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Abstract

In this paper, we investigate the unbounded delay neutral differential equation with
positive and negative coefficients (and of Euler form)

d
dt

[x(t)−R(t)x(γ t)]+
P(t)

t
x(αt)− Q(t)

t
x(βt) = 0, t > t0 > 0,

whereP,Q,R∈C([t0,∞),R+),α,γ ∈ (0,1), β ∈ (0,1], andα 6 β are constants. Some
Hille type oscillation criteria for the oscillation of all solutions are established.

AMS Subject Classification:34K11, 34K40.
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1 Introduction

The oscillation of neutral differential equation with positive and negative coefficients and
constant delays has been investigated by many authors. For example, Chuanxi and Ladas
[4], Farrelet al.[5], Ruan [12], Yu [17], Yu and Yan [18], and Shen and Debnath [13] have
investigated the following neutral differential equation with positive and negative coeffi-
cients

d
dt

[x(t)−R(t)x(t− r)]+P(t)x(t− τ)−Q(t)x(t−σ) = 0, (1.1)
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whereP,Q,R∈C([t0,∞),R+), r ∈ (0,∞), andτ,σ∈ [0,∞). All kinds of sufficient conditions
for the oscillation of all solutions have been obtained there.

On the other hand, it should be mentioned that there are many good results for the stabil-
ity of delay differential equations with unbounded delays (see [16] for example). However,
there are few results for the oscillation on such equations except [2], [8] and [14]. In partic-
ular, to the best of our knowledge, there is little in the way of results for the oscillation of
neutral differential equations with unbounded delays and positive and negative coefficients.

In this paper, we consider the following unbounded delay neutral differential equation
with positive and negative coefficients (and of Euler form)

d
dt

[x(t)−R(t)x(γ t)]+
P(t)

t
x(αt)− Q(t)

t
x(βt) = 0, t > t0 > 0, (1.2)

where
P,Q,R∈C([t0,∞),R+),α,γ ∈ (0,1),β ∈ (0,1], andα 6 β, (1.3)

H(t) = P(t)−Q

(
α
β

t

)
> 0, and not identically zero. (1.4)

It should be noted that Eq. (1.2) is different from Eq. (1.1) which is concerned with
constant delays. And, Eq. (1.2) includes a lot of differential equations. For example, the
oscillation of solutions of the following unbounded delay equations of Euler form

x′(t) =
p
t

x(αt) and x′(t) =
p
t

x(αt)− q
t
x(βt),

wherep∈ (0,∞),q∈ [0,∞), andα,β ∈ (0,1), was investigated in [1] and [6], respectively.
In [9] and [11], the authors studied the asymptotic behavior of solutions of the equation

x′(t) = ax(αt)+bx(t),

wherea,b∈ R, 0 < α < 1, which arises in [10] as a mathematical model of the motion of a
pantograph head on the electric locomotive.

The major object of this paper is to establish oscillation criteria for Eq. (1.2) under the
following three cases:

R(t)+
Z t

α
β t

Q(s)
s

ds≡ 1, (1.5)

R(t)+
Z t

α
β t

Q(s)
s

ds6 1, (1.6)

and

R(t)+
Z t

α
β t

Q(s)
s

ds> 1. (1.7)

By a solution of Eq. (1.2) we mean a functionx(t) ∈C([ρt,∞),R) for somet > t0, such
thatx(t)−R(t)x(γ t) is continuously differentiable, andx(t) satisfies Eq. (1.2) for allt > t,
whereρ = min{α,β,γ }.

As is customary, a solution of Eq. (1.2) is said to oscillate if it has arbitrarily large
zeroes; otherwise, the solution is called non-oscillatory.
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2 Lemmas

In this section, we establish some lemmas which are also interesting in their own rights.

Lemma 2.1. Assume that (1.3), (1.4) and (1.7) hold. Lety(t) be an eventually positive
solution of the inequality

d
dt

[x(t)−R(t)x(γ t)]+
P(t)

t
x(αt)− Q(t)

t
x(βt) 6 0, (2.1)

and set

z(t) = y(t)−R(t)y(γ t)−
Z t

α
β t

Q(s)
s

y(βs)ds. (2.2)

Then the oscillation of all solutions of the second ordinary differential equation

w ′′(t)+
(

ln
1
ρ

)−1

· H(t)
t2 w(t) = 0, t > t0 > 0, (2.3)

implies thatz ′(t) 6 0 andz(t) < 0 eventually.

