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Abstract

In this paper, we prove that there is the unique common fixed poimt bfg if
T is generalized f,g)—contractive and botkiT, f) and(T,g) are weakly compatible
in a metric spac¢E,d). We also establish several common fixed point theorems for
generalized f,g)—nonexpansive mappings in a linear norm spiac&Ve apply these
theorems to derive some results on the existence of common points from the set of best
approximations. Our results develop and complement the various known results in the
existing literatures.
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1 Introduction and Preliminaries

Let K be a nonempty subset of a metric spéEed) andT a mapping fronK to E. We
shall denote the closure &f by K, the boundary oK by 0K, and all positive integer b,
and the set of fixed points df, {x € K;x=Tx}, by F(T). When{x,} is a sequence i&,
thenx, — x(respectivelyx, — x)will denote strong (respectively, weak) convergence of the
sequencéx,} to x.

A mappingT : K — E is called an f,g)—contractionif there exist® < k < 1 such that
d(Tx Ty) <kd(fx,gy) forallx,y € K. If k=1, thenT is called( f,g)—nonexpansivef g=
f , in the above inequalityl is said to be arf —contraction (respectivel\f,—nonexpansive
mapping). A poini € K is a coincidence point (respectively, common fixed point) ahd
T if f(x) = Tx (respectivelyx = f(x) = Tx). The set of coincidence points éfandT is
denoted bYC(f,T). The pair(f,T) is called to be
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(i) compatible[6] if fxn, Tx, € K andr!im d(T X, fTx) = 0 whenever{x,} is a se-
guence such thdntm TX = r!im fx, =t for somet in K;

(if) weakly compatibleéf T(C(f,T)) c K and f(C(f,T)) C K such thatfTx=T fx
wheneverx € C(f,T). Suppose thaE is compact metric space and bothand f are
continuous self-mapping, therf,T) compatible equivalent t¢f, T) weakly compatible
[6, Theorem?2.2,Corollary 2.3].

LetK be a nonempty closed convex subset of a normed $pademappingf : K — K
is affineif K is convex andf (kx+ (1—k)y) = kfx+ (1—Kk)fyfor all x,y € K and allk €
[0,1]. A subseK of a norm space is calledq—starshapedwith q € K if kx4 (1—k)ge K
for all xe K and allk € [0,1]. LetT be a mapping form a—starshaped subskt of a
normed spack into itself. T is calledg—affineif T (kx+ (1—k)q) = kT x+ (1—k)q for all
x € K and allk € [0,1]. Itis easy to see that T is g—affine, thenTq=q.

Let K be ag—starshaped subset of a normed spaandT, f two mappings fronkK
to itself. Ttéen(T, f) is calledCy-commuting1] if fTx=T fxfor all x e Cy(f,T), where
Cq(f,T)= {C(f,Tk);0<k< 1} andTx= (1—-k)g+KTx Clearly,Cq—commuting maps
are weakly compatible but not conversely in general. R-subcommuting and R-subweakly
commuting maps ar€;-commuting but the converse does not hold in general. For more
detail, see [1].

During the last four decades, several invariant approximation results have been obtained
by many mathematicians[1,3-8,14-16]. Recently, in particular, with the introduction of non-
commuting maps to this area, Shahzad [16] and Hussain and Khan [4] further proved several
invariant approximation results in more general space.

The main aims of this paper is to prove that there is the unique common fixed point
of T, f,gif T is generalized f,g)—contractive and botiT, f) and(T,g) are weakly com-
patible in a metric spacée,d). As application, we will prove the common fixed point
theorems for the generaliz¢dl, g)—nonexpansive weakly compatible mappings. We apply
these theorems to derive some results on the existence of common fixed points from the
set of best approximations. Our results, on the one hand, extend and develop the work of
Hussain and Jungck [3], Al-Thagafi and Shahzad [1] and Jungck [7], on the other hand,
provide generalizations and complementarities of the recent work of Jungck and Sessa [5]
and Shahzad [14-16].

2 Common fixed point theorems

LetK be a nonempty subset of a metric spéeed) andT, f, g be three mappings dk. In
this section, we will study the common fixed point theorems of a generdlizeg—contraction
and a generalize(f ,g) —onexpansive mapping. Now, we introduce the concepts of the gen-
eralized( f,g)—contraction.

