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Abstract

In this paper we give some characterizations in connection (weak) Cesàro wedge and
(strongly) Cesàro conull for Montel and reflexive FK-spaces and we show that subspaces
σS and σW are closely related to (strong) Cesàro conullity. We also study the combinations
of distinguished subsets.
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1 Introduction

Let w denote the space of all real or complex-valued sequence. An FK-space is a locally convex
vector subspace of w which is also a Fréchet space (complete linear metric ) with continuous
coordinates. A BK-space a normed FK-space. The basic properties of such spaces can be found
in [9] , [10] and [11] .

By m, c0 we denote the spaces of all bounded sequences,null sequences, respectively. These
are FK-spaces under ‖x‖ = sup

n

|xn|. By lp, (1 ≤ p < ∞) and cs we shall denote the space of

all absolutely p-summable sequences and convergent series, respectively. The sequences spaces

h =

x ∈ w : lim

j
xj = 0, and

∞∑
j=1

j
∣∣�xj

∣∣ < ∞

 ,

q =

x ∈ w : sup

j

∣∣xj

∣∣ < ∞ and
∞∑

j=1

j
∣∣�2xj

∣∣ < ∞

 ,
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σ0 =
{

x ∈ w : lim
n

∣∣∣∣∣1

n

n∑
k=1

xk

∣∣∣∣∣ = 0

}
,

σc =
{

x ∈ w : lim
n

1

n

n∑
k=1

xk exists

}
,

and

σ∞ =
{

x ∈ w : sup
n

∣∣∣∣∣1

n

n∑
k=1

xk

∣∣∣∣∣ < ∞
}

are FK-spaces with the norms

‖x‖h =
∞∑

j=1

j
∣∣�xj

∣∣ + sup
j

∣∣xj

∣∣ ,

‖x‖ q =
∞∑

j=1

j
∣∣�2xj

∣∣ + sup
j

∣∣xj

∣∣ ,

‖x‖σ∞ = sup
n

∣∣∣∣∣1

n

n∑
k=1

xk

∣∣∣∣∣
respectively, where �xj = xj − xj+1, �

2xj = �xj − �xj+1, [1], [2] .
Throughout the paper e denotes the sequence of ones, (1, 1, . . . , 1, . . .); δj , ( j = 1, 2, . . .),

the sequence (0, 0, . . . , 0, 1, 0, . . .)with the one in the j−th position. Letφ := l.hull
{
δk : k ∈ N

}
and φ1 = φ ∪ {e}. The topological dual of X is denoted by X′. The space is said to have AD if φ is
dense inX and anFK-spaceX is said to haveAK (respectivelyσK), ifX ⊃ φ and for eachx ∈ X

,x(n) → x (respectively 1
n

n∑
k=1

x(k) → x) in X, where x(n) =
n∑

k=1
xkδ

k = (x1, x2, . . . , xn, 0, . . .) .

Every AK-space is a σK-space, [1] .

Let X be an FK-space containing φ. Then

Xf = {{
f

(
δk

) } : f ∈ X′ }
,

Xβ =
{

x :
∞∑

k=1

xkyk exists for every y ∈ X

}
.

In addition, let X be an FK-space and z ∈ w then z−1.X = {x ∈ w : z.x ∈ X} is an FK-
space, where z.x = (zkxk), [9] .

An FK-space containing φ is called Cesàro wedge space if 1
n

n∑
k=1

e(k) → 0 in X, and weak

Cesàro wedge space if 1
n

n∑
k=1

e(k) → 0 (weakly) in X,where e(k) =
k∑

j=1
δj , [6] .

Also, an FK-space containing φ1 is called strongly Cesàro conull space if 1
n

n∑
k=1

e(k) → e in

X, and Cesàro conull space if 1
n

n∑
k=1

e(k) → e (weakly) in X, [5] .
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We recall some important subspaces of an FK-space introduced by Goes in [3].
Let X be an FK-space containing φ. Then

σW = σW (X) =
{

x : 1

n

n∑
k=1

x(k) → x (weakly) in X

}

=

x : f (x) = lim

n

1

n

n∑
k=1

k∑
j=1

xjf (δj ), for all f ∈ X′


 ,

σS = σS (X) =
{

x : 1

n

n∑
k=1

x(k) → x in X

}

=

x : x = lim

n

1

n

n∑
k=1

k∑
j=1

xjδ
j


 ,

σB+ = σB+ (X) =
{

x :
{

1

n

n∑
k=1

x(k)

}
is bounded in X

}
,

σF+ = σF+ (X) =

x : lim

n

1

n

n∑
k=1

k∑
j=1

xjf
(
δj

)
exists for all f ∈ X′


 .

