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Abstract

Sufficient conditions are established for oscillation of systems of neutral hyper-
bolic differential equations with continuous distributed deviating arguments. The ap-
proach used is to reduce the multi-dimensional oscillation problems to one-dimensional
problems for functional differential inequalities. The main results are illustrated by
two examples.
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1 Introduction

In 2000, Li and Cui[1] studied the oscillation of the following systems of neutral hyperbolic
differential equations

∂2

∂t2 [ui(x, t)+µ(t)ui(x, t−ρ)] = ai(t)∆ui(x, t)+
m

∑
k=1

d

∑
j=1

aik j(t)∆uk(x, t− τ j)

−pi(x, t)ui(x, t)−
m

∑
k=1

l

∑
h=1

Z b

a
qikh(x, t,ξ)uk(x,gh(t,ξ))dσ(ξ), (E)

(x, t) ∈Ω× [0,∞)≡G, i = 1,2, . . . ,m.
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In this paper, we study the oscillation of systems of neutral hyperbolic differential equa-
tions with continuous distributed deviating arguments of the form

∂2

∂t2

(
ui(x, t)+

s

∑
r=1

µr(t)ui(x,ρr(t))
)

= ai(t)∆ui(x, t)+
m

∑
k=1

d

∑
j=1

aik j(t)∆uk(x,τ j(t))

−pi(x, t)ui(x, t)−
m

∑
k=1

l

∑
h=1

Z b

a
qikh(x, t,ξ)uk(x,gh(t,ξ))dσ(ξ), (1.1)

(x, t) ∈Ω× [0,∞)≡G, i = 1,2, . . . ,m.

In (1.1) and(E), Ω is a bounded domain inRn with a piecewise smooth boundary∂Ω,

∆ui(x, t) = ∑n
r=1

∂2ui(x, t)
∂x2

r
, i = 1,2, . . . ,m, and the integral is Stieltjes integral.

It is obvious that system(E) is a particular case of system (1.1). Therefore, our work
extends the results of [1].

Throughout this paper, suppose that the following conditions hold:

(A1) µr ∈C2([0,∞); [0,∞)), ai ∈C([0,∞); [0,∞)),aik j ∈C([0,∞);R),aii j (t) > 0, and

A j(t) = min
1≤i≤m

{
aii j (t)−

m

∑
k=1,k6=i

| aki j(t) |
}

> 0,

i = 1,2, . . . ,m; j = 1,2, . . . ,d; r = 1,2, · · · ,s;

(A2) ρr ,τ j ∈ C([0,∞);R),ρr(t) ≤ t,τ j(t) ≤ t, and limt→∞ ρr(t) = limt→∞ τ j(t) = ∞, r =
1,2, · · · ,s; j = 1,2, . . . ,d;

(A3) pi ∈C(G; [0,∞)), pi(t) = minx∈Ω pi(x, t), p(t) = min1≤i≤m{pi(t)}, i = 1,2, . . . ,m;

(A4) qikh ∈C(G× [a,b];R),qiih(x, t,ξ) > 0, and

qiih(t,ξ) = min
x∈Ω

qiih(x, t,ξ),qikh(t,ξ) = max
x∈Ω

| qikh(x, t,ξ) |,

Qh(t,ξ) = min
1≤i≤m

{
qiih(t,ξ)−

m

∑
k=1,k6=i

qkih(t,ξ)
}
≥ 0,

i = 1,2, . . . ,m;k = 1,2, . . . ,m;h = 1,2, . . . , l ;

(A5) gh ∈C([0,∞)× [a,b];R),gh(t,ξ) ≤ t,ξ ∈ [a,b], andgh(t,ξ) is a nondecreasing func-
tion with respect tot andξ, respectively,

lim
t→∞

min
ξ∈[a,b]

{gh(t,ξ)}= ∞,h = 1,2, . . . , l ;

(A6) σ ∈C([a,b];R) andσ(ξ) is nondecreasing inξ.
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Oscillation Criteria for Systems of Neutral Hyperbolic Differential Equations 29

Consider the following boundary conditions:

∂ui(x, t)
∂N

+ fi(x, t)ui(x, t) = 0,(x, t) ∈ ∂Ω× [0,∞), i = 1,2, . . . ,m, (1.2)

whereN is the unit exterior normal vector to∂Ω and fi(x, t) is a nonnegative continuous
function on∂Ω× [0,∞), i = 1,2, . . . ,m, and

ui(x, t) = 0,(x, t) ∈ ∂Ω× [0,∞), i = 1,2, . . . ,m. (1.3)

Definition 1. The vector functionu(x, t) = {u1(x, t),u2(x, t), . . . ,um(x, t)}T is said to be
a solution of the problem (1.1), (1.2) (or (1.1), (1.3)) if it satisfies (1.1) inG = Ω× [0,∞)
and boundary condition (1.2) (or (1.3)).

