Communications in Mathematical Analysis

Volume 1, Number 2, pp. 91–99, 2006

ISSN 0973-3841 © 2006 Research India Publications

Combinations of Distinguished Subsets and Cesàro Conullity

*H. Gül Ince** Department of Mathematics, Gazi University, 06500 Teknikokullar, Ankara, Turkey

(Communicated by Hüseyin Bor)

Abstract

In this paper we give some characterizations in connection (weak) Cesàro wedge and (strongly) Cesàro conull for Montel and reflexive FK-spaces and we show that subspaces σS and σW are closely related to (strong) Cesàro conullity. We also study the combinations of distinguished subsets.

AMS Subject Classification: Primary 46A45, 40G05; Secondary 40H05.

Keywords: FK-Spaces, Conull Spaces, Cesàro Conull Spaces, Distinguished Subpaces.

1 Introduction

Let w denote the space of all real or complex-valued sequence. An FK-space is a locally convex vector subspace of w which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK-space a normed FK-space. The basic properties of such spaces can be found in [9], [10] and [11].

By *m*, c_0 we denote the spaces of all bounded sequences, null sequences, respectively. These are *FK*-spaces under $||x|| = \sup_{n} |x_n|$. By l^p , $(1 \le p < \infty)$ and *cs* we shall denote the space of all absolutely p-summable sequences and convergent series, respectively. The sequences spaces

$$h = \left\{ x \in w : \lim_{j} x_{j} = 0, \text{ and } \sum_{j=1}^{\infty} j \left| \Delta x_{j} \right| < \infty \right\},$$
$$q = \left\{ x \in w : \sup_{j} \left| x_{j} \right| < \infty \text{ and } \sum_{j=1}^{\infty} j \left| \Delta^{2} x_{j} \right| < \infty \right\},$$

^{*}E-mail: ince@gazi.edu.tr

$$\sigma_0 = \left\{ x \in w : \lim_n \left| \frac{1}{n} \sum_{k=1}^n x_k \right| = 0 \right\},\$$
$$\sigma_c = \left\{ x \in w : \lim_n \frac{1}{n} \sum_{k=1}^n x_k \text{ exists} \right\},\$$

and

$$\sigma_{\infty} = \left\{ x \in w : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right| < \infty \right\}$$

are FK-spaces with the norms

$$\|x\|_{h} = \sum_{j=1}^{\infty} j \left| \Delta x_{j} \right| + \sup_{j} \left| x_{j} \right|,$$
$$\|x\|_{q} = \sum_{j=1}^{\infty} j \left| \Delta^{2} x_{j} \right| + \sup_{j} \left| x_{j} \right|,$$
$$\|x\|_{\sigma_{\infty}} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right|$$

respectively, where $\Delta x_j = x_j - x_{j+1}$, $\Delta^2 x_j = \Delta x_j - \Delta x_{j+1}$, [1], [2].

Throughout the paper *e* denotes the sequence of ones, (1, 1, ..., 1, ...); δ^j , (j = 1, 2, ...), the sequence (0, 0, ..., 0, 1, 0, ...) with the one in the *j*-th position. Let $\phi := l.hull \{\delta^k : k \in N\}$ and $\phi_1 = \phi \cup \{e\}$. The topological dual of *X* is denoted by *X'*. The space is said to have *AD* if ϕ is dense in *X* and an *FK*-space *X* is said to have *AK* (respectively σK), if $X \supset \phi$ and for each $x \in X$, $x^{(n)} \rightarrow x$ (respectively $\frac{1}{n} \sum_{k=1}^n x^{(k)} \rightarrow x$) in *X*, where $x^{(n)} = \sum_{k=1}^n x_k \delta^k = (x_1, x_2, ..., x_n, 0, ...)$. Every *AK*-space is a σK -space, [1].

