Communications in Mathematical Analysis

Volume 1, Number 2, pp. 109–113, 2006

ISSN 0973-3841 © 2006 Research India Publications

HAHN-BANACH THEOREM IN GENERALIZED 2-Normed Spaces

*Zofia Lewandowska** Department of Mathematics, Pedagogical University, Arciszewskiego 22 b, PI-76-200 Slupsk, Poland

Mohammad Sal Moslehian[†] Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran; Centre of Excellence in Analysis on Algebraic Structures (CEAAS),

Assieh Saadatpour Moghaddam[‡]

Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran; Banach Mathematical Research Group (BMRG), Mashhad, Iran

(Communicated by Sever Dragomir)

Abstract

In this paper we prove an extension Hahn-Banach theorem in the context of generalized 2-normed spaces.

AMS Subject Classification: Primary 46A70; Secondary 46A32, 46B20.

Keywords: Generalized 2-norm, bounded 2-linear operator, Hahn-Banach theorem.

1 Introduction

In [4] Z. Lewandowska introduced a generalization of Gähler 2-normed space (see [2]) as follows.

Definition 1.1. Let *X* and *Y* be real linear spaces. Denote by *D* a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets $D_x = \{y \in Y; (x, y) \in D\}$ and $D^y = \{x \in X; (x, y) \in D\}$ are linear subspaces of the spaces *Y* and *X*, respectively.

A function $\|.,.\|: D \to [0,\infty)$ will be called a generalized 2-norm on D if it satisfies the following conditions:

^{*}E-mail: Lewandowscy@rene.com.pl

[†]E-mail: moslehian@ferdowsi.um.ac.ir

[‡]as_saadatpour@yahoo.com

- (1) $||x, \alpha y|| = |\alpha| \cdot ||x, y|| = ||\alpha x, y||$ for any real number α and all $(x, y) \in D$;
- (2) $||x, y + z|| \le ||x, y|| + ||x, z||$ for $x \in X, y, z \in Y$ with $(x, y), (x, z) \in D$;
- (3) $||x + y, z|| \le ||x, z|| + ||y, z||$ for $x, y \in X, z \in Y$ with $(x, z), (y, z) \in D$.

The set *D* is called a 2-normed set. In particular, if $D = X \times Y$, the function $\|.,.\|$ is said to be a generalized 2-norm on $X \times Y$ and the pair $(X \times Y, \|.,.\|)$ is called a generalized 2-normed space. If X = Y, then the generalized 2-normed space $(X \times X, \|.,.\|)$ is denoted by $(X, \|.,.\|)$. In the case that X = Y, $D = D^{-1}$, where $D^{-1} = \{(y, x) : (x, y) \in D\}$, and $\|x, y\| = \|y, x\|$ for all $(x, y) \in D$, we call $\|.,.\|$ a generalized symmetric 2-norm and *D* a symmetric 2-normed set.

Recall that in Gähler definition of a 2-norm ||x, y|| = 0 if and only if x and y are linearly dependent, and this is a crucial difference between Gähler's approach and Lewandowska's one.

Example 1.2. Let *X* be a real linear space having two seminorms $\|.\|_1$ and $\|.\|_2$. Then $(X, \|., .\|)$ is a generalized 2-normed space with the 2-norm defined by

$$||x, y|| = ||x||_1 \cdot ||y||_2; x, y \in X.$$

Example 1.3. Let *X* be a real inner product space. Then *X* is a symmetric generalized 2-normed space under the 2-norm $||x, y|| = |\langle x, y \rangle|$; for all $x, y \in X$.

Example 1.4. Suppose that *s* be the linear space of all sequences of real numbers. Put $||x, y|| = \sum_{n=1}^{\infty} |x_n||y_n|$, where $x = \{x_n\}, y = \{y_n\} \in s$. Then $D = \{(x, y) \in s \times s : ||x, y|| < \infty\}$ is a symmetric 2-normed set and the function $||., .||: D \to [0, \infty)$ is a generalized symmetric 2-norm on *D*.

A. G. White [7] defined and investigated the concept of bounded 2-linear functional from $X \to X$, where X denote a 2-normed space in the sense of Gähler. In [1], a 2-normed space $(L, \parallel, ., \parallel)$ was said to possess the property (p) if, for any subspace M of L with dimM > 1 and any bounded bilinear functional f defined on M, there is a bounded bilinear functional F on L which is an extension of f to L and has the same norm. In that paper, X. X. Cui proved that not all Gähler 2-normed spaces possess the property (p) and provided a necessary and sufficient condition for a bounded bilinear functional f defined on a subspace M of $(L, \parallel, ., \parallel)$ to be extendable to a norm preserving bounded bilinear functional on L. Later, authors of [3] introduced the notion of 2-normed complex linear spaces and established a Hahn-Banach extension theorem for complex linear 2-functionals.