Proof. Let t1 > t0 be such that

y(γ t) > 0,y(αt) > 0,y(βt) > 0, for t > t1.

Then, from (2.1) and (2.2) it follows that

z ′(t) =−1
t

(
P(t)−Q

(
α
β

t

))
y(αt) =−H(t)

t
y(αt) 6 0, t > t1. (2.4)

Therefore, ifz(t) < 0 does not hold eventually, thenz(t) > 0 eventually. Lett1 > t0
ρ be such

thaty(ρt) > 0,z(t) > 0 for t > t1. SetM = 2−1min{y(t) : ρt1 6 t 6 t1}. Theny(t) > M for
ρt1 6 t 6 t1. We claim that

y(t) > M, t > t1. (2.5)

If (2.5) does not hold, then there exists at∗ > t1 such thaty(t) > M for ρt1 6 t < t∗ and
y(t∗) = M. Using (1.7) and (2.2), we obtain

M = y(t∗) = z(t∗)+R(t∗)y(γ t∗)+
Z t∗

α
β t∗

Q(s)
s

y(βs)ds

>

(
R(t∗)+

Z t∗

α
β t∗

Q(s)
s

y(βs)ds

)
M > M.

This is a contradiction and so (2.5) holds. Letlim
t→∞

z(t) = l . There exist two possible cases:

Case 1. l = 0. There exists aT1 > t1 such thatz(t) < M/2 for t > T1. Then for any
t > T1, we have (

ln
1
ρ

)−1Z t
ρ

t

z(s)
s

ds6 M < y(t), t ∈ [t, t/ρ].
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Case 2.l > 0. Thenz(t) > l for t > t1. From (1.7), (2.2) and (2.5), it follows that

y(t) > l +R(t)y(γ t)+
Z t

α
β t

Q(s)
s

y(βs)ds> l +M, t > t1.

By induction, it is easy to see thaty(t) > kl +M for t > t1
ρk−1 (k = 1,2, ...), and solim

t→∞
y(t) =

∞, which implies that there exists aT > T1 such that

(
ln

1
ρ

)−1Z t
ρ

T

z(s)
s

ds6 2z(T) < y(t), t ∈ [T,T/ρ].

Cases 1 and 2 show that

y(t) >

(
ln

1
ρ

)−1Z t
ρ

T

z(s)
s

ds, t ∈ [T,T/ρ].

Now we prove that

y(t) >

(
ln

1
ρ

)−1Z t
ρ

T

z(s)
s

ds, t > T/ρ. (2.6)

Otherwise, there exists at∗ > T/ρ such that

y(t∗) =
(

ln
1
ρ

)−1Z t∗
ρ

T

z(s)
s

ds, y(t) >

(
ln

1
ρ

)−1Z t
ρ

T

z(s)
s

ds, t ∈ (T/ρ, t∗).

This implies by (1.7) and (2.2) that

(
ln

1
ρ

)−1Z t∗
ρ

T

z(s)
s

ds

= z(t∗)+R(t∗)y(γ t∗)+
Z t∗

α
β t∗

Q(s)
s

y(βs)ds

>

(
ln

1
ρ

)−1Z t∗
ρ

t∗

z(s)
s

ds+

(
R(t∗)+

Z t∗

α
β t∗

Q(s)
s

ds

)(
ln

1
ρ

)−1Z t∗

T

z(s)
s

ds

>
(

ln
1
ρ

)−1Z t∗
ρ

T

z(s)
s

ds.

This is a contradiction and so (2.6) holds. Thus, fort > T/ρ, we have

y(αt) >
(

ln
1
ρ

)−1Z t

T

z(s)
s

ds. (2.7)

Substituting (2.7) into (2.4) leads to

z ′(t)+
H(t)

t

(
ln

1
ρ

)−1Z t

T

z(s)
s

ds6 0, t > T/ρ.

Hence
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z ′(t)+
H(t)
t2

(
ln

1
ρ

)−1Z t

T
z(s)ds6 0, t > T/ρ.

Put

w(t) =
Z t

T
z(s)ds, t > T/ρ.

One can easily find thatw ′(t) = z(t),w ′′(t) = z ′(t) and

w ′′(t)+
(

ln
1
ρ

)−1

· H(t)
t2 w(t) 6 0, t > T/ρ.

