Communications in MathematicalAnalysis

Volume 1, Number 2, pp. 109–113, 2006

ISSN 0973-3841 © 2006 Research India Publications

Hahn-Banach Theorem in Generalized 2-Normed Spaces

Zofia Lewandowska[∗] Department of Mathematics, Pedagogical University, Arciszewskiego 22 b, Pl-76-200 Slupsk, Poland

Mohammad Sal Moslehian† Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran; Centre of Excellence in Analysis on Algebraic Structures (CEAAS),

Assieh Saadatpour Moghaddam‡

Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran; Banach Mathematical Research Group (BMRG), Mashhad, Iran

(Communicated by Sever Dragomir)

Abstract

In this paper we prove an extension Hahn-Banach theorem in the context of generalized 2-normed spaces.

AMS Subject Classification: Primary 46A70; Secondary 46A32, 46B20.

Keywords: Generalized 2-norm, bounded 2-linear operator, Hahn-Banach theorem.

1 Introduction

In [4] Z. Lewandowska introduced a generalization of Gähler 2-normed space (see [2]) as follows.

Definition 1.1. Let *X* and *Y* be real linear spaces. Denote by *D* a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets $D_x = \{y \in Y$; $(x, y) \in D\}$ and $D^y = \{x \in X$; $(x, y) \in D\}$ are linear subspaces of the spaces *Y* and *X*, respectively.

A function $\|.,\|: D \to [0,\infty)$ will be called a generalized 2-norm on *D* if it satisfies the following conditions:

[∗]E-mail: Lewandowscy@rene.com.pl

[†]E-mail: moslehian@ferdowsi.um.ac.ir

[‡]as_saadatpour@yahoo.com

- (1) $\|x, \alpha y\| = |\alpha| \cdot \|x, y\| = \| \alpha x, y\|$ for any real number α and all $(x, y) \in D$;
- (2) $\|x, y + z\| \le \|x, y\| + \|x, z\|$ for $x \in X, y, z \in Y$ with $(x, y), (x, z) \in D$;
- (3) $\|x + y, z\| \leq \|x, z\| + \|y, z\|$ for $x, y \in X, z \in Y$ with $(x, z), (y, z) \in D$.

The set *D* is called a 2-normed set. In particular, if $D = X \times Y$, the function $\| \dots \|$ is said to be a generalized 2-norm on $X \times Y$ and the pair $(X \times Y, \|\cdot\|, \cdot\|)$ is called a generalized 2-normed space. If $X = Y$, then the generalized 2-normed space $(X \times X, \|\cdot\|, \cdot\|)$ is denoted by $(X, \|\cdot\|, \cdot\|)$. In the case that $X = Y$, $D = D^{-1}$, where $D^{-1} = \{(y, x) : (x, y) \in D\}$, and $||x, y|| = ||y, x||$ for all $(x, y) \in D$, we call $\Vert \cdot, \cdot \Vert$ a generalized symmetric 2-norm and *D* a symmetric 2-normed set.

Recall that in Gähler definition of a 2-norm $||x, y|| = 0$ if and only if x and y are linearly dependent, and this is a crucial difference between Gähler's approach and Lewandowska's one.

Example 1.2. Let *X* be a real linear space having two seminorms $\| \cdot \|_1$ and $\| \cdot \|_2$. Then $(X, \| \cdot, \cdot \|)$ is a generalized 2-normed space with the 2-norm defined by

$$
||x, y|| = ||x||_1 \cdot ||y||_2; x, y \in X.
$$

Example 1.3. Let *X* be a real inner product space. Then *X* is a symmetric generalized 2-normed space under the 2-norm $\|x, y\| = | \langle x, y \rangle |$; for all $x, y \in X$.

Example 1.4. Suppose that *s* be the linear space of all sequences of real numbers. Put $||x, y|| =$ $\sum_{n=1}^{\infty} |x_n||y_n|$, where $x = \{x_n\}$, $y = \{y_n\} \in s$. Then $D = \{(x, y) \in s \times s : ||x, y|| < \infty\}$ is a *n*=1
symmetric 2-normed set and the function $\|.\,.\,.\|: D \to [0,\infty)$ is a generalized symmetric 2-norm on *D*.