A mappingT : K — E is called ageneralized f,g)—contractionif there exists a con-
stantr € [0,1) such that

d(Tx Ty) <rmax{(d(fx,gy)),d(Tx, fx),d(Ty,gy),

%[d(fx,Ty) +d(Txgy)]} forall x,y € K.

(2.1)
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It is obvious that the generalizé¢dl, g)—contraction contains the , g) —contraction and
the Kannan’s mapping (a mappifgis a Kannan's mapping d(Tx Ty) < %[d(x,Tx) +
d(Ty,y) for all x,y € K)( see Refs. Reich [11, 12]) as the special cases. Furthermore, the
contraction is its main subclass also (whes g =1 in (f,g)—contraction).

Example 1.LetE = (—o, +) be endowed with the Euclidean metd(x,y) = [x—Y|.
Assumed thak = [0,1] and f,g: K — K are given byf (x) = g(x) = $x? for all x € [0, 1].
LetT:K — K be deflned byT x= 2x2, x € K. ThenT is a generalizedf, g)—contraction
with a constant = 3 2 andC(f,T) =F(g,T) = {0} = F(T)NF(f)NF(g). In fact,

d(Tx Ty) = Ix — Y| = 2—y?|) = Zd(fx,ay).

2
3

Example 2. Assumed thak is as Example 1 an& = [0,1]. Let f,g: K — E be

respectively given by (x) =x—1, g(x) =x2— 1. If T : K — E is defined byl x= 3 (x?+1),
thenT is a generalizedf,g)—contraction with a constamt= % Indeed, ify < x, then

d(Tx Ty) = 2 —y?) < 1(x—y?) = 1d(fx,gy) sincex? < x. If x <y, then

w

1o 1 _

1 1
<Z4Z = _Z ==
< 4+4 2 |x 1 (x +1)\ 2d(fx,Tx)

2

NI =

d(TxTy) = 2 (P —3) <

since the functiop(x) = 4+4x2— zXis nonincreasing if0, 1] and min ¢(X) = % Clearly,

x€[0,1]
C(f,T)=0,C(g9, T)=0andF(T)NF(f)NnF(g) =0.
Example 3. Assumed thatE,K are as Example 2 anfl,g: K — E are given by
f(x) = 2%, x€ K and byg(x) = 2x? for x € K, respectively. LeT x= 3x?, x€ K. ThenT is

a generalizedf, g)—contraction with a constamt= % In fact, ify < x, thend(Tx Ty) =

30 —y?) < 2(x—y?) = zd(fx.gy); if x <y, thend(Tx Ty) = 3(y* —x*) < 3y* < 3y* =
312y? — 3y?| = 3d(gy, Ty). Clearly, T(K) = [0, 3], g(K) = [0,2] and f(K) = [0,2] and
C(f,T)=C(g,T) ={0} =F(T)NF(f)NF(g).

Next, we give our main results which assu@#$,T) =C(g, T) #0andF(T)NF(f)N

F(g) # 0.

Theorem 2.1Let K be a subset of a metric spa¢g,d), and T, f,g: K — E three
mappings with (K) ¢ f(K) ~ g(K). Suppose thaf (K) is complete, and is a generalized
(f,g)—contraction with a constant € [0,1). Then neitheC(T, f) nor C(T,qg) is empty.
Moreover, if, in addition, bothiT, f) and(T,g) are weakly compatible, theh(T) NF(f)N
F(g) is singleton.

Proof. Let xp be any fixed element iK. SinceT (K) C f(K)ng(K), there is a sequence
{Xn} in K such that

TXon = fXoni1 @ndT Xon 1 = gxens2 foralln > 0.
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It follows from Eq.(2.1) that

d(Txon+1, TXon) <rmax{d(fXxoni1,9%n),d(T Xons1, TXont1),d(T Xon, O%on),
1
> [d(fXont1, Txon) +d(TXonr1,9%n)] }
=rmax{d(T xon, TXn—1),d(TXen+1, TXon), d(T Xon, T Xon-1),

1
> [d(T Xon, TXen) +d(TXens1, TXon—1)]}

1
<rmax{d(T Xn, TXen_1), > [d(T %en+1, TXon) +d(T Xon, TXon—1)] }-
And

d(TXn—1, Txon) <rmax{d(fxon_1,9%n),d(TXen_1, FXon—1),d(T Xon,I%en),
1
5 [d(fXon—1, TXon) +d(T Xen—1,9%n)]}
=rmax{d(Txon—2, TXon—1),d(TXon—1, TXon—2),d(T Xon, T Xon—1),

1
5 [d(Txon—2, TXon) +d(TXn—1, TXn-1)]}

1
<rmax{d(TXn—2, TXn-1), 5 [d(TXn-2, TXn-1) +d(TXn_1, TXn)] }.

