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Abstract

It is considered the system of differential equations that describes the dynamics of
an infinite chain of linearly coupled nonlinear oscillators. Results on existence of the
periodic travelling waves are obtained.
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1 Introduction

In the present paper we study equations that describes the dynamics of an infinite chain
of linearly coupled nonlinear oscillators. Letqn be a generalized coordinate of then-th
oscillator. In absence of interaction between the oscillators equations of motion are

q̈n =−U ′
n(qn),n∈ Z.

We assume that each oscillator interacts linearly with two nearest neighbors. Then the
equations of motion of the system considered have the form

q̈n =−U ′
n(qn)+an−1(qn−1−qn)−an(qn−qn+1),n∈ Z. (1.1)

Equations (1.1) form an infinite system of ordinary differential equations.
Systems of such type are of interest in connection with numerous physical applications

[1], [5], [6]. In the paper [8] traveling waves in chains of the form (1.1) are studied by
means of bifurcation theory, while [1], [2], [3] and [9] deal with periodic in time solutions.
The survey of known results in this direction can be found in [10].

In the present paper we obtain, by means of the linking theorem, a result on the existence
of periodic traveling waves. Actually, this result extends our previous existence theorem [4]
to a wider range of speed.
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2 Statement of a problem

Let us consider a homogeneous on spatial variable chain of linearly coupled nonlinear os-
cillators with potential

Un(r) = U(r) =−c0

2
r2 +V(r).

Then the corresponding equations of motion read

q̈n = a4dqn +c0qn−V ′(qn), (2.1)

where
(4dq)n = qn+1 +qn−1−2qn,

4d is the 1-dimensional discrete Laplacian.
Traveling wave is a solution of the form

qn(s) = u(n−cs),

where the functionu(s),s∈ R, is called the profile function, or simply profile, of the wave
and the constantc 6= 0 the speed of the wave. Ifc > 0 then the wave moves to right,
otherwise to the left.

Making use the traveling wave Ansatz we obtain the equation

c2u′′(s) = a(u(s+1)+u(s−1)−2u(s))+c0u(s)−V ′(u(s)) (2.2)

for the profile functionu(s). This equation has, actually, a variational structure.
A periodic traveling wave is a traveling wave such that its profile function is a periodic

function, i.e.
u(s+2k) = u(s), t ∈ R, (2.3)

wherek is an arbitrary positive real number.
In what follows we consider solutions of equation (1.1) that areC2-functions.

3 Variational setting

We always assume that

(h) the functionV(r) isC1, V(0) = V ′(0) = 0, V ′(r) = o(r) asr → 0 and there existsµ> 2
such that

0 < µV(r)≤V ′(r)r, r 6= 0.

Let
Ek = {u∈ H1

loc(R) : u(s+2k) = u(s)}
endowed with the norm

‖u‖k = (‖u‖2
L2(−k,k) +‖u′‖2

L2(−k,k))
1/2 = (

Z k

−k
(|u(s)|2 + |u′(s)|2)ds)1/2,
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i.e. the Sobolev space of2k-periodic functions. On this space we consider the functional

Jk(u) =
Z k

−k
{c2

2
(u′(t))2− a

2
(u(t +1)−u(t))2 +

c0

2
u2(t)−V(u(t))}dt. (3.1)

The following simple lemmas can be found in [4] (see also [10] in the case of Fermi–
Pasta–Ulam lattices).

For simplicity denote

(Au)(s) := u(s+1)−u(s).

Lemma 3.1. Under assumption(h) the functionalJk is C1 onEk, and

〈J′k(u),h〉=
Z k

−k
{c2u′(s)h′(s)+a(u(s+1)+

+u(s−1)−2u(s))h(s)+c0u(s)h(s)−V ′(u(s))h(s)}ds (3.2)

for u,h∈ Ek.

Lemma 3.2. Any critical point ofJk is C2-solution of equation (2.2)satisfying (2.3).

Lemma 3.3. We have

‖Au‖L2 ≤ ‖u′‖L2

and

‖Au‖L2 ≤ 2‖u‖L2 (3.3)

for all u∈ Ek.

4 Main results

Making use of the linking theorem, we shall prove the existence of nontrivial traveling
waves with periodic profile function. For, due to a Lemma 3.2, it is enough to prove the
existence of a nontrivial critical point ofJk.

Theorem 4.1. Assume(h). Suppose thatc0 > 0. Then for everyk≥ 1 andc > 0 equation
(2.2) has a nontrivial solutionu, that satisfies (2.3), i.e. there exist two2k-periodic traveling
waves with the speed±c.

Let us formulate the linking theorem ([10], [11], [13]).
Let H be a Hilbert space,H =Y⊕Z, wheredimY< ∞. Let ρ > r > 0 andz∈Z : ‖z‖= r.

