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Abstract

Sufficient conditions are established for oscillation of systems of neutral hyper-
bolic differential equations with continuous distributed deviating arguments. The ap-
proach used is to reduce the multi-dimensional oscillation problems to one-dimensional

problems for functional differential inequalities. The main results are illustrated by
two examples.
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1 Introduction

In 2000, Li and Cui[1] studied the oscillation of the following systems of neutral hyperbolic
differential equations
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(X,t) € Qx[0,0)=G,i=1,2,...,m.
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In this paper, we study the oscillation of systems of neutral hyperbolic differential equa-
tions with continuous distributed deviating arguments of the form
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m | Z b
—Px U =S S dikn(Xt,E)uk(X n(t,&))da(&), (1.1)
k=1h=1 &
(xt) e Qx[0,0)=G,i=12....,m
In (1.1) and(E
AUi(X,t) Zr 1

It is obvious that systerfE) is a particular case of system (1.1). Therefore, our work
extends the results of [1].

Throughout this paper, suppose that the following conditions hold:

Q is a bounded domain iR" with a piecewise smooth boundai(,

(E )
o* u, (X Y ,i=12,....,m and the integral is Stieltjes integral.

(A1) pr € C*([0,%0);[0,e0)), & € C([0,%0); [0,0)), &k} € C([0,%0); R),aij (t) > 0, and

Aj(t) = 1r§r?i§nm{an,- (t)— k_li#' | auij (t) | } >0,

(A2) pr,Tj € C([0,0);R),pr(t) < t,Tj(t) <t, andlimi_pr(t) = liMi_eTj(t) = 0,5 =
1,2---,5]=12,...,d;

(A3) Pi € C(G, [0700»7 Pi (t) = minxeﬁ Pi (X?t)v p(t) = minlSiSm{ Pi (t)}a I = 17 27 s, My
(A4) dikn € C(G x [a,b];R), giin (x,t,€) > 0, and

Giin (t,&) = mMingjin (X,t, &), Gin(t, &) = max| gikn(X,t,€) |,
xXeQ XeQ

Qn(t,€) :12? {QMh (t,&)— Z }

i=1,2...mk=12...mh=12....1;

(A5) gn € C([0,») x [a,b];R),on(t,&) <t,& € [a,b], andgn(t,§) is a nondecreasing func-
tion with respect ta andg, respectively,

lim min t =o h=12...1;
t"wﬁe[&b]{gh( )E)} 007 ) &y 9

(AB) o€ C([a,b];R) andao(&) is nondecreasing ié.
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Consider the following boundary conditions:
ou; (X, t)
ON

whereN is the unit exterior normal vector @ and fi(x,t) is a nonnegative continuous
function ondQ x [0,),i =1,2,...,m, and

+ fi(x,H)ui(x,t) =0, (x,t) € 0Q x [0,00),i =1,2,...,m, (1.2)

Ui(x,t) =0,(x,t) €0Q x [0,00),i=1,2,....,m. (1.3)

Definition 1. The vector functionu(x,t) = {ug(X,t), uz(X,t),...,un(x,t)}" is said to be
a solution of the problem (1.1), (1.2) (or (1.1), (1.3)) if it satisfies (1.1 Q x [0, o)
and boundary condition (1.2) (or (1.3)).

Definition 2. The vector solutiomi(x,t) = {uz(X,t),Uz(X,t), ..., um(x,t)}T of the prob-
lem (1.1),(1.2) (or (1.1),(1.3)) is said to be oscillatory in the don@ig Q x [0, ) if at
least one of its nontrivial component is oscillatory@ Otherwise, the vector solution
u(x,t) is said to be nonoscillatory.

2 Main Results

Theorem 2.1. If the neutral differential inequality with continuous distributed deviating
arguments

" |Zb

(Vo+ 5wV +pOVO+ S T EV@E)eE <0 @)

h=1 &

has no eventually positive solutions, then every solution of the problem (1.1),(1.2) is oscil-
latory in G.