Let *X* be an *FK*-space containing ϕ . Then

$$X^{f} = \left\{ \left\{ f\left(\delta^{k}\right) \right\} : f \in X' \right\},$$
$$X^{\beta} = \left\{ x : \sum_{k=1}^{\infty} x_{k} y_{k} \text{ exists for every } y \in X \right\}$$

In addition, let X be an *FK*-space and $z \in w$ then $z^{-1}.X = \{x \in w : z.x \in X\}$ is an *FK*-space, where $z.x = (z_k x_k), [9]$.

An *FK*-space containing ϕ is called Cesàro wedge space if $\frac{1}{n} \sum_{k=1}^{n} e^{(k)} \to 0$ in *X*, and weak Cesàro wedge space if $\frac{1}{n} \sum_{k=1}^{n} e^{(k)} \to 0$ (weakly) in *X*, where $e^{(k)} = \sum_{j=1}^{k} \delta^{j}$, [6].

Also, an *FK*-space containing ϕ_1 is called strongly Cesàro conull space if $\frac{1}{n} \sum_{k=1}^{n} e^{(k)} \to e$ in *X*, and Cesàro conull space if $\frac{1}{n} \sum_{k=1}^{n} e^{(k)} \to e$ (weakly) in *X*, [5].

We recall some important subspaces of an FK-space introduced by Goes in [3]. Let *X* be an FK-space containing ϕ . Then

$$\sigma W = \sigma W(X) = \left\{ x : \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x \text{ (weakly) in } X \right\}$$
$$= \left\{ x : f(x) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_j f(\delta^j), \text{ for all } f \in X' \right\},$$

$$\sigma S = \sigma S(X) = \left\{ x : \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x \text{ in } X \right\}$$
$$= \left\{ x : x = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} \delta^{j} \right\},$$
$$B^{+} = \sigma B^{+}(X) = \left\{ x : \left\{ \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \right\} \text{ is bounded in } X \right\},$$

$$\sigma F^{+} = \sigma F^{+}(X) = \left\{ x : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} f\left(\delta^{j}\right) \text{ exists for all } f \in X' \right\}.$$

Also $\sigma F = \sigma F^+ \cap X$, $\sigma B = \sigma B^+ \cap X$. An *FK*-space is a σK -space (respectively $S\sigma W$ -space, σF -space, σB -space) if $X = \sigma S$ (respectively $X = \sigma W$, $X = \sigma F$, $X = \sigma B$) [1].

It is well known that for an *FK*-space *X*

 σ

$$\phi \subset \sigma S \subset \sigma W \subset \sigma F \subset \sigma B \subset X.$$

Let $A = (a_{ij})$ be an infinite matrix. The matrix A may be considered as a linear transformation of sequences $x = (x_k)$ by the formula $y_i = \sum_{j=1}^{\infty} a_{ij} x_j$, (i = 1, 2, 3, ...). The sequence $\{a_{ij}\}_{j=1}^{\infty}$ is called i-th row of A and is denoted by r^i , (i = 1, 2, 3, ...); similarly, the j-th column of the matrix A, $\{a_{ij}\}_{i=1}^{\infty}$ is denoted by k^j , (j = 1, 2, 3, ...).

For an *FK*-space (*E*, *u*) we consider the summability domain $E_A := \{x \in w : Ax \in E\}$. Then E_A is an *FK*-space under the seminorms $p_i = |x_i|, (i = 1, 2, ...), h_i(x) = \sup_m \left| \sum_{j=1}^m a_{ij} x_j \right|, (i = 1, 2, ...)$ and (uoA)(x) = u(Ax), [9].

2 Distinguished subspace $(\sigma S) \sigma W$ and (Strong) Cesàro Conullity

We show that subspaces σW and σS are closely related to Cesàro conullity and strong Cesàro conullity of the *FK*-space *X*.

Theorem 2.1. Let X be an FK-space containing ϕ and z be a sequence. Then $z \in \sigma W$ if and only if z^{-1} . X is Cesàro conull space.