Define

M := {u = y+λz : y∈Y,‖u‖ ≤ ρ,λ≥ 0}
and

M0 := {u = y+λz : y∈Y,‖u‖= ρ andλ≥ 0, or ‖u‖ ≤ ρ andλ = 0},
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i.e. M0 = ∂M is the boundaryM. Let

N := {u∈ Z : ‖u‖= r}.

Consider a functionalϕ onH and suppose that

β := inf
u∈N

ϕ(u) > α := sup
u∈M0

ϕ(u).

In this situation we say that the functionalϕ possesses the linking geometry.

Theorem 4.2(Linking). Suppose that the functionalϕ of classC1 possesses the linking
geometry and satisfies the Palais–Smale condition

(PS) if any sequenceun ∈H such thatϕ′(un)→ 0 and the sequenceϕ(un) is bounded then
(un) contains a convergent subsequence.

Let
b := inf

γ∈Γ
sup
u∈M

ϕ(γ(u)),

where

Γ := {γ ∈C(M;H) : γ = id onM0}.
Thenb is critical value ofϕ and

β≤ b≤ sup
u∈M

ϕ(u).

Let us begin with verifying condition(PS).

Lemma 4.3. Under assumptions of Theorem 4.1 functionalJk satisfies the Palais–Smale
condition.

Proof. Let un ∈ Ek be a Palais–Smale sequence at the levelb, i.e. Jk(un)→ b. Choose
β ∈ (µ−1,2−1). Then forn large we have

b+1+β‖un‖k ≥ Jk(un)−β〈J′k(un),un〉=

= (
1
2
−β)

Z k

−k
(c2|u′n|2−a|Aun|2 +c0|un|2)ds−

−
Z k

−k
(V(un)−βV ′(un)un))ds.

If a≤ 0, then
Jk(un)−β〈J′k(un),un〉 ≥

≥ (
1
2
−β)

Z k

−k
(c2|u′n|2 +c0|un|2)ds≥ (

1
2
−β)α0‖un‖2

k,

whereα0 = min{c2;c0}. Hence,

b+1+β‖un‖k ≥ (
1
2
−β)α0‖un‖2

k,



Periodic Traveling Waves in Chains of Oscillators 23

and this implies immediately thatun is bounded inEk.
If a > 0, then

Jk(un)−β〈J′k(un),un〉 ≥

≥ (
1
2
−β)(c2‖u′n‖2

L2−a‖Aun‖2
L2 +c0‖un‖2

L2)+

+C(βµ−1)‖un‖µ
Lµ−C0.

Sinceµ> 2, we have, by Lemma 3.3,

‖Aun‖2
L2 ≤ 4‖un‖2

L2 ≤C‖un‖2
Lµ ≤ K(ε)+ ε‖un‖µ

Lµ,

whereK(ε)→ ∞ asε→ 0. Then

b+1+β‖un‖k ≥ (
1
2
−β)c2‖u′n‖2

L2 +(
1
2
−β)c0‖un‖2

L2−

−(
1
2
−β)aε‖un‖µ

Lµ− (
1
2
−β)aK(ε)+

+C(βµ−1)‖un‖µ
Lµ−C0.

Choosingε small enough, we have

b+1+β‖un‖k ≥ (
1
2
−β)(c2‖u′n‖2

L2 +c0‖un‖2
L2)+

+C1‖un‖µ
Lµ−C0 ≥

≥ (
1
2
−β)α1‖un‖2

k +C1‖un‖µ
Lµ−C0,

whereα1 = min{c2;c0}. Sinceβµ−1 > 0 thenC1 > 0, and we have

b+1+β‖un‖k ≥ (
1
2
−β)α1‖un‖2

k−C0.

The last inequality implies thatun is bounded.
Sinceun is bounded in Hilbert spaceEk then, up to a subsequence, we have thatun→ u

weakly inEk, hence,Aun → Au weakly inEk. By the compactness of Sobolev embedding,
both these convergences are strong inL2(−k;k) and inC([−k,k]). A straightforward calcu-
lation shows that

c2‖un−u‖2
k =

Z k

−k
(c2|u′n−u′|2 +c2|un−u|2)ds=

= 〈J′k(un)−J′k(u),un−u〉+a‖Aun−Au‖2
L2−

−c0‖un−u‖2
L2 +

Z k

−k
(V ′(un)−V ′(u))(un−u)ds.