Proof : The proof of Theorem 2.1 is similar to that of Theorem 2.1 in [1] and we omit
it.

Theorem 2.2. Suppose that

S
< <1 .
O_r;Ur(t)_l (2.2)
If there exist sombp € {1,2,...,1} such that
ZwZy s
L D)1 S won(sD)|doE)ds= e bz0 @3

Then every solution of the problem (1.1), (1.2) is oscillatorin

Proof : We prove that the inequality (2.1) has no eventually positive solutions if the
conditions of Theorem 2.2 hold. Suppose thét) is an eventually positive solution of
the inequality (2.1), then there exists a numiaer to such thav (p,(t)) > 0,V (gn(t,§)) >
Or=12---,ssh=12,....1, fort >t;. Thus we have

s Y
(VO+ 3k OV W) + eV tHIE <0tz (24)

r=1
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LetY(t) =V (t) + T, i ()V(pr(t)). We haveY(t) > 0andY'(t) < 0fort >t;. Hence
Y'(t) >0fort > 1.
It is obvious thatY (t) > V(t), thus

S S

Y(t) <V(t)+ lelr(t)Y(pr(t)) <V(H)+

that is <
- 3 KON VO, (2.5)
Combining (2.4) and (2.5), we get
Zy
0>Y'(t)+ . Qno(tEV (0n(t,€))da (&)
Zy s
Y0+ QrtE[1— Y MOt €)Y (gn(t,€)do(E), t >t (2.6)
a r=1
Noting that

Y(t) >0, Y(t) >0, t >z, im min gn,(t,€) = o,
t—wgclab]
we obtain that there exist > t1,t, > t; such that

Y(m) >0, gn(t,&) >m, t > 1y, & € [a,b].

Therefore,
Y(Oho(t,€)) =Y (m), t>1tp, & € [a,b]. (2.7)
Combining (2.6) and (2.7), we get
Zy
YO +Y(m)  On(t,E)[L ;w Ono(,€))]da(€) <0, t > to. (2.8)
Integrating (2.8) front, tot, we have
Z.Z,
YO -Y(t)+Ym  Qu(sEl ;u Oro(5.€))]d0(€)ds < 0,
that is z.2, Y'( ) Y'()
to) =Y (t
. Qho (s,&)[1 Zw Oho(S:€))]do(&)ds W (2.9)

By takingt — o, (2.9) leads to a contradiction with (2.3). The proof of Theorem 2.2 is
complete.

Theorem 2.3. Suppose that the condition (2.2) holds and there exist $prag(1,2,...,1}

such that% exists. If there exists a functiagpe C([tg,»), [0,)), to > 0, such that
Z z ,
) {w<s> (88| 1- 3 elon(8)|do) - W}ds: ®, (2.10)
to a = AY(s)9p,(s,a)

then every solution of the problem (1.1), (1.2) is oscillatorin
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Proof : We prove that the inequality (2.1) has no eventually positive solutions if the
conditions of Theorem 2.3 hold. Suppose thdt) is an eventually positive solution of
the inequality (2.1), as in the proof of Theorem 2.2, we have (2.6). Notingth@t¢) is
nondecreasing ig, it is easy to see thaj,(t,a) < gn(t,§),& € [a,b], thus from (2.6) we
have

Z,

Y (1) +Y (On(t, ) Qho<tz[ zlur ghotz>>]do<a><0t>t1 (2.11)

Let

WY (t)
W(t) = 2V p>gy
R (CNCED R
then we easily g&t/(t) > 0,t > t;. From the condition of Theorem 2.3, there exi&tégn (t,a)))’
= Y'(Gn,(t,a))gy, (t,@). Using the fact tha" (t) < 0,Y'(t) > 0,t > t;, and the condition
(A5), we haved < Y'(t) < Y'(gh,(t,a)), gy, (t,@) > 0.t > ty. Therefore,