In [5] Z. Lewandowska introduced the following definition of a bounded 2-linear operator (see also [6]):

Definition 1.5. Let *X* be a real linear space, $D \subseteq X \times X$ be a 2-normed set, *Y* a normed space. An operator $F: D \rightarrow Y$ is said to be 2-linear if it satisfies the following conditions:

- (i) F(a + c, b + d) = F(a, b) + F(a, d) + F(c, b) + F(c, d) for all $a, b, c, d \in X$ such that $a, c \in D^b \cap D^d$.
- (ii) $F(\alpha a, \beta b) = \alpha \cdot \beta \cdot F(a, b)$ for all $\alpha, \beta \in \mathbb{R}$ and all $(a, b) \in D$.

Definition 1.6. Let *X* be a real linear space, $D \subseteq X \times X$ be a 2-normed set, *Y* a normed space. A 2-linear operator $F: D \to Y$ is said to be bounded if there is a positive number *K* such that $||F(a, b)|| \le K ||a, b||$; $(a, b) \in D$. Then the number $||F|| = \inf\{K > 0 : ||F(a, b)|| \le K \cdot ||a, b||$; $(a, b) \in D$ } is called the norm of the 2-linear operator *F*.

Example 1.7. Consider $(X, \|., .\|)$ in the previous example and define $F : X \times X \to \mathbb{R}$ by $F(x, y) = \langle x, y \rangle$. Then *F* is a bounded 2-linear operator and $\|F\| = 1$.

In this paper we aim to establish an extension Hahn-Banach theorem in the context of generalized 2-normed spaces.

2 Main Results

We are ready to proved our main result.

Theorem 2.1. Let $(X, \|., .\|)$ be a generalized 2-normed space and M be a linear subspace of $X \times X$. If F_0 is a real bounded 2-linear functional on M, then there exists a real bounded 2-linear extension F on $X \times X$ such that $F(a, b) = F_0(a, b)$ for all $(a, b) \in M$ and $\|F\| = \|F_0\|$.

Proof. If $M = X \times X$ or $||F_0|| = 0$ then take $F = F_0$, otherwise without lose the generality assume that $||F_0|| = 1$. Consider the family \mathcal{A} of all possible extensions of F_0 of norm one, i.e. the set of all pairs (G, L) where L is a linear subspace of $X \times X$ containing M and G is a bounded 2-linear operator $G: L \to \mathbb{R}$ such that $G(a, b) = F_0(a, b)$ for all $(a, b) \in M$ and ||G|| = 1. Partially order \mathcal{A} with \leq as follows: given $(G_1, L_1), (G_2, L_2) \in \mathcal{A}$, put $(G_1, L_1) \leq (G_2, L_2)$ if and only if G_2 is an extension of G_1 that is $L_1 \subseteq L_2, G_2(a, b) = G_1(a, b)$ for all $(a, b) \in L_1$ and $||G_2|| = ||G_1||$.

The family \mathcal{A} is non-empty, because $(F_0, M) \in \mathcal{A}$. Let \mathcal{T} be a linearly ordered subset of \mathcal{A} . Define $\widetilde{L} = \bigcup_{(G, L)\in\mathcal{T}} L$. Clearly \widetilde{L} is a real linear subspace of $X \times X$ and contains M. Define

 $\widetilde{G}: \widetilde{L} \to \mathbb{R}$ by $\widetilde{G}(a, b) = G(a, b)$ where *G* is associated with some *L*, $(G, L) \in \mathcal{T}$, which contains (a, b). The operator \widetilde{G} is well-defined because, if both L_i and L_j contain (a, b) then $G_i(a, b) = G_j(a, b)$, since either $(G_i, L_i) \leq (G_j, L_j)$ or $(G_j, L_j) \leq (G_i, L_i)$. Notice that \widetilde{G} is a bounded 2-linear operator on \widetilde{L} that is an extension of every *G* and $\|\widetilde{G}\| = 1$. So the constructed pair $(\widetilde{G}, \widetilde{L})$ is hence an upper bound for the chain \mathcal{T} . By using Zorn's Lemma there exists a maximal element $(F, L_m) \in \mathcal{A}$. To complete the proof it is enough to show that $L_m = X \times X$. Suppose by contrary that there exists (a_0, b_0) in $X \times X \setminus L_m$. Then consider the linear space $L' = L_m + \mathbb{R}(a_0, b_0) = \{(a + ta_0, b + t'b_0); (a, b) \in L_m$ and $t, t' \in \mathbb{R}\}$. Define $F': L' \to \mathbb{R}$ by

$$F'(a + ta_0, b + t'b_0) = F(a, b) + tt'\gamma,$$

where $(a, b) \in L_m$ and $\gamma \in \mathbb{R}$ will be chosen in such a way that ||F'|| = 1.