3l
Thus we have proved that for al> O,

d(TX41, Tx) < 1d(TXa-1, Txa) < 1d(Txe, TXo).
Hence for alm>n > 0, notingr € [0,1), a constant,

m-1 n

1 .
r'd(Tx, Tx) <
Zn (Tx, Txo) < 7

m-1
d(Txn, Tx) < 5 d(TX, Txipa) < d(Tx1, Txo).
i=n

[
Then
d(T Xm, TX) — 0, asm,n — oo,

That is,{Tx,} is a Cauchy sequence. Sin€¢K) is complete, thed T x,} converges to
somez € T(K), and by the definition of T x,}, we obtain that

lim gxon = z= lim fxpny1.
Nn—oo n—oo

. . R T
Hence there exists, v € K such thatfu = z= gv (sinceT (K) C f(K) g(K)).
Let € be any positive number arid a large enough natural number such that for any
n> N,

d(z,g9%n) < €,d(TXy,2) < €,d(fXons1,2) <E.
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It follows from Eq.(2.1)that

d(Tu,z) —€ <d(Tu,Tx)
<rmax{d(fu,gxen),d(Tu, fu),d(T Xn, g%en),

%[d(fu,szn)+d(TU,9X2n)]}

<rmax{d(z,g%n),d(Tu,2),d(TXn, 2) +d(z,9%n),

%[d(zsz”) +d(Tu,2) +d(z,9%n)] }

<rmaxe,d(Tu,z),?2¢, %[28+d(Tu, 2)]}.

Case 12re > d(Tu,z) —€. Then3e > d(Tu,2).
Case 2rd(Tu,z) > d(Tu,z) —«. ThenlL >d(Tu,z).

_r -
Case 3r(e+ d(T;’Z))) > d(Tu,z) —e. Thende > d(Tu,2).

Sinceg is a arbitrary positive numbef,u= z
We have proved thate C(T, f). Similarly, we also have € C(T,g) # 0. (i) is proved.
Next we prove (ii). AJT, f) and(T,qg) are weakly compatible anbu= fu=z=Tv=
gV, then
gz=gTv=Tgv=Tz=T fu=fTu= fz

We claim thatzis a common fixed point of, f,g. Suppose # Tz then
d(z T2 =d(Tu, T2 <rmax{(d(fu,g2)),d(Tu, fu),d(Tzg2),
2d(fu.T2) +d(Tu g2}

<rmax{(d(z,T2),0,0, %[d(z,Tz) +d(z,T2]}
<rd(z,T2).

L . T T . .
Which is a contradiction. Therefoec F(T) F(f) F(g). If there exists another point
v € K such tha = Tv= gv= fv, then using similar to above argumentation we get

d(zv)=d(TzTv) <rmax{(d(fzgv)),d(Tz fz),d(Tv,gv),
22T +d(Tzgv))
<rd(zv).
Hencez = v. The proof is complete. O

Corollary 2.2 LetK be_a subset of a metric spa¢g,d), andT, f,g: K — K three
mappings witlr (K) ¢ f(K) = g(K). Suppose thal (K) is complete, and is a generalized
(f,g)—contraction with a constant € [0,1). Then neithelC(T, f) nor C(T,g) is empty.
Moreover, if, in addition, bothiT, f) and(T,g) are weakly compatible, theh(T) NF(f)N

F(g) is singleton.
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Corollary 2.3 LetK be a subset of a metric spa@e, d), andT, f,g: K — K three map-
pings. Assumed that is a (f,g)-contractive mapping with a constant (0,1). Suppose
that T (K) ¢ f(K)ng(K) andT (K) is complete, the@(T, f) # 0 andC(T,g) # 0. More-
over, if both(T, f) and(T,g) are weakly compatible, theh(T) NF (f) NF(g) is singleton.

Theorem 2.1 and Corollary 2.2 and 2.3 contains the Banach Contraction Principle as a
special casd(= g =1, an identic operator). It generalizes Hussain and Jungck [3, Theorem
2.1], Al-Thagafi and Shahzad [1, Theorem 2.1]. It also extends Shahzad [15, Lemma 2.1]
and Pant [8, Theorem 1].