Definition 2. The vector solutionu(x, t) = {u1(x, t),u2(x, t), . . . ,um(x, t)}T of the prob-
lem (1.1),(1.2) (or (1.1),(1.3)) is said to be oscillatory in the domainG = Ω× [0,∞) if at
least one of its nontrivial component is oscillatory inG. Otherwise, the vector solution
u(x, t) is said to be nonoscillatory.

2 Main Results

Theorem 2.1. If the neutral differential inequality with continuous distributed deviating
arguments

(
V(t)+

s

∑
r=1

µr(t)V(ρr(t))
)′′

+ p(t)V(t)+
l

∑
h=1

Z b

a
Qh(t,ξ)V(gh(t,ξ))dσ(ξ)≤ 0 (2.1)

has no eventually positive solutions, then every solution of the problem (1.1),(1.2) is oscil-
latory in G.

Proof : The proof of Theorem 2.1 is similar to that of Theorem 2.1 in [1] and we omit
it.

Theorem 2.2. Suppose that

0≤
s

∑
r=1

µr(t)≤ 1. (2.2)

If there exist someh0 ∈ {1,2, . . . , l} such that

Z ∞

t0

Z b

a
Qh0(s,ξ)

[
1−

s

∑
r=1

µr(gh0(s,ξ))
]
dσ(ξ)ds= ∞, t0 ≥ 0. (2.3)

Then every solution of the problem (1.1), (1.2) is oscillatory inG.

Proof : We prove that the inequality (2.1) has no eventually positive solutions if the
conditions of Theorem 2.2 hold. Suppose thatV(t) is an eventually positive solution of
the inequality (2.1), then there exists a numbert1≥ t0 such thatV(ρr(t)) > 0,V(gh(t,ξ)) >
0, r = 1,2, · · · ,s;h = 1,2, . . . , l , for t ≥ t1. Thus we have

(
V(t)+

s

∑
r=1

µr(t)V(ρr(t))
)′′

+
Z b

a
Qh0(t,ξ)V(gh0(t,ξ))dσ(ξ)≤ 0, t ≥ t1. (2.4)
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Let Y(t) = V(t)+ ∑s
r=1µr(t)V(ρr(t)). We haveY(t) > 0 andY

′′
(t) < 0 for t ≥ t1. Hence

Y
′
(t) > 0 for t ≥ t1.

It is obvious thatY(t)≥V(t), thus

Y(t)≤V(t)+
s

∑
r=1

µr(t)Y(ρr(t))≤V(t)+
s

∑
r=1

µr(t)Y(t), t ≥ t1,

that is

[1−
s

∑
r=1

µr(t)]Y(t)≤V(t). (2.5)

Combining (2.4) and (2.5), we get

0≥Y
′′
(t)+

Z b

a
Qh0(t,ξ)V(gh0(t,ξ))dσ(ξ)

≥Y
′′
(t)+

Z b

a
Qh0(t,ξ)[1−

s

∑
r=1

µr(gh0(t,ξ))]Y(gh0(t,ξ))dσ(ξ), t ≥ t1. (2.6)

Noting that
Y(t) > 0, Y

′
(t) > 0, t ≥ t1, lim

t→∞
min

ξ∈[a,b]
gh0(t,ξ) = ∞,

we obtain that there existm> t1, t2 ≥ t1 such that

Y(m) > 0, gh0(t,ξ) > m, t ≥ t2, ξ ∈ [a,b].

