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Abstract

It is considered the system of differential equations that describes the dynamics of
an infinite chain of linearly coupled nonlinear oscillators. Results on existence of the
periodic travelling waves are obtained.
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1 Introduction

In the present paper we study equations that describes the dynamics of an infinite chain
of linearly coupled nonlinear oscillators. La} be a generalized coordinate of theh
oscillator. In absence of interaction between the oscillators equations of motion are

tGh = —Up(an),n e Z.

We assume that each oscillator interacts linearly with two nearest neighbors. Then the
equations of motion of the system considered have the form

Gh = _UA(Qn) +an-1(gGn-1—0n) —an(gn — On+1), N € Z. (1.1)

Equations (1.1) form an infinite system of ordinary differential equations.

Systems of such type are of interest in connection with numerous physical applications
[1], [5], [6]- In the paper [8] traveling waves in chains of the form (1.1) are studied by
means of bifurcation theory, while [1], [2], [3] and [9] deal with periodic in time solutions.
The survey of known results in this direction can be found in [10].

In the present paper we obtain, by means of the linking theorem, a result on the existence
of periodic traveling waves. Actually, this result extends our previous existence theorem [4]
to a wider range of speed.
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2 Statement of a problem

Let us consider a homogeneous on spatial variable chain of linearly coupled nonlinear os-

cillators with potential

Un(r) =U(r) = —%r2+V(r).

Then the corresponding equations of motion read

tin = @AgGn + CoGn — V' (Chn), (2.1)

where
(AdQ)n = On+1 + On—1 — 20n,

Ay is the 1-dimensional discrete Laplacian.
Traveling wave is a solution of the form

On(S) = u(n—cs),

where the function(s),s € R, is called the profile function, or simply profile, of the wave
and the constant # O the speed of the wave. t > 0 then the wave moves to right,
otherwise to the left.

Making use the traveling wave Ansatz we obtain the equation

2’ (s) = a(u(s+ 1) +u(s— 1) — 2u(s)) + cou(s) — V' (u(s)) (2.2)

for the profile functioru(s). This equation has, actually, a variational structure.
A periodic traveling wave is a traveling wave such that its profile function is a periodic
function, i.e.
u(s+2k) = u(s),t € R, (2.3)

wherek is an arbitrary positive real number.
In what follows we consider solutions of equation (1.1) thatGdunctions.

3 \Variational setting

We always assume that

(h) the functiorV(r) isC%,V(0) =V’(0) =0, V'(r) = o(r) asr — 0 and there existg > 2
such that
O < puVv(r) <V'(nrr#0.

Let
Ex={ue H&,C(R) tu(s+2k) =u(s)}

endowed with the norm
Zy
ull = (1UllE2 g + U172 i) ™2 = ( k(\U(S)\2+ u'(s)|%)ds)*/2,
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i.e. the Sobolev space 8k-periodic functions. On this space we consider the functional

z
k 2

MU= (GO St+D)—ut)?+ FP0 -Vut)ld (@)

The following simple lemmas can be found in [4] (see also [10] in the case of Fermi—
Pasta—Ulam lattices).
For simplicity denote

(Au)(s) :=u(s+1) —u(s).

Lemma 3.1. Under assumptiofh) the functionally is C* on Ey, and
Zy

(J(u),h) = 7k{czu’(s) h (s) +a(u(s+ 1)+
+u(s— 1) — 2u(s))h(s) + cou(s)h(s) — V'(u(s) )h(s) }ds (3.2)
foru,h € Ey.
Lemma 3.2. Any critical point ofJy is C?-solution of equation (2.2)satisfying (2.3).

Lemma 3.3. We have
AUl 2 < U] 2

and
AUl 2 < 2[Juf| 2 (3.3)

for all u € Ey.

4 Main results

Making use of the linking theorem, we shall prove the existence of nontrivial traveling
waves with periodic profile function. For, due to a Lemma 3.2, it is enough to prove the
existence of a nontrivial critical point df.