Proof. Let $f \in (z^{-1}.X)'$. Then $f(x) = \sum_{k=1}^{\infty} \alpha_k x_k + g(z.x)$, with $\alpha \in \phi, g \in X'$, ([9] 4.4.10). Thus $f(e - \frac{1}{n} \sum_{k=1}^{n} e^{(k)}) = \frac{1}{n} \sum_{k=1}^{n} \sum_{j=k+1}^{\infty} \alpha_j + g(z - \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} z_j \delta^j)$. Since $\alpha \in \phi$, we have $\frac{1}{n} \sum_{k=1}^{n} \sum_{j=k+1}^{\infty} \alpha_j \to 0$. Hence $f(e - \frac{1}{n} \sum_{k=1}^{n} e^{(k)}) \to 0$ for each $f \in (z^{-1}.X)'$ if and only if $g(z - \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} z_j \delta^j) \to 0$. The result now follows immediately.

Theorem 2.2. Let X be an FK-space containing ϕ . Then $e \in \sigma W$ if and only if X is Cesàro conull.

Proof. Taking z = e in Theorem 2.1., we get the proof.

Theorem 2.3. Let (X, q) be an FK-space containing ϕ and let z be a sequence. Then $z \in \sigma S$ if and only if z^{-1} . X is strongly Cesàro conull space.

Proof. $z^{-1}.X$ is an *FK*-space with $p \cup h$ where $p_i(x) = |x_i|$ and h(x) = q(z.x) ([9], 4.3.6). Since $p_i(e - \frac{1}{n}\sum_{k=1}^n e^{(k)}) = \frac{i}{n} \to 0$, (i < n) and $h(e - \frac{1}{n}\sum_{k=1}^n e^{(k)}) = q(z - \frac{1}{n}\sum_{k=1}^n z^{(k)})$, then $z^{-1}.X$ is strongly Cesàro conull if and only if $z \in \sigma S$.

Theorem 2.4. Let X be an FK-space containing ϕ . Then $e \in \sigma S$ if and only if X is strongly Cesàro conull.

Proof. Taking z = e in Theorem 2.3, we get the result.

The following theorems collect some applications to summability domain E_A .

Theorem 2.5. Let *E* be an *FK*-space and *A* is a matrix such that $E_A \supset \phi_1$. Then E_A is Cesàro conull space if and only if $g(Ae) = \lim_r \frac{1}{r} \sum_{p=1}^r \sum_{j=1}^p g(k^j)$ for each $g \in E'$.

Proof. Necessity: Let $f := g \circ A$ for $g \in E'$. So $f \in E'_A$ by ([9], 4.4.2). Then $f(e - \frac{1}{r}\sum_{p=1}^r e^{(p)}) = (g \circ A)(e - \frac{1}{r}\sum_{p=1}^r e^{(p)}) = g(Ae - \frac{1}{r}\sum_{p=1}^r \sum_{j=1}^p k^j) = g(Ae) = \frac{1}{r}\sum_{p=1}^r \sum_{j=1}^p g(k^j)$. Hence $g(Ae) = \lim_r \frac{1}{r}\sum_{p=1}^r \sum_{j=1}^p g(k^j)$ for each $g \in E'$ by hyphothesis.

Sufficiency: Let $f \in E'_A$. Then $f(x) = \sum_{k=1}^{\infty} \alpha_k x_k + g(Ax)$, for each $\alpha \in w^{\beta}_A$, $g \in E'$ by ([9], 4.4.6). So we get $f(e - \frac{1}{r} \sum_{p=1}^{r} e^{(p)}) = \frac{1}{r} \sum_{p=1}^{r} \sum_{j=p+1}^{\infty} \alpha_j + g(Ae - \frac{1}{r} \sum_{p=1}^{r} \sum_{j=1}^{p} k^j)$. Since $\alpha \in w^{\beta}_A \subset E^{\beta}_A \subset \{e\}^{\beta} = cs$ and by hyphothesis then E_A is Cesàro conull.