Obviously that all the terms on the right converge to0 (first and last terms converge to0 by
weak convergence, second and third terms converge to0 by strong convergence). Therefore,
we conclude that‖un−u‖→ 0 that proves the lemma.¤
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Lemma 4.4. If V satisfies(h) then there exist constantsd > 0 andd0 ≥ 0, that

V(r)≥ d|r|µ−d0. (4.1)

Proof. Let fix r0 > 0. Since

V ′(r)≥ µ
V(r)

r

then, by standard results for differential inequalities [7],V(r) ≥ y(r) asr ≥ r0, wherey(r)
is solution of differential equation

y′(r) =
µ
r

y(r)

with initial datay(r0) = V(r0). Obviously,

y(r) =
V(r0)

rµ
0

rµ.

Hence,

V(r)≥ V(r0)
rµ
0

rµ, r ≥ r0.

Then for allr ≥ 0

V(r)≥V(r0)(
rµ

rµ
0
−1) =

V(r0)
rµ
0

rµ−V(r0).

Similarly, for r ≤ 0

V(r)≥ V(−r0)
rµ
0

|rµ|−V(r0).

Thus, we obtain (4.1) with

d = min[
V(−r0)

rµ
0

,
V(r0)

rµ
0

],

d0 = max[V(r0),V(−r0)].¤

Lemma 4.5. Under assumptions of Theorem 4.1 functionalJk possesses the linking geom-
etry.

Proof. Consider the operatorL defined by

(Lu)(s) :=−c2u′′(s)+a(u(s+1)+u(s−1)−2u(s))+c0u(s).

Elementary Fourier analysis shows thatL is a self-adjoint operator inL2(−k;k), bounded
below and thatL has discrete spectrum which accumulated at+∞. The eigenvalues and
eigenfunctions can be calculated explicity, but we do not use this fact. We mention only
that all eigenvalues,λ j , with nonconstant eigenfunctions are double. Denote byh±j ∈ Ek

linearly independent pairs of eigenfunctions with the eigenvaluesλ j .
LetZ be the subspace ofEk generated by the functionsh±j with λ j > 0andY be subspace

of Ek generated by the functionsh±j with λ j ≤ 0. Note thatdimY< ∞. It is readily verified
thatY⊥Z andEk = Y⊕Z.
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Denote byQk the quadratic part of the functionalJk

Qk(u) =
1
2

Z k

−k
(c2|u′|2−a|Au|2 +c0|u|2)ds.

Obviously,
Qk(y+z) = Qk(y)+Qk(z),

wherey∈Y,z∈ Z.
Note, that onZ the quadratic formQk is positive, i.e.

Qk(u)≥ α‖u‖2
k,

whereα > 0. Assumption(h) implies that, givenε > 0, there existsr0 > 0 such that

|V(r)| ≤ εr2,

if |r| ≤ r0. Then

Jk(u)≥Qk(u)− ε
Z k

−k
|u|2ds≥Qk(u)− ε‖u‖2

k ≥ δ‖u‖2
k,

whereδ > 0. Hence,
Jk(u) > 0

onN = {u∈ Z : ‖u‖k = r} providedr > 0 is small enough.
Now we fix anyz∈ Z,‖z‖k = 1, and set

M = {u = y+λz : y∈Y,‖u‖k ≤ ρ,λ≤ 0}.

We have to prove thatJk(u)≤ 0 onM0 = ∂M providedρ is large enough.
Recall that

M0 = {u = y+λz : y∈Y,‖u‖k = ρ andλ≥ 0, or ‖u‖k ≤ ρ andλ = 0}.
We have

Jk(y+λz) = Qk(y)+λ2Qk(z)−
Z k

−k
V(y+λz)ds.

By Lemma 4.4, there exist constantsd > 0 andd0 > 0 such that

V(r)≥ d|r|µ−d0,

whereµ> 2. Then, sinceQk(y)≤ 0, we have

Jk(y+λz)≤ λ2γ0 +2kd0−d‖y+λz‖µ
Lµ,

whereγ0 = Qk(z). Since
ρ2 = ‖y+λz‖2

k = ‖y‖2
k +λ2,

we haveλ2 ≤ ρ2. Furthermore, on finite dimensional spaces all norms are equivalent.
Hence,

‖y+λz‖Lµ ≥ c‖y+λz‖k = cρ
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and
Jk(y+λz)≤ γ0ρ2 +2kd0−dρµ.

Sinceµ> 2, the right hand part here is negative ifρ is large enough. Hence,Jk(y+λz)≤ 0.
If u∈M0,‖u‖k ≤ ρ andλ = 0, thenu = y∈Y and, obviously,Jk(u)≤ 0. Thus, we see that
Jk possesses linking geometry.¤

Proof of Theorem 4.1.Due to Lemma 4.3 and Lemma 4.5, functionalJk satisfies all con-
ditions of linking theorem. Hence,Jk has a nontrivial critical pointu∈ Ek. By Lemma 3.2,
u is aC2-solution of equation (2.2) that satisfy (2.3). The proof is complete.¤
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