But ||F'|| = 1 provided that

$$|F(a,b) + tt'\gamma| \le ||a + ta_0, b + t'b_0||$$
(2.1)

for all $(a, b) \in M$ and $\gamma \in \mathbb{R}$. Replace (a, b) by (-ta, -t'b); where $t, t' \in \mathbb{R}$, and divide both sides of (1) by |tt'|. Then the requirement is that

$$|F(a,b) - \gamma| \le ||a - a_0, b - b_0|| \tag{2.2}$$

for all $(a, b) \in M$ and $\gamma \in \mathbb{R}$. Since *F* is 2-linear, by choosing γ in such a way that $F(a, b) - ||a - a_0, b - b_0|| \le \gamma \le F(a, b) + ||a - a_0, b - b_0||$, (2) and therefore (1) holds. Note that γ exists, since for each $(a, b) \in M$ we have:

$$F_0(a,b) - \|a - a_0, b - b_0\| \le F_0(a,b) + \|a - a_0, b - b_0\|.$$

So we have proved that $(F', L') \in A$, $(F, L_m) \neq (F', L')$ and $(F, L_m) \leq (F', L')$ which is a contradiction.

Our next result also deals with the existence of a bounded 2-linear functional having certain properties.

Theorem 2.2. Let x_0 , y_0 be vectors in the generalized 2-normed space $(X, \|., .\|)$ such that $\|x_0, y_0\| \neq 0$. Then there exists a real bounded 2-linear functional F, defined on the whole space, such that $F(x_0, y_0) = \|x_0, y_0\|$ and $\|F\| = 1$.

Proof. Consider the linear space $M = \mathbb{R}(x_0, y_0) = \{(tx_0, t'y_0); t, t' \in \mathbb{R}\}$, and consider the functional F_0 , defined on M as follows:

$$F_0 \colon M \to \mathbb{R},$$
$$F_0(tx_0, t'y_0) = tt' ||x_0, y_0||$$

Clearly, F_0 is a 2-linear functional with the property that $F_0(x_0, y_0) = ||x_0, y_0||$. Further, since for any $(x, y) \in M$,

$$|F_0(x, y)| = |tt'| ||x_0, y_0|| = ||tx_0, t'y_0|| = ||x, y||,$$

we see that F_0 is a bounded 2-linear functional. Moreover $||F_0|| = 1$.

It now remains only to apply last theorem to assert the existence of a bounded 2-linear functional F, defined on the whole space, extending F_0 , and having the same norm as F_0 , that is, ||F|| = 1.

Note the immediate consequence of the above theorem.

Corollary 2.3. If X is not the trivial space (the vector space consisting solely of the zero vector), then nonzero bounded 2-linear functionals must exist on this space.

References

- X. X. Cui, An investigation of norm-preserving extensions of bounded bilinear functionals on 2-normed spaces and some other problems (Chinese). J. Xinjiang Univ. Natur. Sci., 5(2) (1988), pp. 4–10.
- [2] S. Gähler, Lineare 2-normierte Räume. Math. Nachr., 28 (1964), pp. 1–43.
- [3] S.N. Lal, S. Bhattacharya and C. Sreedhar, Complex 2-normed linear spaces and extension of linear 2-functionals. *Z. Anal. Anwendungen*, **20**(1) (2001), pp. 35–53.
- [4] Z. Lewandowska, Linear operators on generalized 2-normed spaces. Bull. Math. Soc. Sce. Math. Roumanie, 42 (1999), pp. 353–368.

- [5] Z. Lewandowska, On 2-normed sets. Glasnik Mat., 38(58) (2003), pp. 99–110.
- [6] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets. *Glas. Mat. Ser. III*, **39(59)**(2) (2004), pp. 301–312.
- [7] A. White, 2-Banach spaces. Math. Nachr., 42 (1969), pp. 43–60.