Also σF = σF+ ∩X, σB = σB+ ∩X. An FK-space is a σK-space (respectively SσW -space,
σF -space, σB-space) if X = σS (respectively X = σW , X = σF , X = σB) [1].

It is well known that for an FK-space X

φ ⊂ σS ⊂ σW ⊂ σF ⊂ σB ⊂ X.

Let A = (aij ) be an infinite matrix. The matrixA may be considered as a linear transformation

of sequences x = (xk) by the formula yi =
∞∑

j=1
aijxj , (i = 1, 2, 3, . . .). The sequence

{
aij

}∞
j=1

is called i-th row of A and is denoted by ri, (i = 1, 2, 3, . . .); similary, the j-th column of the
matrix A,

{
aij

}∞
i=1 is denoted by kj , (j = 1, 2, 3, . . .).

For an FK-space (E, u) we consider the summability domain EA := {x ∈ w : Ax ∈ E} .

ThenEA is anFK- space under the seminormspi = |xi | , (i = 1, 2, . . .) , hi(x) = sup
m

∣∣∣∣∣
m∑

j=1
aijxj

∣∣∣∣∣ ,
(i = 1, 2, . . .) and (uoA)(x) = u(Ax), [9] .

2 Distinguished subspace (σS) σW and (Strong) Cesàro Conullity

We show that subspaces σW and σS are closely related to Cesàro conullity and strong Cesàro
conullity of the FK-space X.

Theorem 2.1. Let X be an FK-space containing φ and z be a sequence. Then z ∈ σW if and
only if z−1.X is Cesàro conull space.
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Proof. Let f ∈ (z−1.X)
′
. Then f (x) =

∞∑
k=1

αkxk + g(z.x), with α ∈ φ, g ∈ X
′
, ( [9]

4.4.10). Thus f (e − 1
n

n∑
k=1

e(k)) = 1
n

n∑
k=1

∞∑
j=k+1

αj + g(z − 1
n

n∑
k=1

k∑
j=1

zj δ
j ). Since α ∈ φ, we

have 1
n

n∑
k=1

∞∑
j=k+1

αj → 0. Hence f (e − 1
n

n∑
k=1

e(k)) → 0 for each f ∈ (z−1.X)
′

if and only if

g(z − 1
n

n∑
k=1

k∑
j=1

zj δ
j ) → 0. The result now follows immediately. �

Theorem 2.2. Let X be an FK-space containing φ. Then e ∈ σW if and only if X is Cesàro
conull.

Proof. Taking z = e in Theorem 2.1., we get the proof. �

Theorem 2.3. Let (X, q) be an FK-space containing φ and let z be a sequence. Then z ∈ σS

if and only if z−1. X is strongly Cesàro conull space.

Proof. z−1.X is an FK-space with p ∪ h where pi(x) = |xi | and h(x) = q(z.x) ([9], 4.3.6).

Since pi(e − 1
n

n∑
k=1

e(k)) = i
n

→ 0, (i < n) and h(e − 1
n

n∑
k=1

e(k)) = q(z − 1
n

n∑
k=1

z(k)), then z−1.X

is strongly Cesàro conull if and only if z ∈ σS. �

Theorem 2.4. Let X be an FK-space containing φ. Then e ∈ σS if and only if X is strongly
Cesàro conull.

Proof. Taking z = e in Theorem 2.3, we get the result. �

The following theorems collect some applications to summability domain EA.

Theorem 2.5. Let E be an FK-space and A is a matrix such that EA ⊃ φ1. Then EA is Cesàro

conull space if and only if g(Ae) = lim
r

1
r

r∑
p=1

p∑
j=1

g(kj ) for each g ∈ E
′
.