Theorem 2.6. Let $z \in w$, E be an FK-space and A be a matrix such that $E_A \supset \phi$ i.e. the columns of A belong to E. Then the following conditions are equivalent:

1.
$$z \in \sigma W$$
,

2.
$$A.z - \frac{1}{r} \sum_{p=1}^{r} Az^{(p)} \to 0$$
 weakly in *E* i.e.g $(A.z - \frac{1}{r} \sum_{p=1}^{r} Az^{(p)}) \to 0$ for each $g \in E'$.

3. $E_{A,z}$ is Cesàro conull space,

4.
$$g(A.z) = \lim_{r} \frac{1}{r} \sum_{p=1}^{r} \sum_{j=1}^{p} z_j g(k^j)$$
 for each $g \in E'$,

where $A.z = (a_{nk}z_k)$.

Proof. Since $z^{-1}.E_A = E_{A,z}$ by Theorem 2.1 we have (1) \Leftrightarrow (3). To prove (2) \Leftrightarrow (3); let B := A.z. Then E_B is Cesàro conull space if and only if $g(Be) = \lim_r \frac{1}{r} \sum_{p=1}^r g(Be^{(p)})$ by Theorem 2.5. Since $Be = (\sum_{j=1}^{\infty} b_{ij}) = (\sum_{j=1}^{\infty} a_{ij}z_j) = A.z$, $(Be^p)_i = (\sum_{j=1}^p b_{ij})_i = (\sum_{j=1}^p a_{ij}z_j)_i$ and $Be^p = \sum_{j=1}^p k^j z_j = A.z^{(p)}$ then the proof is clear. By $Az^{(p)} = \sum_{j=1}^p k^j z_j$, one can have (2) \Leftrightarrow (4).

Theorem 2.7. Let $z \in w$, E be an FK-space and A be a matrix such that $E_A \supset \phi$ i.e. the columns of A belong to E. Then the following conditions are equivalent:

- 1. $z \in \sigma S$, 2. $Az - \frac{1}{r} \sum_{p=1}^{r} Az^{(p)} \to 0 \text{ in } E$,
- 3. $E_{A,z}$ is strongly Cesàro conull space,

4.
$$A.z = \lim_{r} \frac{1}{r} \sum_{p=1}^{r} \sum_{j=1}^{p} z_j k^j$$
.

Proof. Since $z^{-1}.E_A = E_{A,z}$ by Theorem 2.3 we get (*i*) \Leftrightarrow (*iii*). To prove (*ii*) \Leftrightarrow (*iv*), it suffices to observe $Az^{(p)} = \sum_{j=1}^{p} k^j z_j$. (*i*) \Longrightarrow (*ii*); Since $z = \lim_r \frac{1}{r} \sum_{p=1}^{r} z^{(p)}$ and $A : E_A \to E$ is continuous by [9], then $A.z = \lim_r \frac{1}{r} \sum_{p=1}^{r} Az^{(p)}$. (*ii*) \Longrightarrow (*i*); Since $(w_A, p \cup h)$ is an σK space with $p_n(x) = |x_n|, h_n(x) = \sup_m \left| \sum_{k=1}^{m} a_{nk} x_k \right|$ by ([9], 4.3.8) then $p_n(z - \frac{1}{r} \sum_{p=1}^{r} z^{(p)}) \to 0$, $h_n(z - \frac{1}{r} \sum_{p=1}^{r} z^{(p)}) \to 0$. Hence $z \in \sigma S$ if $q(A(z - \frac{1}{r} \sum_{p=1}^{r} z^{(p)})) \to 0$, where q is typical seminorm of E by ([9], 4.3.12). But this is $Az - \frac{1}{r} \sum_{p=1}^{r} Az^{(p)} \to 0$ in E.

Before giving the following theorems we recall that a Fréchet space E is called (reflexive) Montel whenever the bounded subsets of E are (weakly) compact.