LetK be a nonemptyg—starshaped subset of a normed sgacA mappingT : K — K

is called to begeneralized f,g)—onexpansivé vx,y € K,

T Tyl < max{|fx— gyl d(x [Tx.). day [Ty.q), y
21d(x,Ty.q]) + d(gy [Tx))]} 2

As an application of the above results of the generaliZed)—contraction, we obtain the
following results in a normed spaée

Theorem 2.4Let K be a nonempty—starshaped subset of a normed sp&;eand
T, f,g: K — K be three continuous mappings afde a generalizedf,g)—onexpansive
mapping. Suppose that botf, f) and (T,g) are Cq—commuting, and botli andg are

g—affine. IfT(K) is a compact subset dfK) ng(K), thenF(T)NF(f)NF(g) # 0.

Proof. Let {k,} be a strictly decreasing sequencg@nl) such thairjlim k, = 1. For eacm,
let T, be a mapping defined by

Tix=(1—kn)g+knTx VX € K.

Then, for alln, To(K) C f(K)Ng(K) by g—starshapedness Kfandg—affiness off andg.
Thus for allx,y € K,

[ TaX = Tyl <kn|[TX—TY]|
<knmax{|| fx—gyl[,d(fx, [Txq]),d(gy,[Ty,q]),

%[d(fx, [Ty.]) +d(gy. [Txd))]}

<knmax{| fx—gyll, || fx—Tax|, [lgy— Tnyl|,
1
é[ll fx—Tay|l + |9y — TnX|[]},

thenT,, f, g satisfy Eq.(2.2) with a coefficiemt= k, € (0,1). Note thafT, f) and(T,g) are
Cq—commuting, and’ andg areq—affine, theng € F(f)NF(g) [1]. If Tix= fx=gx, we
have

TafXx=(1—Kn)q+ kT fX= (1 —kn) fq+knfTX= f((1—kn)q+kTX) = fTox.

Namely, (Tn, f) is weakly compatible. Similarly(T,,g) is weakly compatible also. As
T(K) is compact, thefl (K) is complete [9, 13]. It follows from Corollary 2.2 that for each
n, there exists the uniqueg € K such that

Xn = X0 = 0% = knT X1+ (1—kn)Q. (2.3)
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It follows from the compactness af(K) that there exist$x, } C {xn} andz € K such that

TXy — z€ T(K).
Thus, noticing Eq.(2.3),
X = FXn = 0% = ko TXy + (1Ko )q — 2Z(i — ). (2.4)

The continuity ofT andf andgimply Tx, — Tzandfx, — fzandgx, — gz respectively.
Hence, noting Eq.(2.4), we get
z=Tz=fz=9z

This finishes the proof. O]

Corollary 2.5 Let K be a nonempty—starshaped subset of a normed sp&geand
T : K — K a nonexpansive mapping addK) c K. If T(K) is compact subset ¢, then
F(T)#0.

Theorem 2.4 generalizes and develops Hussain and Jungck [3, Theorem 2.2(i)], Al-
Thagafi and Shahzad [1, Theorem 2.2 ], Jungck [7, Theorem 3.1] and Shahzad [15, Lemma
2.2].

Theorem 2.6Let K be a nhonempty—starshaped subset of a Banach sp&;eand
T, f,g: K — K three weakly continuous mappings and dnloe a generalizedf,g)—onexpansive

mapping. Assumed that(K) is weakly compact subset 6fK) N g(K). If both (T, f) and
(T,g) areCq—commuting, and ,g are g—affine, therF (T) NF(f) NF(g) # 0.

Proof. Let {k,} be a strictly decreasing sequence(@1) such thatrllim ko, = 1. By the

proof of Theorem 2.4, there is a common approximate fixed sequfgec T(K) of
f,g,T. Sincef,g,T are weakly continuous anti(K) is weakly compact, then the weak
clusterz of {x,} is a common fixed point of,g, T. The proof is completed. O

Theorem 2.6 extends, develops and complements Hussain and Jungck [3, Theorem
2.2(ii),2.3], Al-Thagafi and Shahzad [1, Theorem 2.4 ] and Shahzad [14, Theorem 3 ].
Corollary 2.7 LetK be a nonempty weakly compact agpdstarshaped subset of a Banach
spaceE, T, f,g: K — K three weakly continuous mappings such fRg) c f(K)Nng(K).
Assumed thafT, f) and (T,g) are Cq—commuting, andf and g are g—affine. IfT is

(f,g9)—nonexpansive mapping, thefT)NF(f)NF(g) # 0.

