 0 \quad \text { and } \quad\left(\ln \left(f^{r}(t)\right)_{t}^{\prime \prime} \gtreqless 0, \quad \text { according as } \quad r \gtrless 0 .\right. \tag{3.3}
\end{equation*}
$$

By Lemma 2.1, the function $t \mapsto G_{r}(t)$ strictly $\begin{gathered}\text { decreases } \\ \text { increases }\end{gathered}$ with respect to $t \in(a,+\infty)$ according as $r \gtrless 0$. This produces the left-hand inequality of (3.2). By Lemma 2.2, the righthand inequality of (3.2) holds clearly.

Both bounds in (1.8) are best possible because of

$$
\begin{aligned}
& \lim _{r \rightarrow+\infty}\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r}=\frac{\sup _{x \in[a, b]} f(x)}{\sup _{x \in[a, c]} f(x)} \\
& \lim _{r \rightarrow-\infty}\left(\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}\right)^{1 / r}=\frac{\inf _{x \in[a, b]} f(x)}{\inf _{x \in[a, c]} f(x)}=1
\end{aligned}
$$

The inequality (1.9) is equivalent to

$$
\begin{equation*}
\frac{\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x}{\frac{1}{c-a} \int_{a}^{c} f^{r}(x) d x}<\frac{\exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f^{r}(x) d x\right)}{\exp \left(\frac{1}{c-a} \int_{a}^{c} \ln f^{r}(x) d x\right)} \quad \text { for } r \neq 0 . \tag{3.4}
\end{equation*}
$$

Define for $t>a$,

$$
F_{r}(t)=\frac{\frac{1}{t-a} \int_{a}^{t} f^{r}(x) d x}{\exp \left(\frac{1}{t-a} \int_{a}^{t} \ln f^{r}(x) d x\right)}
$$

It is easy to see from the proof of Theorem 1.1 of [9] that if $f^{\prime}(t)>0$ and $(\ln f(t))^{\prime \prime} \geq 0$, then the function F_{1} is strictly increasing on $(a,+\infty)$; If $f^{\prime}(t)<0$ and $(\ln f(t))^{\prime \prime} \leq 0$, then the function F_{1} is strictly decreasing on $(a,+\infty)$. Applying this result, together with (3.3), we obviously imply the function $t \mapsto F_{r}(t)$ strictly $\begin{gathered}\text { increases } \\ \text { decreases }\end{gathered}$ with respect to $t \in(a,+\infty)$ according as $r \gtrless 0$. This produces (3.4). The proof is complete.

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful comments.

References

[1] H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. App., 179, pp. 396-402, 1993.
[2] Ch.-P. Chen and F. Qi, Notes on proofs of Alzer's inequality, Octogon Math. Mag., 11(1), pp. 29-33, 2003.
[3] Ch.-P. Chen and F. Qi, The inequality of Alzer for negative powers, Octogon Math. Mag., 11(2), pp. 442-445, 2003.
[4] Ch.-P. Chen and F. Qi, Monotonicity properties for generalized logarithmic means, Aust. J. Math. Anal. Appl., 1(2), Article 2, 2004.
[5] Ch.-P. Chen, F. Qi and S. S. Dragomir, Reverse of Martins' inequality, Aust. J. Math. Anal. Appl., 2(1), Article 2, 2005.
[6] L. Galvani, Dei limiti a cui tendono alcune media, Boll. Un. Mat. Ital., 6, pp. 173-179, 1927.
[7] B.-N. Guo and F. Qi, An algebraic inequality, II, RGMIA Res. Rep. Coll., 4(1), Article 8, pp. 55-61, 2001.
[8] J. S. Martins, Arithmetic and geometric means, an application to Lorentz sequence spaces, Math. Nachr., 139, pp. 281-288, 1988.
[9] V. Mascioni, A sufficient condition for the integral version of Martins' inequality, J. Inequal. Pure Appl. Math., 5(2), Artitle 32, 2004.
[10] F. Qi, An algebraic inequality, J. Inequal. Pure Appl. Math., 2(1), Artitle 13, 2001.
[11] F. Qi and B.-N. Guo, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese J. Math., 7(2), pp. 229-237, 2003.
[12] F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc., 130(6), pp. 1787-1796, 2002.
[13] J. Sándor, On an inequality of Alzer, J. Math. Anal. Appl., 192, pp. 1034-1035, 1995.
[14] J. Sándor, On an inequality of Alzer, II, Octogon Math. Mag., 11(2), pp. 554-555, 2003.
[15] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag., 48, pp. 87-92, 1975.
[16] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87, pp. 545-548, 1980.
[17] J. S. Ume, An elementary proof of H. Alzer's inequality, Math. Japon., 44(3), pp. 521-522, 1996.

[^0]: *E-mail: lixinxxren@sohu.com
 ${ }^{\dagger}$ E-mail: chenchaoping@hpu.edu.cn