W (t) = YY) N POY'©)  WOY Q)Y (gh(t,2))gy (t,2)
a Y(gho(taa» Y(gho(t7a)) Yz(gho(taa))

_ YOy N POY'M)  WOYA()gh(ta)
Y(on(t,a)  Y(gn(t,@)  Y3(0ho(t,d))

WY Y2 _[Y Oy¥Og Gy ]2
~ Y(on(t,@)  4P(t)gp (t.a) Y (G (t,)) 2,/W(t)g, (t.)
< POy (t) n P2(t) >t (2.12)

Y(gn(t,a)  Ap(t)gy(ta)
Combining (2.11) and (2.12), we obtain

Z /
i do(E) - ”’2“2)} >t

LCES O T

Qhotz|: ZlUrghotE.)

Integrating both sides of (2.13) frotnto t, we have
Z Zy
WO =Wt~ {0e) " Ouls8)|[1- 3 o (s8)|dof@) - 0 as

ty

Passing witht — o in (2.14) we have a contradiction with (2.10). The proof of Theorem
2.3 is complete.

Theorem 2.4. Suppose that the condition (2.2) holds. If

Z . s
t) {1_;“,(0] dt = co. (2.15)

Then every solution of the problem (1.1), (1.2) is oscillatorin
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Proof : Similar to the proof of Theorem 2.2, we have
Y (t) + pt)V(t) <Ot >ty (2.16)

The remainder of the proof is similar to that of Theorem 2.2 and we omit it.
Next, we study the oscillation of the problem (1.1), (1.3).
It is well known that the smallest eigenvalag of the Dirichlet problem

{ Aw(X)+0w(x) =0in Q,
w(X) =00n0Q,

is positive and the corresponding eigenfunciidr) is positive inQ (see [2]).

Theorem 2.5. If the differential inequality

s "

d
(Vi+ 3wV ie0) ) +a0 3 AV ()
=

=
I Zy

+(@oat) +pt)V(H)+ > Qn(t,&)V(gn(t,€))do(§) <0 (2.17)
h=1 @&

has no eventually positive solutions, then every solution of the problem (1.1), (1.3) is oscil-
latory in G.

Proof : The proof of Theorem 2.5 is similar to that of Theorem 3.1 in [1] and we omit

Using the above results, it is easy to obtain the following conclusions.

Theorem 2.6. If all conditions of Theorem 2.2 hold, then every solution of the problem
(1.1),(1.3) is oscillatory ir.

Theorem 2.7. If all conditions of Theorem 2.3 hold, then every solution of the problem
(1.1),(1.3) is oscillatory irG.

Theorem 2.8. If all conditions of Theorem 2.4 hold, then every solution of the problem
(1.1),(1.3) is oscillatory irG.

Theorem 2.9. Suppose that the condition (2.2) holds and there exist §gm€1,2,...,d}
such that 7

Ajo(t) [1_ ipf(Tjo(t))] dt = w0, to > 0. (2.18)

to
Then every solution of the problem (1.1), (1.3) is oscillatorin

Theorem 2.10. Suppose that the condition (2.2) holds. If
Z

S

a(t) [1_ s

r=1

00

M(t)} dt = oo, (2.19)

to

then every solution of the problem (1.1), (1.3) is oscillatorgin
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3 Examples

In this section, we give two illustrative examples. Obviously, the results in [1] were failed
in these examples.