Therefore,
Y(gh0(t,ξ))≥Y(m), t ≥ t2, ξ ∈ [a,b]. (2.7)

Combining (2.6) and (2.7), we get

Y
′′
(t)+Y(m)

Z b

a
Qh0(t,ξ)[1−

s

∑
r=1

µr(gh0(t,ξ))]dσ(ξ)≤ 0, t ≥ t2. (2.8)

Integrating (2.8) fromt2 to t, we have

Y
′
(t)−Y

′
(t2)+Y(m)

Z t

t2

Z b

a
Qh0(s,ξ)[1−

s

∑
r=1

µr(gh0(s,ξ))]dσ(ξ)ds≤ 0,

that is Z t

t2

Z b

a
Qh0(s,ξ)[1−

s

∑
r=1

µr(gh0(s,ξ))]dσ(ξ)ds≤ Y
′
(t2)−Y

′
(t)

Y(m)
. (2.9)

By takingt → ∞, (2.9) leads to a contradiction with (2.3). The proof of Theorem 2.2 is
complete.

Theorem 2.3. Suppose that the condition (2.2) holds and there exist someh0 ∈ {1,2, . . . , l}
such that

dgh0(t,a)
dt exists. If there exists a functionψ ∈C1([t0,∞), [0,∞)), t0 ≥ 0, such that

Z ∞

t0

{
ψ(s)

Z b

a
Qh0(s,ξ)

[
1−

s

∑
r=1

µr(gh0(s,ξ))
]
dσ(ξ)− ψ′2(s)

4ψ(s)g′h0
(s,a)

}
ds= ∞, (2.10)

then every solution of the problem (1.1), (1.2) is oscillatory inG.
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Proof : We prove that the inequality (2.1) has no eventually positive solutions if the
conditions of Theorem 2.3 hold. Suppose thatV(t) is an eventually positive solution of
the inequality (2.1), as in the proof of Theorem 2.2, we have (2.6). Noting thatgh0(t,ξ) is
nondecreasing inξ, it is easy to see thatgh0(t,a) ≤ gh0(t,ξ),ξ ∈ [a,b], thus from (2.6) we
have

Y
′′
(t)+Y(gh0(t,a))

Z b

a
Qh0(t,ξ)

[
1−

s

∑
r=1

µr(gh0(t,ξ))
]
dσ(ξ)≤ 0, t ≥ t1. (2.11)

Let

W(t) =
ψ(t)Y

′
(t)

Y(gh0(t,a))
, t ≥ t1,

then we easily getW(t)> 0, t ≥ t1. From the condition of Theorem 2.3, there exists(Y(gh0(t,a)))
′

= Y
′
(gh0(t,a))g

′
h0

(t,a). Using the fact thatY
′′
(t) ≤ 0,Y

′
(t) > 0, t ≥ t1, and the condition

(A5), we have0 < Y
′
(t)≤Y

′
(gh0(t,a)),g

′
h0

(t,a)≥ 0, t ≥ t1. Therefore,

W
′
(t) =

ψ′
(t)Y

′
(t)

Y(gh0(t,a))
+

ψ(t)Y
′′
(t)

Y(gh0(t,a))
− ψ(t)Y

′
(t)Y

′
(gh0(t,a))g

′
h0

(t,a)
Y2(gh0(t,a))

≤ ψ′
(t)Y

′
(t)

Y(gh0(t,a))
+

ψ(t)Y
′′
(t)

Y(gh0(t,a))
− ψ(t)Y

′2(t)g
′
h0

(t,a)
Y2(gh0(t,a))

=
ψ(t)Y

′′
(t)

Y(gh0(t,a))
+

ψ′2(t)
4ψ(t)g′h0

(t,a)
−

[Y
′
(t)

√
ψ(t)g′h0

(t,a)

Y(gh0(t,a))
− ψ′

(t)

2
√

ψ(t)g′h0
(t,a)

]2

≤ ψ(t)Y
′′
(t)

Y(gh0(t,a))
+

ψ′2(t)
4ψ(t)g′h0

(t,a)
, t ≥ t1. (2.12)

Combining (2.11) and (2.12), we obtain

W
′
(t)≤−

{
ψ(t)

Z b

a
Qh0(t,ξ)

[
1−

s

∑
r=1

µr(gh0(t,ξ))
]
dσ(ξ)− ψ′2(t)

4ψ(t)g′h0
(t,a)

}
, t ≥ t1.