Proof. Necessity: Let f := g ◦ A for g ∈ E
′
. So f ∈ E

′
A by ( [9] , 4.4.2 ). Then f (e −

1
r

r∑
p=1

e(p)) = (g ◦ A)(e − 1
r

r∑
p=1

e(p)) = g(Ae − 1
r

r∑
p=1

p∑
j=1

kj ) = g(Ae) = 1
r

r∑
p=1

p∑
j=1

g(kj ). Hence

g(Ae) = lim
r

1
r

r∑
p=1

p∑
j=1

g(kj ) for each g ∈ E
′
by hyphothesis.

Sufficiency: Let f ∈ E
′
A. Then f (x) =

∞∑
k=1

αkxk + g(Ax),for each α ∈ w
β

A, g ∈ E
′

by ( [9] , 4.4.6 ). So we get f (e − 1
r

r∑
p=1

e(p)) = 1
r

r∑
p=1

∞∑
j=p+1

αj + g(Ae − 1
r

r∑
p=1

p∑
j=1

kj ). Since

α ∈ w
β

A ⊂ E
β

A ⊂ {e}β = cs and by hyphothesis then EA is Cesàro conull. �

Theorem 2.6. Let z ∈ w, E be an FK-space and A be a matrix such that EA ⊃ φ i.e. the
columns of A belong to E. Then the following conditions are equivalent:

1. z ∈ σW,
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2. A.z − 1
r

r∑
p=1

Az(p) → 0 weakly in E i.e.g ( A.z − 1
r

r∑
p=1

Az(p) ) → 0 for each g ∈ E′,

3. EA.z is Cesàro conull space,

4. g(A.z) = lim
r

1
r

r∑
p=1

p∑
j=1

zjg(kj ) for each g ∈ E′,

where A.z = (ankzk).

Proof. Since z−1.EA = EA.z by Theorem 2.1 we have (1) ⇔ (3). To prove (2) ⇔ (3);

let B := A.z. Then EB is Cesàro conull space if and only if g(Be) = lim
r

1
r

r∑
p=1

g(Be(p)) by

Theorem 2.5. Since Be = (
∞∑

j=1
bij ) = (

∞∑
j=1

aij zj ) = A.z, (Bep)i = (
p∑

j=1
bij )i = (

p∑
j=1

aij zj )i and

Bep =
p∑

j=1
kjzj = A.z(p) then the proof is clear. By Az(p) =

p∑
j=1

kjzj , one can have (2) ⇔ (4).

�

Theorem 2.7. Let z ∈ w, E be an FK-space and A be a matrix such that EA ⊃ φ i.e. the
columns of A belong to E. Then the following conditions are equivalent:

1. z ∈ σS,

2. Az − 1
r

r∑
p=1

Az(p) → 0 in E ,

3. EA.z is strongly Cesàro conull space,

4. A.z = lim
r

1
r

r∑
p=1

p∑
j=1

zjk
j .

Proof. Since z−1.EA = EA.z by Theorem 2.3 we get ( i) ⇔ (iii). To prove (ii) ⇔ (iv), it

suffices to observe Az(p) =
p∑

j=1
kjzj . (i) �⇒ (ii); Since z = lim

r

1
r

r∑
p=1

z(p) and A : EA → E

is continuous by [9] , then A.z = lim
r

1
r

r∑
p=1

Az(p). ( ii) �⇒ (i); Since (wA, p ∪ h) is an σK-

space with pn(x) = |xn|, hn(x) = sup
m

∣∣∣∣ m∑
k=1

ankxk

∣∣∣∣ by ( [9] , 4.3.8 ) then pn(z − 1
r

r∑
p=1

z(p)) → 0,

hn(z− 1
r

r∑
p=1

z(p)) → 0. Hence z ∈ σS if q(A( z− 1
r

r∑
p=1

z(p))) → 0, where q is typical seminorm

of E by ( [9] , 4.3.12 ). But this is Az − 1
r

r∑
p=1

Az(p) → 0 in E. �

Before giving the following theorems we recall that a Fréchet space E is called (reflexive)
Montel whenever the bounded subsets of E are (weakly) compact.

