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Abstract

Let c > b > a and r be real numbers, and let f be a positive, twice differentiable
function such that f is strictly increasing and logarithmically convex. Then

supx∈[a,b] f (x)

supx∈[a,c] f (x)
<

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

< 1 for all real r,

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

≶
exp

(
1

b−a

∫ b

a
ln f (x)dx

)
exp

(
1

c−a

∫ c

a
ln f (x)dx

) according as r ≷ 0.

This solves an open problem of B.-N. Guo and F. Qi.
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1 Introduction

It was shown in [1, 2, 8, 13, 17] that let n be a positive integer, then for r > 0,

n

n + 1
<

(
1

n

n∑
i=1

ir
/

1

n + 1

n+1∑
i=1

ir

)1/r

<

n
√

n!
n+1
√

(n + 1)! . (1.1)
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We call the left-hand side of (1.1) Alzer’s inequality [1], and the right-hand side of (1.1)
Martins’ inequality [8]. In [3,14] Alzer’s inequality is extended to all real r . In [5] it was proved
that Martins’ inequality is reversed for r < 0.

F. Qi and B.-N. Guo [10,11] presented an integral version of inequality (1.1) as follows: Let
b > a > 0 and δ > 0, then for r > 0,

b

b + δ
<

(
1

b−a

∫ b

a
xrdx

1
b+δ−a

∫ b+δ

a
xrdx

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
. (1.2)

We note that the inequality (1.2) can be written for r > 0 as

b

b + δ
<

Lr(a, b)

Lr(a, b + δ)
<

I (a, b)

I (a, b + δ)
, (1.3)

where Lr(a, b) and I (a, b) are respectively the generalized logarithmic mean and the exponential
mean of two positive numbers a, b, defined in [6, 15, 16] by, for a = b by Lr(a, b) = a and for
a �= b by

Lr(a, b) =
(

br+1 − ar+1

(r + 1)(b − a)

)1/r

, r �= −1, 0;

L−1(a, b) = b − a

ln b − ln a
= L(a, b);

L0(a, b) = 1

e

(
bb

aa

)1/(b−a)

= I (a, b).

L(a, b) is the logarithmic mean of two positive numbers a, b. When a �= b, Lr(a, b) is a strictly
increasing function of r . In particular,

lim
r→−∞ Lr(a, b) = min{a, b}, lim

r→+∞ Lr(a, b) = max{a, b}.

In [4], it was indirectly shown that the function r �→ Lr(a, b)/Lr(a, b + δ) is strictly de-
creasing with r ∈ (−∞, +∞). This yields that

b

b + δ
<

(
1

b−a

∫ b

a
xrdx

1
b+δ−a

∫ b+δ

a
xrdx

)1/r

for all real r, (1.4)

(
1

b−a

∫ b

a
xrdx

1
b+δ−a

∫ b+δ

a
xrdx

)1/r

≶ [bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
according as r ≷ 0. (1.5)

In [7], B.-N. Guo and F. Qi ask under which conditions the inequality

supx∈[a,b] f (x)

supx∈[a,b+δ] f (x)
<

(
1

b−a

∫ b

a
f r(x)dx

1
b+δ−a

∫ b+δ

a
f r(x)dx

)1/r

<
exp

(
1

b−a

∫ b

a
ln f (x)dx

)
exp

(
1

b+δ−a

∫ b+δ

a
ln f (x)dx

)
(1.6)
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holds for b > a > 0, δ > 0 and r > 0.
V. Mascioni [9] showed that let f be a nondecreasing, positive, twice differentiable function

on (0, ∞) such that

t (ln f (t))′′ + (ln f (t))′ ≥ 0 (1.7)

for all t > 0. Then

F(t) =
1

t−a

∫ t

a
f (x)dx

exp
(

1
t−a

∫ t

a
ln f (x)dx

)
is nondecreasing on [a, ∞] for every a ≥ 0 and therefore the right-hand inequality of (1.6) holds
for f and every b > a ≥ 0, and r, δ > 0.

A positive function is side to be logarithmically convex (concave) on I if its logarithm
ln f is convex (concave). It follows that a logarithmically convex function is convex, but the
converse may not necessarily be true. A twice differentiable function is convex on I if and only
if f ′′(x) ≥ 0.

Motivated by the paper of Mascioni [9], we establish the following

Theorem 1.1. Let c > b > a and r be real numbers, and let f be a positive, twice differentiable
function such that f is strictly increasing and logarithmically convex. Then

supx∈[a,b] f (x)

supx∈[a,c] f (x)
<

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

< 1 for all real r, (1.8)

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

≶
exp

(
1

b−a

∫ b

a
ln f (x)dx

)
exp

(
1

c−a

∫ c

a
ln f (x)dx

) according as r ≷ 0. (1.9)

Both bounds in (1.8) are best possible.