Theorem 2.8. Let E be Montel FK-space. Then the following conditions are equivalent:

1. E_A is a weak Cesàro wedge (respectively Cesàro conull) space,

2. E_A is a Cesàro wedge (respectively strongly Cesàro conull) space,

3. $h \subset E_A$ and $r^i \in \sigma_0$, $i = 1, 2, 3, \dots$ (respectively $q \subset E_A$).

Proof. (*i*) \implies (*ii*); Since E_A is a weak Cesàro wedge (respectively Cesàro conull) space then $h \subset E_A$, $r^i \in \sigma_0$, i = 1, 2, 3, ... (respectively $q \subset E_A$) and $A : h \to E$ (respectively $A : q \to E$) is weakly compact by ([6], Theorem 5.3),(respectively [5], Theorem 6.2). Let B be bounded subset in h (respectively in q). Then A(B) is weakly relatively compact and then weakly bounded in E. Since E is Montel space and A(B) is bounded in E then A(B) is relatively compact in E. Thus $A : h \to E$ (respectively $A : q \to E$) is compact and so E_A is a Cesàro wedge (respectively strongly Cesàro conull) space by ([6], Theorem 5.1), (respectively [5], Theorem 6.1).

 $(ii) \Longrightarrow (iii)$; By ([6], Theorem 5.1), ([5], Theorem 6.1).

 $(iii) \implies (i)$; Let *B* be bounded subset in *h* (respectively *q*). Since the inclucion mapping $I : h \rightarrow E_A$ (respectively $I : q \rightarrow E_A$) is continuous by hypothesis then I(B) is bounded in E_A . On the other hand, because of $A : E_A \rightarrow E$ is continuous, A(B) is bounded in *E*. Since *E* is Montel and every Montel space is reflexive then A(B) is relatively compact in *E* [7] and then $A : h \rightarrow E$ (respectively $A : q \rightarrow E$) is weakly compact. Hence by hypothesis and ([6], Theorem 5.3), (respectively [5], Theorem 6.2) the proof is obtained.

In particular Theorem 2.8 holds when E = w.

Theorem 2.9. A Montel FK-space is a Cesàro wedge space if and only if it contains h; and it is a strongly Cesàro conull space if and only if it contains q.

Proof. Taking A = I in Theorem 2.8 we get the proof.

Theorem 2.10. Let E be reflexive FK-space. Then the following conditions are equivalent:

1. E_A is a weak Cesàro wedge (respectively Cesàro conull) space,

2. $h \subset E_A$ and $r^i \in \sigma_0$, $i = 1, 2, 3, \dots$ (respectively $q \subset E_A$).

Proof. This is just Theorem 2.8.

In particular Theorem 2.10 holds when $E = l_p$, (p > 1).

Theorem 2.11. A reflexive FK-space is a weak Cesàro wedge space if and only if it contains h; and it is a Cesàro conull space if and only if it contains q.

Proof. Taking A = I in Theorem 2.10 we get the proof.

3 Combinations of Distinguished Subsets and Cesàro Conullity

Let X and Y be *FK*-spaces, X with paranorm p and Y with paranorm q. Then Z = X + Y with the unrestricted inductive limit topology is an *FK*-space. The paranorm r of Z is given by $r(z) = \inf \{p(x) + q(y) : z = x + y, x \in X, y \in Y\}, ([8], \text{Section 13.4}).$

Theorem 3.1. Let X and Y be FK-spaces, Z = X + Y. Then $G(Z) \supseteq G(X) + G(Y)$ for $G = \sigma S, \sigma W, \sigma F \text{ or } \sigma B$.