Theorem 2.8. Let E be Montel FK-space. Then the following conditions are equivalent:

1. EA is a weak Cesàro wedge (respectively Cesàro conull) space,
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2. EA is a Cesàro wedge (respectively strongly Cesàro conull) space,

3. h ⊂ EA and ri ∈ σ0, i = 1, 2, 3, . . .(respectively q ⊂ EA).

Proof. (i) �⇒ (ii); Since EA is a weak Cesàro wedge (respectively Cesàro conull) space
then h ⊂ EA, ri ∈ σ0, i = 1, 2, 3, . . . (respectively q ⊂ EA) and A : h → E(respectively
A : q → E) is weakly compact by ( [6] , Theorem 5.3),( respectively [5] , Theorem 6.2). Let
B be bounded subset in h (respectively in q). Then A(B) is weakly relatively compact and
then weakly bounded in E. Since E is Montel space and A(B) is bounded in E then A(B) is
relatively compact in E. Thus A : h → E (respectively A : q → E) is compact and so EA is
a Cesàro wedge (respectively strongly Cesàro conull) space by ([6], Theorem 5.1), (respectively
[5] , Theorem 6.1).

(ii) �⇒ (iii); By ( [6] ,Theorem 5.1), ([5], Theorem 6.1).
(iii) �⇒ (i); Let B be bounded subset in h (respectively q). Since the inclucion mapping

I : h → EA (respectively I : q → EA) is continuous by hypothesis then I (B) is bounded in
EA. On the other hand, because of A : EA → E is continuous, A(B) is bounded in E. Since
E is Montel and every Montel space is reflexive then A(B) is relatively compact in E [7] and
then A : h → E (respectively A : q → E) is weakly compact. Hence by hypothesis and ([6] ,

Theorem 5.3), (respectively [5] , Theorem 6.2) the proof is obtained. �

In particular Theorem 2.8 holds when E = w.

Theorem 2.9. A Montel FK-space is a Cesàro wedge space if and only if it contains h; and it
is a strongly Cesàro conull space if and only if it contains q.

Proof. Taking A = I in Theorem 2.8 we get the proof. �

Theorem 2.10. Let E be reflexive FK-space. Then the following conditions are equivalent:

1. EA is a weak Cesàro wedge (respectively Cesàro conull) space,

2. h ⊂ EA and ri ∈ σ0, i = 1, 2, 3, . . .(respectively q ⊂ EA).

Proof. This is just Theorem 2.8. �

In particular Theorem 2.10 holds when E = lp, (p > 1).

Theorem 2.11. A reflexive FK-space is a weak Cesàro wedge space if and only if it contains h;
and it is a Cesàro conull space if and only if it contains q.

Proof. Taking A = I in Theorem 2.10 we get the proof. �

3 Combinations of Distinguished Subsets and Cesàro Conullity

Let X and Y be FK-spaces, X with paranorm p and Y with paranorm q. Then Z = X + Y

with the unrestricted inductive limit topology is an FK-space. The paranorm r of Z is given by
r(z) = inf {p(x) + q(y) : z = x + y, x ∈ X, y ∈ Y }, ([8], Section 13.4 ).
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Theorem 3.1. Let X and Y be FK-spaces, Z = X + Y . Then G(Z) ⊇ G(X) + G(Y) for
G = σS, σW, σF or σB.

Proof. First G = σS. Let x ∈ σS(X), y ∈ σS(Y ). Then p(x − 1
r

r∑
p=1

x(p)) → 0, q(y −

1
r

r∑
p=1

y(p)) → 0. Hence r

(
z − 1

r

r∑
p=1

z(p)

)
= r

(
(x + y) − 1

r

r∑
p=1

(x(p) + y(p))

)

= inf

{
p

(
x − 1

r

r∑
p=1

x(p)

)
+ q

(
y − 1

r

r∑
p=1

y(p)

)
: z = x + y, x ∈ X, y ∈ Y

}

≤ p(x − 1

r

r∑
p=1

x(p)) + q(y − 1

r

r∑
p=1

y(p)) → 0,

and so z = x + y ∈ σS.

G = σW. Let x ∈ σW(X), y ∈ σW(Y ) and f ∈ Z′. Then f |X∈ X′, f |Y ∈ Y ′. Hence

f (z) = f (x) + f (y) = 1
r

r∑
p=1

p∑
j=1

xjf (δj ) + 1
r

r∑
p=1

p∑
j=1

yjf (δj ) = 1
r

r∑
p=1

p∑
j=1

(xj + yj )f (δj ) =
1
r

r∑
p=1

p∑
j=1

zjf (δj ).