3 Invariant approximations results

In this section, several invariant approximations results, a further application of the main
results in section 2, are obtained. Recall that thégét) = {x € K;d(x,u) = d(u,K)} is
called the set of best approximationsute E out of K, whered(u,K) = ig&d(y, u) [13].

y

Theorem 3.1LetK be a subset of a normed spdéeu € E, andT, f,g: K — K three
continuous mappings. Assumed tRatu) is nonemptyg—starshapedT (P (u)) C Pk (u)
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is compact,f (P« (u)) Ng(Pk (u)) = Pk(u), f andg are g—affine onPx (u). Suppose€T, )
and(T,g) are C;—commuting and satisfy for ak € P« (u) U {u},

[ fx—qul| ify=u,
ITx=Tyl| < ¢ max{[|fx—gyll,d(fx,[Tx a]),d(gy, [Ty.q]), (31)
31d(fx [Ty.d)) +d(ay [Txd)]}  ifyePc(u).

ThenPx (u) NF(T)NF(f)NF(g) # 0.

Proof. SinceT (P« (u)) C Pk (u) = f(Pk (u))Ng(Pk (u)) is compact, the results follows from
Theorem 2.4K = P (u)). O

Theorem 3.2LetK be a subset of a Banach spdéeu € E, andT, f,g: K — K three
weakly continuous mappings. Assume thatu) is nonemptyg—starshapedf (P« (u)) N
(P (u)) = P (u), T(P«(u)) C Pk (u) is weakly compactf andg are g—affine onPx (u).
Suppose€T, f) and(T,g) are Cq—commuting and satisfy Eq.(3.1) for ale P (u) U {u}.
ThenP (u)NF(T)NF(f)NF(g) # 0.

Proof. SinceT (P« (u)) C Px(u) = f(Pk(u)) Ng(Pk (u)) is weakly compact, the results fol-
lows from Theorem 2.6 witlK = P« (u). O

The following Theorem 3.3 develops, improves and complements Hussain and Jungck
[3, Theorem 2.8-2.11], Al-Thagafi and Shahzad [1, Theorem 4.3, 3.3]. We further note that
in our results the following two assumptions are not used:

(a)f — T is demiclosed;

(b) E satisfies Opial’s condition.

Theorem 3.3LetK be a nonempty subset of a Banach spaegth T (0K) C K andu €
F(T)NF(f)NF(g), whereT, f,g: K — K are three weakly continuous mappings. Assume
that P« (u) is nonemptyy—starshaped and weakly compa€&tpPk (u)) Ng(Pk (u)) = Pk (u),

f and g are g—affine. Suppose thdf, f) and (T,g) are Cq—commuting orPx (u) and
satisfy Eq.(3.1) for alk € P« (u) U{u}. ThenPk (u)NF(T)NF(f)NF(g) # 0.

Proof. Letx € Px(u). Then||x—u|| =d(u,K) and for allk € (0,1),
lkx+ (L —k)u—ul| = k|[x—u|| < d(u,K).
Thus{kx+ (1-k)u;k € (0,1)} NK =0, and sax € 0K N K. SinceT (dK) C K, it follows
thatTx € K. Sincefx,gxe R(u) andT, f,g satisfy Eq.(3.1) o’k (u) U {u}, we have
ITx=ulf = [Tx=Tul| < [[fx— ful| = [|fx—ul| = d(u,K)

and hencd x € P (u). ThereforeT (P (u)) C Pk (u). SincePx (u) is weakly compact, then

Pk (u) is closed [13, 2]. Thud (P« (u)) C Pk(u) = f(Pk(u)) Ng(P«k(u)). Now the result
follows from Theorem 2.6 withk = Pk (u). O

Theorem 3.4LetK be a nonempty subset of a normed spBogith T (0K NK) C K
andue F(T)NF(f)NF(g), whereT, f,g: K — K are three continuous mappings. Assume
that P« (u) is nonemptyg—starshaped and compadt(P« (u)) Ng(Pk(u)) = Pk (u), f and
g are g—affine onPx (u). Suppose thafT, f) and (T, g) are C;—commuting orP (u) and
satisfy EQ.(3.1) for alk € P (u) U{u}. ThenP (u)NF(T)NF(f)NF(g) # 0.
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Proof. To obtain the result, use an argument similar to that in Theorem 3.3 and apply The-
orem 2.6 instead of Theorem 2.4. O
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