Example 3.1. Consider the system of neutral hyperbolic differential equations

2
% |:U1(X,t)—|—%ul(x t—T1 )+3ul( 2):| :3AU1(X,t)
+%Azu1(nx,t -3 +Bua(xg _%) —ui(xt)
— CBuy(xt+E)dE—  up(xt+E)dE,
—TT —TT
2 3.1
2 [u2<x,t> + Buat 19+ Bu(xt - 5)} — Lau(x) G2
3m , 5 3n
3Aup (Xt — Aup (Xt — =57) — Up(X,t
+Z];(g> 2) 3 T 2) 2(7)
- ul(X7t+E)dE* 3u2(xat+z)dza
-7 —T
( (X,t) € (0,11) x [0, 0),
with boundary condition
0 0 .
a—xui(O,t) = a—xui(n,t) =0,t>0,i=12. (3.2)

—
—
~—

Heren=1 m=2s=2d=11=1 w(t) =5, (t)= %, p1(t) =t—T11,p2
t— %, a(t) =3, an(t) = 1@1,61121('[) =1 ul)= t 371-[ pa(xt) = % Oua(Xt,&) =
3, quaa(xt.E) = 1, 01(t,8) = t+&, ap(t) = 3, axn(t) = 3, aa(t) = 3, pa(xt) =

n

1,
R11(X1,8) = 1, G21(X,t,€) =, a= —T, b= —5. It is easy to see tha,(t,§) = 2,

STl =3+3=_g and
Z.Z, ) Z wZ 2y
L usB|1- S nsE)|dids- " Sdeds— o

Hence all the conditions of Theorem 2.2 are fulfilled. Then every solution of the
problem (3.1), (3.2) is oscillatory if0, 1) x [0,). In fact, uj(x,t) = cosxsint, ux(X,t) =
cosxcog is such a solution.

On the other hand, we easily see tpét) = % and

z 5 Z o

o) [1—i;ui<t>]dt= -

so the conditions of Theorem 2.4 are fulfilled. Then using Theorem 2.4, we also obtain that
every solution of the problem (3.1), (3.2) is oscillatory( @ 11) x [0, o).
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Example 3.2. Consider the system of neutral hyperbolic equations

2

2 {ul(x t)+% Uz (x ,t—n)+%u1(x,t—772[)] = 3Aup(x,t)
Auy(

3n 3 2
Ug (Xt — + Aup(X,t — — sup(x,t
1 2 ) 2( 7 2 ) 301 1(xt)

Z _n _m
- 23u1(x,t+E)dE— 2uz(x,tJrE) dg,
—Tt —Tt
2 3.3
% [uz(x,t) + %uz(x,t —T) + %uz(x,t -] = 2Aup(x,t) (3.3)
3my , 7 T
A t— Al t— -3 t
+ tzjl(j(é 5)+ 5 UZ(%(’,g 5) = 3u2(xt)
- ul(X7t+E)dE* 3u2(xat+z)dza
7T[ p—
\ (X,t) € (0,11) x [0, 00),
with boundary condition
ui(0,t) = ui(Lt) =0,t > 0,i=1,2. (3.4)
— T p2( ) =t-

Heren=1m=2s=2d=11=1u(t) = % Hz( ) = 2 ,P1(t) =
5, a(t) =3, am(t) = %7 arz(t) = 1, Tat) =t — 7, pa(x t) % Ou1a(X,t,€) =
Gu2a(X,t,€) =1, g1 (t,&) =t+&, a(t) = %,3211('[) =Lap(t) = 2, P2(X,t) = 3, g212(X, t E)
=1, qe2a(x,t,€) =3, a= —T b= —7. Itis easy to see tha@:(t,&) =2, 37 4i(t) = %
Let Y(t) = v/t. Then all the conditions of Theorem 2.7 are fulfilled. Thus all solutions
of the problem (3.3), (3.4) are oscillatory {i0,1) x [0,). In fact, such a solution is
uz(X,t) = sinxcogt, ux(x,t) = sinxsint.

On the other hand, we easily see thg) = %, p(t) = %,Al(t) = %, thus the conditions

of Theorem 2.8, Theorem 2.9 and Theorem 2.10 are fulfilled. Using these theorems we also
obtain that every solution of the problem (3.3), (3.4) is oscillator§0irr) x [0, ).
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