A. G. White [7] defined and investigated the concept of bounded 2-linear functional from $X \rightarrow X$, where *X* denote a 2-normed space in the sense of Gähler. In [1], a 2-normed space $(L, \|.,.\|)$ was said to possess the property (p) if, for any subspace *M* of *L* with dim $M > 1$ and any bounded bilinear functional *f* defined on *M*, there is a bounded bilinear functional *F* on *L* which is an extension of *f* to*L*and has the same norm. In that paper, X. X. Cui proved that not all Gähler 2-normed spaces possess the property (p) and provided a necessary and sufficient condition for a bounded bilinear functional f defined on a subspace M of $(L, \|.,.\|)$ to be extendable to a norm preserving bounded bilinear functional on *L*. Later, authors of [3] introduced the notion of 2-normed complex linear spaces and established a Hahn-Banach extension theorem for complex linear 2-functionals.

In [5] Z. Lewandowska introduced the following definition of a bounded 2-linear operator (see also [6]):

Definition 1.5. Let *X* be a real linear space, $D \subseteq X \times X$ be a 2-normed set, *Y* a normed space. An operator $F: D \to Y$ is said to be 2-linear if it satisfies the following conditions:

- (i) $F(a+c, b+d) = F(a, b) + F(a, d) + F(c, b) + F(c, d)$ for all $a, b, c, d \in X$ such that $a, c ∈ D^b ∩ D^d$.
- (ii) $F(\alpha a, \beta b) = \alpha \cdot \beta \cdot F(a, b)$ for all $\alpha, \beta \in \mathbb{R}$ and all $(a, b) \in D$.

Definition 1.6. Let *X* be a real linear space, $D \subseteq X \times X$ be a 2-normed set, *Y* a normed space. A 2-linear operator $F: D \to Y$ is said to be bounded if there is a positive number K such that $||F(a, b)|| < K ||a, b||$; $(a, b) \in D$. Then the number $||F|| = \inf\{K > 0 : ||F(a, b)||$ $K \cdot ||a, b||$; $(a, b) \in D$ is called the norm of the 2-linear operator *F*.

Example 1.7. Consider $(X, \parallel, \cdot, \parallel)$ in the previous example and define $F: X \times X \to \mathbb{R}$ by $F(x, y) = \langle x, y \rangle$. Then *F* is a bounded 2-linear operator and $||F|| = 1$.

In this paper we aim to establish an extension Hahn-Banach theorem in the context of generalized 2-normed spaces.

2 Main Results

We are ready to proved our main result.

Theorem 2.1. *Let (X, ., .) be a generalized* 2*-normed space and M be a linear subspace of* $X \times X$ *. If* F_0 *is a real bounded* 2-linear functional on *M, then there exists a real bounded* 2-linear *extension* F *on* $X \times X$ *such that* $F(a, b) = F_0(a, b)$ *for all* $(a, b) \in M$ *and* $||F|| = ||F_0||$.

Proof. If $M = X \times X$ or $||F_0|| = 0$ then take $F = F_0$, otherwise without lose the generality assume that $||F_0|| = 1$. Consider the family A of all possible extensions of F_0 of norm one, i.e. the set of all pairs (G, L) where L is a linear subspace of $X \times X$ containing M and G is a bounded 2-linear operator $G: L \to \mathbb{R}$ such that $G(a, b) = F_0(a, b)$ for all $(a, b) \in M$ and $||G|| = 1$. Partially order A with \leq as follows: given $(G_1, L_1), (G_2, L_2) \in \mathcal{A}$, put $(G_1, L_1) \leq (G_2, L_2)$ if and only if G_2 is an extension of G_1 that is $L_1 \subseteq L_2$, $G_2(a, b) = G_1(a, b)$ for all $(a, b) \in L_1$ and $||G_2|| = ||G_1||$.

The family A is non-empty, because $(F_0, M) \in \mathcal{A}$. Let T be a linearly ordered subset of A. Define $\widetilde{L} = \bigcup_{\substack{L \subset \mathbb{R}^d}} L$. Clearly \widetilde{L} is a real linear subspace of $X \times X$ and contains *M*. Define $(G, L) ∈ T$

 \widetilde{G} : $\widetilde{L} \to \mathbb{R}$ by $\widetilde{G}(a, b) = G(a, b)$ where *G* is associated with some *L*, $(G, L) \in \mathcal{T}$, which contains (a, b) . The operator *G* is well-defined because, if both L_i and L_j contain (a, b) then $G_i(a, b) = G_j(a, b)$, since either $(G_i, L_i) \leq (G_j, L_j)$ or $(G_j, L_j) \leq (G_i, L_i)$. Notice that *G* is a bounded 2-linear operator on \tilde{L} that is an extension of every *G* and $\|\tilde{G}\|=1$. So the constructed pair (G, L) is hence an upper bound for the chain T . By using Zorn's Lemma there exists a maximal element $(F, L_m) \in \mathcal{A}$. To complete the proof it is enough to show that $L_m = X \times X$. Suppose by contrary that there exists (a_0, b_0) in $X \times X \setminus L_m$. Then consider the linear space $L' = L_m + \mathbb{R}(a_0, b_0) = \{(a + ta_0, b + t'b_0); (a, b) \in L_m \text{ and } t, t' \in \mathbb{R}\}.$ Define $F' : L' \to \mathbb{R}$ by

$$
F'(a + ta_0, b + t'b_0) = F(a, b) + tt'\gamma,
$$

where $(a, b) \in L_m$ and $\gamma \in \mathbb{R}$ will be chosen in such a way that $||F|| = 1$.