Proof. First
$$G = \sigma S$$
. Let $x \in \sigma S(X)$, $y \in \sigma S(Y)$. Then $p(x - \frac{1}{r} \sum_{p=1}^{r} x^{(p)}) \to 0$, $q(y - \frac{1}{r} \sum_{p=1}^{r} y^{(p)}) \to 0$. Hence $r\left(z - \frac{1}{r} \sum_{p=1}^{r} z^{(p)}\right) = r\left((x + y) - \frac{1}{r} \sum_{p=1}^{r} (x^{(p)} + y^{(p)})\right)$
 $= \inf\left\{p\left(x - \frac{1}{r} \sum_{p=1}^{r} x^{(p)}\right) + q\left(y - \frac{1}{r} \sum_{p=1}^{r} y^{(p)}\right) : z = x + y, x \in X, y \in Y\right\}$
 $\leq p(x - \frac{1}{r} \sum_{p=1}^{r} x^{(p)}) + q(y - \frac{1}{r} \sum_{p=1}^{r} y^{(p)}) \to 0$,

and so $z = x + y \in \sigma S$.

$$G = \sigma W. \text{ Let } x \in \sigma W(X), \ y \in \sigma W(Y) \text{ and } f \in Z'. \text{ Then } f \mid_X \in X', \ f \mid_Y \in Y'. \text{ Hence}$$
$$f(z) = f(x) + f(y) = \frac{1}{r} \sum_{p=1}^r \sum_{j=1}^p x_j f(\delta^j) + \frac{1}{r} \sum_{p=1}^r \sum_{j=1}^p y_j f(\delta^j) = \frac{1}{r} \sum_{p=1}^r \sum_{j=1}^p (x_j + y_j) f(\delta^j) = \frac{1}{r} \sum_{p=1}^r \sum_{j=1}^p z_j f(\delta^j).$$

The proofs for $G = \sigma F$ or $G = \sigma B$ are similar.

Let $\{X^n\}_{n=1}^{\infty}$ be a sequence of FK-spaces. p_n the paranorm of X^n and $\{q_{nk}\}_{k=1}^{\infty}$ be the seminorms of X^n . Let $Y = \bigcap_{n=1}^{\infty} X^n$. It is well known that Y is an FK-space with paranorm $q = \sum_{n=1}^{\infty} \frac{p_n}{2^n(1+p_n)}$ and seminorms $\{q_{nk}\}_{k=1}^{\infty}$, ([10], 11.3.3).

Theorem 3.2. Let $\{X^n\}_{n=1}^{\infty}$ be a sequence of FK-spaces and $Y = \bigcap_{n=1}^{\infty} X^n$. Then $G(Y) = \bigcap_{n=1}^{\infty} G(X^n)$ for $G = \sigma S, \sigma W, \sigma F$ or σB .

Proof. For each $n, G(Y) \subseteq G(X^n)$ by [4], hence $G(Y) \subseteq \bigcap_{n=1}^{\infty} G(X^n)$ for $G = \sigma S, \sigma W, \sigma F$ or σB . To prove the reverse containment we need to consider each case separately.

Let $z \in \bigcap_{n=1}^{\infty} \sigma S(X^n)$. Then $q_{nk}(z - \frac{1}{r} \sum_{p=1}^{r} z^{(p)}) \to 0$ for each fixed *n* and *k*, but this are the seminorms for *Y*. Hence $\frac{1}{r} \sum_{p=1}^{r} z^{(p)} - z \to 0$, which implies $z \in \sigma S(Y)$.

Let $z \in \bigcap_{n=1}^{\infty} \sigma W(X^n)$ and $f \in Y'$. By ([8], 7.2.16), $f = \sum_{i=1}^{l} f_i$, where $f_i \in (X^i)'$. Since $f_i(\frac{1}{r}\sum_{p=1}^{r} z^{(p)}) \to f(z)$ for i = 1, 2, 3, ..., l, $f_i(\frac{1}{r}\sum_{p=1}^{r} z^{(p)}) \to f(z)$. Thus $z \in \sigma W(Y)$. The proof for $E = \sigma F$ is similar. Let $z \in \bigcap_{n=1}^{\infty} \sigma B(X^n)$. Then for any fixed l and m, $q_{lm}(\frac{1}{r}\sum_{p=1}^{r} z^{(p)}) \leq K_{lm}$ for all n. Hence $z \in \sigma B(Y)$. **Definition 3.3.** An *FK*-space *X* containing ϕ_1 is said to belong to the class O_{σ} or to be an O_{σ} -space if $\sigma W \supset X \cap \sigma_{\infty}$.