By Lemma 2.4 in [15], Eq. (2.3) has an eventually positive solution. This is a contradiction
and the proof is complete.

Lemma 2.2. Assume that (1.3), (1.4) and (1.6) hold. Lety(t) be an eventually positive
solution of the inequality (2.1) andz(t) be defined by (2.2). Then

z ′(t) 6 0, z(t) > 0 and z′(t)+
H(t)

t
z(αt) 6 0. (2.8)

Proof. (2.4) implies thatz(t) is eventually decreasing. In view ofy(t) > z(t), (2.4) yields

z ′(t)+
H(t)

t
z(αt) 6 0.

Now we provez(t) > 0. For otherwise, then eventuallyz(t) < 0, and there existt2 > t1 and
c > 0 such thatz(t) 6−c for t > t2, that is,

y(t) 6−c+R(t)y(γ t)+
Z t

α
β t

Q(s)
s

y(βs)ds, t > t2. (2.9)

We consider the following two possible cases:
Case 1.y(t) is unbounded, that is,limsupt→∞ y(t) = ∞. Thus, there exists a sequence

of points{sn}∞
n=1 such thatsn > t2

ρ ,n = 1,2, ...,sn → ∞,y(sn)→ ∞ asn→ ∞, andy(sn) =
max{y(t) : t2 6 t 6 sn},n = 1,2, .... From (1.6) and (2.9), it follows that

y(sn) 6 −c+R(sn)y(γ sn)+
Z sn

α
β sn

Q(s)
s

y(βs)ds

< −c+y(sn)

[
R(sn)+

Z sn

α
β sn

Q(s)
s

ds

]

6 −c+y(sn).

This is a contradiction.
Case 2. y(t) is bounded, i.e.,limsupt→∞ y(t) = l < ∞. Choose a sequence of points

{σn}∞
n=1 such thatσn → ∞ andy(σn) → l asn→ ∞. Let y(σ∗n) = max{y(s) : ρσn 6 s 6
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ρσn},σ∗n ∈ [ρσn,ρσn],n = 1,2, ..., whereρ = max{α,β,γ }. Thenσ∗n → ∞ asn→ ∞ and
limsup

t→∞
y(σ∗n) 6 l . Thus, by (1.6) and (2.9), we get

y(σn) 6 −c+R(σn)y(γ σn)+
Z σn

α
β σn

Q(s)
s

y(βs)ds

< −c+y(σ∗n)

[
R(σn)+

Z σn

α
β σn

Q(s)
s

ds

]

6 −c+y(σ∗n).

Taking the superior limit asn→ ∞ yields

l 6−c+ limsup
t→∞

y(σ∗n) 6−c+ l ,

which is also a contradiction. The proof of Lemma 2.2 is complete.

3 Main results

In this section, we will establish some Hille type oscillation criteria for Eq. (1.2) by using
the lemmas in Section 2 and the following Lemma which is due to E. Hille [7]. Some
examples are also given to illustrate the applications of our results.

Lemma 3.1. [7] Consider the ordinary differential equation

y ′′(t)+ p(t)y(t) = 0, t > t0, (3.1)

wherep(t) ∈C([t0,∞),R+). Then all solutions of Eq. (3.1) oscillate if

liminf
t→∞

t
Z ∞

t
p(s)ds>

1
4
.

Theorem 3.2. Assume that (1.3), (1.4) and (1.5) hold and that

liminf
t→∞

t
Z ∞

t

H(s)
s2 ds>

1
4

ln
1
ρ
. (3.2)

Then all solutions of Eq. (1.2) oscillate.

Proof. Suppose that Eq. (1.2) has an eventually positive solutiony(t). Let z(t) be defined
by (2.2). Then by Lemma 2.2,z(t) > 0 eventually. On the other hand, By Lemma 3.1, (3.2)
implies that all solutions of Eq. (2.3) oscillate. By Lemma 2.1, it follows thatz(t) < 0. This
contradiction completes the proof.

Example 3.3. Consider the differential equation

d
dt

[x(t)−0.97x(e−πt)]+
1.97+ 3

200π
t

x(e−
5π
2 t)− 3

200πt
x(e−

π
2 t) = 0, t > 2. (3.3)
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Simple calculation shows that

R(t)+
Z t

α
β t

Q(s)
s

ds= 1, liminf
t→∞

t
Z ∞

t

H(s)
s2 ds= 1.97>

1
4

ln
1
ρ

=
5π
8

.