The proofs for G = σF or G = σB are similar.
Let {Xn}∞n=1 be a sequence of FK-spaces. pn the paranorm of Xn and {qnk}∞k=1 be the

seminorms of Xn. Let Y =
∞⋂

n=1
Xn. It is well known that Y is an FK-space with paranorm

q =
∞∑

n=1

pn

2n(1+pn)
and seminorms {qnk}∞k=1 , ( [10] , 11.3.3). �

Theorem 3.2. Let {Xn}∞n=1 be a sequence of FK-spaces and Y =
∞⋂

n=1
Xn. Then G(Y) =

∞⋂
n=1

G(Xn) for G = σS, σW, σF or σB.

Proof. For each n, G(Y ) ⊆ G(Xn) by [4] , hence G(Y) ⊆
∞⋂

n=1
G(Xn) for G = σS, σW, σF or

σB. To prove the reverse containment we need to consider each case separately.

Let z ∈
∞⋂

n=1
σS(Xn). Then qnk(z − 1

r

r∑
p=1

z(p)) → 0 for each fixed n and k, but this are the

seminorms for Y. Hence 1
r

r∑
p=1

z(p) − z → 0,which implies z ∈ σS(Y ).

Let z ∈
∞⋂

n=1
σW(Xn) and f ∈ Y

′
. By ( [8] , 7.2.16), f =

l∑
i=1

fi , where fi ∈ (Xi)
′
. Since

fi(
1
r

r∑
p=1

z(p)) → f (z) for i = 1, 2, 3, . . . , l, fi(
1
r

r∑
p=1

z(p)) → f (z). Thus z ∈ σW(Y ).

The proof for E = σF is similar.

Let z ∈
∞⋂

n=1
σB(Xn). Then for any fixed l and m, qlm( 1

r

r∑
p=1

z(p)) ≤ Klm for all n. Hence

z ∈ σB(Y ). �
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Definition 3.3. An FK-space X containing φ1 is said to belong to the class Oσ or to be an
Oσ -space if σW ⊃ X ∩ σ∞.

Theorem 3.4. Let {Xn}∞n=1 be a sequence of Oσ -spaces. Then Y =
∞⋂

n=1
Xn is an Oσ -space.

Proof. Let x ∈ Y ∩ σ∞. Then x ∈ σ∞ and x ∈ Xn for all n = 1, 2, 3, . . .. Since Xn is an
Oσ -space , x ∈ σW(Xn). Hence x ∈ ⋂

n

σW(Xn) = σW(
⋂
n

Xn) by Theorem 3.2. �

We get the following theorem by the definition Oσ -space.

Theorem 3.5. An Oσ -space is Cesàro conull.

Theorem 3.6. Let X ⊂ Y with X closed in Y . Then X is Oσ -space if Y is.

Proof. X and Y have the same topology. �

Theorem 3.7. Let X ⊃ φ1 be a weakly sequential complete FK-space. Then X is an Oσ -space.

Proof. Let f ∈ X
′
. Since f |σ0∈ σ

′
0 and σ

′
0 = h, [2] , then

{
f

(
δj

) } ∈ h. Let x ∈ σ∞∩X. Since
k∑

j=1
xjf (δj ) =

k−1∑
j=1

sj

j
jf (δj ) + sk

k
kf (δk) by Abel identity and f

(
δj

) ∈ h then f ( 1
n

n∑
k=1

e(k)) =

1
n

n∑
k=1

k∑
j=1

xjf
(
δj

)
is convergent. Since X is an FK-space and weakly complete then 1

n

n∑
k=1

e(k)

has weak limit x ∈ σ∞ ∩ X i.e x ∈ σW(X). �

Theorem 3.8. Every weakly sequential complete FK-space is Cesáro conull.

Remark. Let σ∞ ⊂ X. Then X need not be Oσ -space.

Since σc is closed in σ∞ and σc is not Cesàro conull then σ∞ is not Cesàro conull, [5] ;and it
is not Oσ -space either by Theorem 3.5.
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