But $||F'|| = 1$ provided that

$$
|F(a,b) + tt'y| \le ||a + ta_0, b + t'b_0|| \tag{2.1}
$$

for all $(a, b) \in M$ and $\gamma \in \mathbb{R}$. Replace (a, b) by $(-ta, -t'b)$; where $t, t' \in \mathbb{R}$, and divide both sides of (1) by $|tt'|$. Then the requirement is that

$$
|F(a,b) - \gamma| \le ||a - a_0, b - b_0|| \tag{2.2}
$$

for all $(a, b) \in M$ and $\gamma \in \mathbb{R}$. Since *F* is 2-linear, by choosing γ in such a way that $F(a, b)$ − $||a - a_0, b - b_0|| \leq \gamma \leq F(a, b) + ||a - a_0, b - b_0||$, (2) and therefore (1) holds. Note that γ exists, since for each $(a, b) \in M$ we have:

$$
F_0(a, b) - ||a - a_0, b - b_0|| \le F_0(a, b) + ||a - a_0, b - b_0||.
$$

So we have proved that $(F', L') \in \mathcal{A}, (F, L_m) \neq (F', L')$ and $(F, L_m) \leq (F', L')$ which is a contradiction.

Our next result also deals with the existence of a bounded 2-linear functional having certain properties.

Theorem 2.2. Let x_0, y_0 be vectors in the generalized 2-normed space $(X, \|., . \|)$ such that $||x_0, y_0|| \neq 0$. Then there exists a real bounded 2-linear functional *F*, defined on the whole *space, such that* $F(x_0, y_0) = ||x_0, y_0||$ and $||F|| = 1$.

Proof. Consider the linear space $M = \mathbb{R}(x_0, y_0) = \{(tx_0, t'y_0); t, t' \in \mathbb{R}\}$, and consider the functional F_0 , defined on M as follows:

$$
F_0: M \to \mathbb{R},
$$

$$
F_0(tx_0, t'y_0) = tt' ||x_0, y_0||.
$$

Clearly, F_0 is a 2-linear functional with the property that $F_0(x_0, y_0) = ||x_0, y_0||$. Further, since for any $(x, y) \in M$,

$$
| F_0(x, y) | = | t t' | \| x_0, y_0 \| = \| t x_0, t' y_0 \| = \| x, y \|,
$$

we see that F_0 is a bounded 2-linear functional. Moreover $||F_0|| = 1$.

It now remains only to apply last theorem to assert the existence of a bounded 2-linear functional *F*, defined on the whole space, extending F_0 , and having the same norm as F_0 , that is, $\|F\| = 1.$

Note the immediate consequence of the above theorem.

Corollary 2.3. *If X is not the trivial space (the vector space consisting solely of the zero vector), then nonzero bounded* 2*-linear functionals must exist on this space.*

References

- [1] X. X. Cui, An investigation of norm-preserving extensions of bounded bilinear functionals on 2-normed spaces and some other problems (Chinese). *J. Xinjiang Univ. Natur. Sci.*, **5**(2) (1988), pp. 4–10.
- [2] S. Gähler, Lineare 2-normierte Räume. *Math. Nachr.*, **28** (1964), pp. 1–43.
- [3] S.N. Lal, S. Bhattacharya and C. Sreedhar, Complex 2-normed linear spaces and extension of linear 2-functionals. *Z. Anal. Anwendungen*, **20**(1) (2001), pp. 35–53.
- [4] Z. Lewandowska, Linear operators on generalized 2-normed spaces. *Bull. Math. Soc. Sce. Math. Roumanie*, **42** (1999), pp. 353–368.
- [5] Z. Lewandowska, On 2-normed sets. *Glasnik Mat.*, **38**(58) (2003), pp. 99–110.
- [6] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets. *Glas. Mat. Ser. III*, **39(59)** (2) (2004), pp. 301–312.
- [7] A. White, 2-Banach spaces. *Math. Nachr.*, **42** (1969), pp. 43–60.