(2.13)
Integrating both sides of (2.13) fromt1 to t, we have

W(t)≤W(t1)−
Z t

t1

{
ψ(s)

Z b

a
Qh0(s,ξ)

[
1−

s

∑
r=1

µr(gh0(s,ξ))
]
dσ(ξ)− ψ′2(s)

4ψ(s)g′h0
(s,a)

}
ds.

(2.14)
Passing witht →∞ in (2.14) we have a contradiction with (2.10). The proof of Theorem

2.3 is complete.

Theorem 2.4. Suppose that the condition (2.2) holds. If
Z ∞

t0
p(t)

[
1−

s

∑
r=1

µr(t)
]
dt = ∞. (2.15)

Then every solution of the problem (1.1), (1.2) is oscillatory inG.
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Proof : Similar to the proof of Theorem 2.2, we have

Y
′′
(t)+ p(t)V(t)≤ 0, t ≥ t1. (2.16)

The remainder of the proof is similar to that of Theorem 2.2 and we omit it.
Next, we study the oscillation of the problem (1.1), (1.3).
It is well known that the smallest eigenvalueα0 of the Dirichlet problem

{
∆ω(x)+αω(x) = 0 in Ω,
ω(x) = 0 on ∂Ω,

is positive and the corresponding eigenfunctionϕ(x) is positive inΩ (see [2]).

Theorem 2.5. If the differential inequality

(
V(t)+

s

∑
r=1

µr(t)V(ρr(t))
)′′

+α0

d

∑
j=1

A j(t)V(τ j(t))

+(α0a(t)+ p(t))V(t)+
l

∑
h=1

Z b

a
Qh(t,ξ)V(gh(t,ξ))dσ(ξ)≤ 0 (2.17)

has no eventually positive solutions, then every solution of the problem (1.1), (1.3) is oscil-
latory in G.

Proof : The proof of Theorem 2.5 is similar to that of Theorem 3.1 in [1] and we omit
it.

Using the above results, it is easy to obtain the following conclusions.

Theorem 2.6. If all conditions of Theorem 2.2 hold, then every solution of the problem
(1.1),(1.3) is oscillatory inG.

Theorem 2.7. If all conditions of Theorem 2.3 hold, then every solution of the problem
(1.1),(1.3) is oscillatory inG.

Theorem 2.8. If all conditions of Theorem 2.4 hold, then every solution of the problem
(1.1),(1.3) is oscillatory inG.

Theorem 2.9.Suppose that the condition (2.2) holds and there exist somej0∈ {1,2, . . . ,d}
such that Z ∞

t0
A j0(t)

[
1−

s

∑
r=1

µr(τ j0(t))
]
dt = ∞, t0 ≥ 0. (2.18)

Then every solution of the problem (1.1), (1.3) is oscillatory inG.

Theorem 2.10.Suppose that the condition (2.2) holds. If

Z ∞

t0
a(t)

[
1−

s

∑
r=1

µr(t)
]
dt = ∞, (2.19)

then every solution of the problem (1.1), (1.3) is oscillatory inG.



Oscillation Criteria for Systems of Neutral Hyperbolic Differential Equations 33

3 Examples

In this section, we give two illustrative examples. Obviously, the results in [1] were failed
in these examples.

Example 3.1. Consider the system of neutral hyperbolic differential equations





∂2

∂t2

[
u1(x, t)+ 1

2u1(x, t−π)+ 1
3u1(x, t− π

2)
]

= 3∆u1(x, t)

+11
3 ∆u1(x, t− 3π

2 )+∆u2(x, t− 3π
2 )− 1

2u1(x, t)

−
Z − π

2

−π
3u1(x, t +ξ)dξ−

Z − π
2

−π
u2(x, t +ξ)dξ,

∂2

∂t2

[
u2(x, t)+ 1

2u2(x, t−π)+ 1
3u2(x, t− π

2)
]

= 1
2∆u2(x, t)

+3∆u1(x, t− 3π
2 )+ 5

3∆u2(x, t− 3π
2 )−u2(x, t)

−
Z − π

2

−π
u1(x, t +ξ)dξ−

Z − π
2

−π
3u2(x, t +ξ)dξ,

(x, t) ∈ (0,π)× [0,∞),

(3.1)

with boundary condition

∂
∂x

ui(0, t) =
∂
∂x

ui(π, t) = 0, t ≥ 0, i = 1,2. (3.2)