Theorem 3.4. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of O_{σ} -spaces. Then $Y = \bigcap_{n=1}^{\infty} X_n$ is an O_{σ} -space.

Proof. Let $x \in Y \cap \sigma_{\infty}$. Then $x \in \sigma_{\infty}$ and $x \in X_n$ for all n = 1, 2, 3, ... Since X_n is an O_{σ} -space, $x \in \sigma W(X_n)$. Hence $x \in \bigcap_n \sigma W(X_n) = \sigma W(\bigcap_n X_n)$ by Theorem 3.2.

We get the following theorem by the definition O_{σ} -space.

Theorem 3.5. An O_{σ} -space is Cesàro conull.

Theorem 3.6. Let $X \subset Y$ with X closed in Y. Then X is O_{σ} -space if Y is.

Proof. X and Y have the same topology.

Theorem 3.7. Let $X \supset \phi_1$ be a weakly sequential complete FK-space. Then X is an O_{σ} -space.

Proof. Let $f \in X'$. Since $f |_{\sigma_0} \in \sigma'_0$ and $\sigma'_0 = h$, [2], then $\{f(\delta^j)\} \in h$. Let $x \in \sigma_\infty \cap X$. Since $\sum_{j=1}^k x_j f(\delta^j) = \sum_{j=1}^{k-1} \frac{s_j}{j} j f(\delta^j) + \frac{s_k}{k} k f(\delta^k)$ by Abel identity and $f(\delta^j) \in h$ then $f(\frac{1}{n} \sum_{k=1}^n e^{(k)}) = \frac{1}{n} \sum_{k=1}^n \sum_{j=1}^k x_j f(\delta^j)$ is convergent. Since X is an FK-space and weakly complete then $\frac{1}{n} \sum_{k=1}^n e^{(k)}$ has weak limit $x \in \sigma_\infty \cap X$ i.e. $x \in \sigma W(X)$.

Theorem 3.8. Every weakly sequential complete FK-space is Cesáro conull.

Remark. Let $\sigma_{\infty} \subset X$. Then X need not be O_{σ} -space.

Since σ_c is closed in σ_{∞} and σ_c is not Cesàro conull then σ_{∞} is not Cesàro conull, [5]; and it is not O_{σ} -space either by Theorem 3.5.

References

- M. Buntinas, Convergent and bounded Cesàro sections in *FK* spaces. *Math. Z.*, **121** (1971), pp. 191–200.
- [2] G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier coefficients, I. *Math. Z.*, **118** (1970), pp. 93–102.
- [3] G. Goes, Summen Von *FK*-Raumen, Funktionale Abschniltskonvergenz und Umkehrsatze. *Tohoku Math. Journ.*, **26** (1974), pp. 487–504.
- [4] I. Dagadur, On Some Subspaces of an FK-space. Math. Commun., 7(1) (2002), pp. 15–20.
- [5] H.G. Ince, Cesàro Conull FK-spaces. Demonstratio Mathematica, 1 (2000), pp. 109–121.
- [6] H.G. Ince, Cesàro wedge and weak Cesàro wedge FK-spaces. Czechoslovak Math. J., 52(127) 1 (2002), pp. 141–154.
- [7] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcell Dekker, I, New York and Basel 1981.

- [8] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill 1978.
- [9] A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.
- [10] A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
- [11] K. Zeller, Theorie der Limitierungsverfahren, Berlin-Heidelberg-New York 1958.