One can easily see that Eq. (3.3) satisfies all conditions of Theorem 3.2, and so every
solution of Eq. (3.3) oscillates. Indeed,x(t) = sin(ln t) is such a solution.

Theorem 3.4. Assume that (1.3), (1.4), (1.6), and (3.2) hold, and that

R(αt)H(t) > H(γ t). (3.4)

Then every solution of Eq. (1.2) oscillates.

Proof. Assume, for the sake of contradiction, that Eq. (1.2) has a non-oscillatory solution
y(t), we shall assume thaty(t) is eventually positive. The case wherey(t) is eventually
negative is similar and will be omitted. Letz(t) be defined by (2.2). Then, by Lemma 2.2,
there existst1 > t0 such that

z(t) > 0, for t > t1. (3.5)

Thus, in view of (3.4), we have

z ′(t) =−H(t)
t

y(αt) 6−H(t)
t

z(αt)− H(γ t)
t

y(αγ t) =
H(t)

t
z(αt)− d

dt
z(γ t),

which implies thatz(t) is a positive solution of the inequality

d
dt

[w(t)−w(γ t)]+
H(t)

t
w(αt) 6 0. (3.6)

This shows that all conditions of Lemma 2.2 are satisfied, hence,u(t) = z(t)− z(γ t) is
eventually positive. On the other hand, by Lemma 3.1 and noting that (3.6) all conditions
of Lemma 2.2 are also satisfied , there follows thatu(t) = z(t)−z(γ t) < 0 eventually, which
is a contradiction and the proof is complete.

Example 3.5. Consider the differential equation

d
dt

[
x(t)− 1

2
x
(
e−2t

)]
+

c+
√

t
t

x
(
e−2t

)− c
t
x
(
e−1t

)
= 0, t > 1, (3.7)

where0 < c 6 1/2.

Standard calculation give usliminf
t→∞

t
R ∞

t
H(s)

s2 ds= +∞ and 1
4 ln 1

ρ = 1
2. And one can

without difficulty find that Eq. (3.7) also satisfies the another conditions of Theorem 3.4
and so every solution of Eq. (3.7) is oscillatory.

Theorem 3.6. Assume that (1.3), (1.4), (1.7), and (3.2) hold, and thatQ(αt)
P(β t)−Q(αt) is non-

decreasing. Also suppose that there exist nonnegative constantsh1 andh2 such that

H(t)R(αt) 6 h1H(γ t), (3.8)
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H(t)Q(αt) 6 h2[P(βt)−Q(αt)], (3.9)

and

h1 +h2 ln
β
α

= 1. (3.10)

Then every solution of Eq. (1.2) oscillates.

Proof. Otherwise, Eq. (1.2) has an eventually positive solutiony(t). Let z(t) be defined by
(2.2). From Lemma 2.1, it follows thatz(t) < 0. And, by (3.9) and (3.10), we have

z ′(t) = −1
t
[P(t)−Q(

α
β

t)]y(αt) =−H(t)
t

y(αt)

= −H(t)
t

[z(αt)+R(αt)y(αγ t)−
Z t

α
β t

Q(αs)
s

y(αβs)ds]

> −H(t)
t

z(αt)− h1

t
H(t)y(αγ t)− H(t)

t

Z t

α
β t

Q(αs)
P(βs)−Q(αs)

d
ds

[−z(βs)]ds

> −H(t)
t

z(αt)+h1
d
dt

[z(γ t)]− h2

t
[z(αt)−z(βt)].

That is
d
dt

[z(t)−h1z(γ t)]+
H(t)+h2

t
z(αt)− h2

t
z(βt) > 0.

This implies that−z(t) is a positive solution of the inequality

d
dt

[w(t)−h1w(γ t)]+
H(t)+h2

t
w(αt)− h2

t
w(βt) 6 0,

which will yield a contradiction by Lemma 2.1 and Lemma 2.2. Therefore, the proof of
Theorem 3.6 is complete.

Example 3.7. If we takeh1 = h2 = 1/2, then the equation

d
dt

[
x(t)− et+2

2(et+3)
x(e−1t)

]
+

1
t
x(e−1t)− 1

2t
x(t) = 0, t > e (3.11)

satisfies the conditions of Theorem 3.6. Hence, all solutions of the equation oscillate.
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