2 Lemmas

Lemma 2.1. Let the function f be a positive and twice differentiable on (a, +∞), where a is a
given real number, and let

G(t) =
1

t−a

∫ t

a
f (x)dx

f (t)
, t > a.

Then we have

(i) If f is strictly increasing and logarithmically convex, then the function G is strictly de-
creasing on (a, +∞).

(ii) If f is strictly decreasing and logarithmically concave, then the function G is strictly
increasing on (a, +∞).
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Proof. Easy calculation reveals that

[(t − a)f (t)]2G′(t)
f (t) + (t − a)f ′(t)

= (t − a)f 2(t)

f (t) + (t − a)f ′(t)
−

∫ t

a

f (x) � H(t),

[f (t) + (t − a)f ′(t)]2H ′(t)
(t − a)f 3(t)

= −(t − a)
f ′′(t)f (t) − [f ′(t)]2

f 2(t)
− f ′(t)

f (t)

= −[(t − a)(ln f (t))′′ + (ln f (t))′].
If (ln f (t))′ > (<)0 and (ln(f (t))′′ ≥ (≤)0 for t > a, then H ′(t) < (>)0 for t > a, and then,
H(t) < (>)H(a) = 0 and G′(t) < (>)0 for t > a. The proof is complete. �

Lemma 2.2 ( [12]). If F(t) is a strictly increasing (decreasing) integrable function on an
interval I ⊆ R, then the arithmetic mean G(r, s) of function F(t),

G(r, s) =



1

s − r

∫ s

r

F(t) dt, r �= s,

F(r), r = s,

is also strictly increasing (decreasing) with both r and s on I .

3 Proof of Theorem

For r = 0, (1.8) can be interpreted as

f (b)

f (c)
<

exp
(

1
b−a

∫ b

a
ln f (x)dx

)
exp

(
1

c−a

∫ c

a
ln f (x)dx

) < 1. (3.1)

Define for t > a,

P(t) =
exp

(
1

t−a

∫ t

a
ln f (x)dx

)
f (t)

.

A simple computation yields

(t − a)2 P ′(t)
P (t)

= (t − a) ln f (t) −
∫ t

a

ln f (x)dx − (t − a)(ln f (t))′ � Q(t),

Q′(t) = −(t − a)
[
(ln f (t))′ + (t − a)(ln(f (t))′′] < 0.

Hence, we have Q(t) < Q(a) = 0 and P ′(t) < 0 for t > a. This means the left-hand inequality
of (3.1) holds for c > b > a. By Lemma 2.2, the right-hand inequality of (3.1) holds clearly.

For r �= 0, (1.8) is equivalent to

f r(b)

f r(c)
≶

1
b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

≶ 1, according as r ≷ 0. (3.2)

Define for t > a,

Gr(t) =
1

t−a

∫ t

a
f r(x)dx

f r(t)
.
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It is easy to see that

(ln f r(t))′
t ≷ 0 and (ln(f r(t))′′

t � 0, according as r ≷ 0. (3.3)

By Lemma 2.1, the function t �→ Gr(t) strictly
decreases
increases

with respect to t ∈ (a, +∞)

according as r ≷ 0. This produces the left-hand inequality of (3.2). By Lemma 2.2, the right-
hand inequality of (3.2) holds clearly.

Both bounds in (1.8) are best possible because of

lim
r→+∞

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

= supx∈[a,b] f (x)

supx∈[a,c] f (x)
,

lim
r→−∞

(
1

b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

)1/r

= infx∈[a,b] f (x)

infx∈[a,c] f (x)
= 1.

The inequality (1.9) is equivalent to

1
b−a

∫ b

a
f r(x)dx

1
c−a

∫ c

a
f r(x)dx

<
exp

(
1

b−a

∫ b

a
ln f r(x)dx

)
exp

(
1

c−a

∫ c

a
ln f r(x)dx

) for r �= 0. (3.4)

Define for t > a,

Fr(t) =
1

t−a

∫ t

a
f r(x)dx

exp
(

1
t−a

∫ t

a
ln f r(x)dx

) .

It is easy to see from the proof of Theorem 1.1 of [9] that if f ′(t) > 0 and (ln f (t))′′ ≥ 0, then the
function F1 is strictly increasing on (a, +∞); If f ′(t) < 0 and (ln f (t))′′ ≤ 0, then the function
F1 is strictly decreasing on (a, +∞). Applying this result, together with (3.3), we obviously

imply the function t �→ Fr(t) strictly
increases
decreases

with respect to t ∈ (a, +∞) according as

r ≷ 0. This produces (3.4). The proof is complete. �
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