Heren = 1, m= 2, s= 2, d = 1, l = 1, µ1(t) = 1
2, µ2(t) = 1

3, ρ1(t) = t−π,ρ2(t) =

t− π
2, a1(t) = 3, a111(t) = 11

3 ,a121(t) = 1, τ1(t) = t− 3π
2 , p1(x, t) = 1

2, q111(x, t,ξ) =

3, q121(x, t,ξ) = 1, g1(t,ξ) = t + ξ, a2(t) = 1
2, a211(t) = 3, a221(t) = 5

3, p2(x, t) = 1,

q211(x, t,ξ) = 1, q221(x, t,ξ) =, a = −π, b = −π
2. It is easy to see thatQ1(t,ξ) = 2,

∑2
i=1µi(t) = 1

2 + 1
3 = 5

6, and

Z ∞

t0

Z b

a
Q1(s,ξ)

[
1−

2

∑
i=1

µi(g1(s,ξ))
]
dξds=

Z ∞

t0

Z −π/2

−π

1
3

dξds= ∞.

Hence all the conditions of Theorem 2.2 are fulfilled. Then every solution of the
problem (3.1), (3.2) is oscillatory in(0,π)× [0,∞). In fact,u1(x, t) = cosxsint,u2(x, t) =
cosxcost is such a solution.

On the other hand, we easily see thatp(t) = 1
2, and

Z ∞

t0
p(t)

[
1−

2

∑
i=1

µi(t)
]
dt =

Z ∞

t0

1
12

dt = ∞,

so the conditions of Theorem 2.4 are fulfilled. Then using Theorem 2.4, we also obtain that
every solution of the problem (3.1), (3.2) is oscillatory in(0,π)× [0,∞).



34 Weihong Sheng, Wei Nian Li

Example 3.2. Consider the system of neutral hyperbolic equations




∂2

∂t2

[
u1(x, t)+ 1

3u1(x, t−π)+ 1
2u1(x, t− π

2)
]

= 3∆u1(x, t)

+3
2∆u1(x, t− 3π

2 )+∆u2(x, t− 3π
2 )− 2

3u1(x, t)

−
Z − π

2

−π
3u1(x, t +ξ)dξ−

Z − π
2

−π
u2(x, t +ξ)dξ,

∂2

∂t2

[
u2(x, t)+ 1

3u2(x, t−π)+ 1
2u2(x, t− π

2)
]

= 2
3∆u2(x, t)

+∆u1(x, t− 3π
2 )+ 7

2∆u2(x, t− 3π
2 )−3u2(x, t)

−
Z − π

2

−π
u1(x, t +ξ)dξ−

Z − π
2

−π
3u2(x, t +ξ)dξ,

(x, t) ∈ (0,π)× [0,∞),

(3.3)

with boundary condition

ui(0, t) = ui(π, t) = 0, t ≥ 0, i = 1,2. (3.4)

Heren = 1,m= 2,s= 2,d = 1, l = 1,µ1(t) = 1
3,µ2(t) = 1

2,ρ1(t) = t−π,ρ2(t) = t−
π
2, a1(t) = 3, a111(t) = 3

2, a121(t) = 1, τ1(t) = t − 3π
2 , p1(x, t) = 2

3, q111(x, t,ξ) = 3,

q121(x, t,ξ)= 1, g1(t,ξ)= t+ξ, a2(t)= 2
3,a211(t)= 1,a221(t)= 7

2, p2(x, t)= 3, q211(x, t,ξ)

= 1, q221(x, t,ξ) = 3, a =−π, b =−π
2. It is easy to see thatQ1(t,ξ) = 2, ∑2

i=1µi(t) = 5
6.

Let ψ(t) =
√

t. Then all the conditions of Theorem 2.7 are fulfilled. Thus all solutions
of the problem (3.3), (3.4) are oscillatory in(0,π)× [0,∞). In fact, such a solution is
u1(x, t) = sinxcost,u2(x, t) = sinxsint.

On the other hand, we easily see thata(t) = 2
3, p(t) = 2

3,A1(t) = 1
2, thus the conditions

of Theorem 2.8, Theorem 2.9 and Theorem 2.10 are fulfilled. Using these theorems we also
obtain that every solution of the problem (3.3), (3.4) is oscillatory in(0,π)× [0,∞).
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