Theorem 4.1. Assumeh). Suppose thaty > 0. Then for everk > 1 andc > 0 equation
(2.2) has a nontrivial solution, that satisfies (2.3), i.e. there exist t&ko-periodic traveling
waves with the speeHc.

Let us formulate the linking theorem ([10], [11], [13]).
LetH be a Hilbert spaced =Y & Z, wheredimY < oo. Letp >r >0andze Z: ||Z|| =r.
Define

M:={u=y+Az:yeY,|u| <p,A>0}

and

Mo:={u=y+Az:yeY,|u|| =pandA >0, or|ul| <pandi =0},
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i.e. Mg = 0M is the boundary. Let
N:={ueZ:|ul|=r}.
Consider a functionap onH and suppose that

B:= Lijglf\lcl)(u) > o= supd(u).

ueMg
In this situation we say that the functiorfapossesses the linking geometry.

Theorem 4.2(Linking). Suppose that the functiondl of classC! possesses the linking
geometry and satisfies the Palais—Smale condition

(PS if any sequenca, € H such thatp’(u,) — 0 and the sequend(uy) is bounded then
(un) contains a convergent subsequence.

Let

b := inf supd(y(u)),
YET uem

where
M:={yeC(M;H):y=id onMg}.

Thenb is critical value of$ and

B<b<supd(u).

ueM
Let us begin with verifying conditio(PS).

Lemma 4.3. Under assumptions of Theorem 4.1 functioakatisfies the Palais—Smale
condition.

Proof. Let u, € E be a Palais—Smale sequence at the lbyek. J(un) — b. Choose
B (ut,27Y). Then forn large we have

b+ 1+ B|lunllk > Jk(Un) — B{J(Un), un) =
Zy
K

=GB (Pl alAuf + colunf)dls-

Z g
- k(V(Un)—BV/(Un)Un))dS

If a<0,then
Jk(un) — B(J(Un), un) >
Z

k
>(3-B) (U +colu)ds= (5 - Bl

whereag = min{c?;co}. Hence,

1
b+ 1+ Bllunlk = (5 - B)ctolfun k.
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and this implies immediately that, is bounded irEy.
If a> 0, then
Jc(Un) — B(J(un), un) >

1
> (5~ B)(€]lunlI = — all At +collunlF2)+

2
+C(BH— 1) |un]| ks — Co.
Sincep > 2, we have, by Lemma 3.3,

”AUn”EZ < 4HUnHEZ < Cllun[[Zx < K(€) + €[ unllt,

whereK(g) — o ase — 0. Then

1 1
b+ 1+ B||un|lk > (é —B)C||upl|Z. + (é — B)Col|un||Z—

(5~ Baelunlls — (5~ BaK(e)+

2
+C(Bp— 1) |un|tu — Co.
Choosinge small enough, we have

1
b+ 1+ Bllunlc = (5 - B)(P[lunlZ2 + collunllF2)+

+Cy[unlfu —Co >

1
> (E - B)G1||Un||§+cl||un”tu_COv

wherea; = min{c?; cy}. Sincefu— 1 > 0thenC; > 0, and we have

1
b-+1+Blunllk > (5 — B)ata | un[[§ —Co.

The last inequality implies thai, is bounded.

Sinceu, is bounded in Hilbert spadg, then, up to a subsequence, we have that> u
weakly inEg, hence Au, — Auweakly inEx. By the compactness of Sobolev embedding,
both these convergences are strongf-k; k) and inC([—k, k]). A straightforward calcu-
lation shows that

Z
clun—ullg = k<c2|u;, — U2+ |un —uf?)ds=
= (J(Un) — J(U), Un — ) +al| Atk — Aul[Zz—
Zy
—Col|tn — ul| 2 + [V (Un) =V (W) (Un —u)dis

Obviously that all the terms on the right converg®tdirst and last terms converge @doy
weak convergence, second and third terms convergbeyastrong convergence). Therefore,
we conclude thatu, — u|| — 0 that proves the lemmal
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Lemma 4.4. If V satisfieq h) then there exist constants> 0 anddy > O, that
V(r) >d|r|" —do. (4.1)

Proof. Let fix ro > 0. Since

V()=
then, by standard results for differential inequalities W{t) > y(r) asr > ro, wherey(r)
is solution of differential equation

M
y (1) =y(r)
with initial datay(rg) =V (rg). Obviously,
V(r
y(r) = I(,uO) .
0
Hence,
V(r) > V(Lo)r”,r >r9
o
Then for allr >0 .
r V(r
V(r) >V (ro)(-p—1) = (uo)r”—V(r )
0 o
Similarly, forr <0
V(-r
v(r) = Yo v (1),
0

Thus, we obtain (4.1) with
V(=ro) V(ro)

Ta rg ]7

do = maxV (ro),V(—ro)].00

d = min|

Lemma 4.5. Under assumptions of Theorem 4.1 functiohgbossesses the linking geom-
etry.

Proof. Consider the operatdr defined by
(Lu)(s) := —c?U"(s) +a(u(s+1) + u(s— 1) — 2u(s)) + cou(s).

Elementary Fourier analysis shows thais a self-adjoint operator ih?(—k;k), bounded
below and thatL has discrete spectrum which accumulated-at The eigenvalues and
eigenfunctions can be calculated explicity, but we do not use this fact. We mention only
that all eigenvalues)j, with nonconstant eigenfunctions are double. Denotda?byg Ex
linearly independent pairs of eigenfunctions with the eigenvalyes

LetZ be the subspace & generated by the functiovhq"f with A; > 0andY be subspace
of Ex generated by the functioﬂn‘?‘t with Aj < 0. Note thatdimY < oo. It is readily verified
thatY LZ andEy =Y @ Z.
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Denote byQy the quadratic part of the functiondl

Z
1°k
Q(u) =3 k(CZ\U’IZ—aIAUIZ+Co|UI\2)ds

Obviously,
Q(y+2) = Qk(y) + k(2),

whereyeY,ze Z.
Note, that orZ the quadratic fornQ is positive, i.e.

Qu(u) = alullg,
wherea > 0. Assumption(h) implies that, givere > 0, there exists > 0 such that
V(r)| <er?,

if [r| <rg. Then
Z
(W) = Qe(u) —e |u?ds> Qu(u) —&[Jullg = 3julf,

whered > 0. Hence,
J(u) >0

onN={ue Z:|u|x=r} providedr > 0is small enough.
Now we fix anyz e Z, ||z||x = 1, and set

M={u=y+Az:yeY,|ulx<p,A <0}

We have to prove thak(u) < 0onMp = 0M providedp is large enough.
Recall that

Mo={u=y+Az:yeY,|u|x=pandA >0, or |u|x < pandA = 0}.

We have Z
J(y+A2) = Quly) +N*Qu(2) — Y y+Az)ds

By Lemma 4.4, there exist constawnts- 0 anddp > 0 such that
V(r) >d|r|"—do,
wherep > 2. Then, since(y) < 0, we have
J(y+22) < A2yo+ 2kdo — dly+ Azt

whereyp = Qk(2z). Since
p? = Ily+AZ = [yl +2%,

we haveA? < p?. Furthermore, on finite dimensional spaces all norms are equivalent.
Hence,
1y +AZ|ie = cfly+AZl|k = cp
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and
J(Y+A2) < yop®+ 2kdg — dpH.

Sincep > 2, the right hand part here is negativepifs large enough. Hencég(y+Az) < 0.
If ue Mo, |Jullk <pandA =0, thenu=y e Y and, obviouslyJk(u) < 0. Thus, we see that
Jk possesses linking geometky.

Proof of Theorem 4.1Due to Lemma 4.3 and Lemma 4.5, functiodasatisfies all con-
ditions of linking theorem. Hencédy has a nontrivial critical point € Ex. By Lemma 3.2,
u is aC?-solution of equation (2.2) that satisfy (2.3). The proof is complete.
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