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Abstract

In this paper, we study the approximate controllability of partial differential equations with
nonautonomous past delay lif -phase spaces. We illustrate our abstract results by the ap-
proximate controllability of a dynamical population equation.
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1 Introduction

In this paper, we study the approximate controllability of the controlled system with nonautonomous
past

X (t) = AX(t) + (%) +Bu(t), t>0,
(1.1)
X(0)=x, Xo=0.
Here the operatgiA, D(A)) is a generator of a strongly continuous semigr{(p) ):>o in a Banach
spaceX, the delayr < +o0, and® : D(®) C LP([-r,0],X) — X, p > 1, is an unbounded linear
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operator. Moreover, the modified history functigns defined by

%(s) = V(s,0)x(t +5s) ift+s>0,
" | V(ss+t)g(t+s) ift+s<0,

where(V(t,s))_r<t<s<o is an exponentially bounded backward evolution familyxorThe control
operatoB is defined from a Banach spadeo X. The wellposedness and the asymptotic behavior
of the non controlled equation (i.d8,= 0) are studied in several papers, see [3, 4, 10, 11, 19].

The approximate controllability has been studied in the case of ordinary delay; (i.e),=
Id, see e.g., [6, 14, 15, 16, 18, 20, 21]. Actually, S. Krause has studied [16] the approximate
controllability of general boundary systems, see also [8, 17, 21] for recent results.

Here, we characterize the approximate controllability of systems with nonautonomous past
(1.1), as in the ordinary delay case. We give also sufficient conditions to obtain this aim. We
remark here that the modification of the delay can act positively or negatively on the approximate
controllability of these systems.

We end this paper by the study of the approximate controllability of the population equation

R
(Z(t,x) = Dnz(t,x)—dzt,X)+ ¢ b(a)v(t,ax)da— byv(t,r,x)
—bz(X)U(t,X), t> va € Qv
V(t,ax) =-—2v(t,ax)+Apv(t,ax)—dvt,ax) —b@v(t,ax),t >0,

(1.2)
xeQ,0<a<r,

v(t,0,x) f(x)z(t,x), t>0,xe€Q,
9

v(t,ax) =g2z(t,x)=0, t>0,0<a<rxeoQ,

wherez(t, x) is the density of the population at tihand positiorx € Q, andv(t, a, X) is the density

of the subpopulation of pregnant individuals with time of gestatiaihat at timet is in positionx.

The controlu is an external action on the total populatigrior more details on this equation, see

[3, 12]. In [3], we have shown how this population equation can be fitted in the abstract form (2.2).
Here, we show that i, is a bounded function of, the population equation (3.5) is approximately
controllable.

2 Preliminaries

Recall some definitions and basic results needed for the elaboration of this work, for more details,
see [11, 13].

Definition 2.1. A family(V(t,s))i<st sc1 Of bounded linear operators on a Banach spds called
an (exponentially bounded backward) evolution family if

() V(t,T)V(1,8) =V(t,9),V(t,t)=Idforallt <t <st,1,5€],
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(i) the mappingt,s) — V(t,s) is strongly continuous,
(i) [V (t,s)]| <Me¥sY for someM > 1, we Randallt <st,sel.
Herel = [—r,0] or | = (—,0].

We will use evolution semigroup techniques for which we refer to [5]. To that purpose, we
extend(V (t,9))i<st sc1 to an evolution family(V (t,s))i<s onR.

Definition 2.2. (1) The evolution familyV (t,s) )i<st sc1 On X is extended to an evolution family

(\7 (t,5))i<s by setting
(—r,—r), t<s<-r, (ifr <o)
(-1,9), t<-rsel, (ifr <o)
V(t,s) =< V(t,5), t<st,sel,
(1,0, t<0<s,
(

(2) Onthe spacé = LP(R,X), we define the corresponding evolution semigrolift) )i=o by
(Tt)f)(s):=V(ss+t)f(s+t), f €eE,seR,t >0.

It is easy to prove that the semigroGp(t))i>o is strongly continuous of . We denote its
generator byG, D(G)), whereD(G) is a dense subset 6§(RR, X), the space of functions vanishing
at infinity.

Since(G,D(G)) is a local operator, we can define its restriction the sjiace LP(1,X) by

D(G):={fy: feD(G)}, Gf:=(Gf), f=f eD(G).

N This operatoiG is not a generator oR. However, jf one identifieE with the subspacéf €
E: f(s)=0, Vs¢ 1}, thenE remains invariant und€iT (t)):>0. AS a consequence we obtain the
following lemma.

Lemma 2.3. The semigrougTo(t) )t=o induced by(T (t))i=0 ONE is

|0 S+t >0,
(To(t))(s) = { V(s,s+t)f(s+t), s+t<0, (2.1)
and its generator is given b$o = G, D(Gg) = {f € D(G) : f(0) = 0}.
Itis shownin [2, 3, 11, 13] that the wellposedness of
'(t) = X >
X(t) =Ax(t)+P(%), t>0, 2.2)
X(O) =X, Xo=4¢
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is equivalent to show that the operator matrix

-39

D(4) := {(?) € D(A) x D(G) : £(0) = x}

generates a strongly continuous semigroup in the product Banach space
E =X x LP([-r,0],X), p> 1. It has been shown in these references that this occurs for operators
®: C([-r,0],X)NLP([-r,0],X) — X given by
Zyo

d(f):= . dn(e)f(6) (2.3)
with n : [—r,0] — L£(X) is of bounded variation such thiag| ([—r, 0]) < o, wherejn| is the positive
Borel measure of-r,0] defined by the total variation an

To obtain the aim of this paper, we need the following results, see [11].

Lemma 2.4. 1) For eachA € C with RgA) > wo(Tp), we define the bounded operagyr: X — E
by

on the domain

(eaX)(s) :=€NV(s,0)x, s<O0,xeX.

Thengyx is an eigenvector db with eigenvalue\ for everyx € X.
i) For A € C with RgA) > wp(Tp), we have that

Aep(Aa) ifandonlyif A€ p(A+dsy).
Moreover, for thes@ € p(A4) the resolvenR(A, 4) is given by

2= (5 ano ) @9
withry := R(A,A+ @gy).

We consider a general controlled system

{X’(t) = 4X(t)+ Bu(t), t>0,
X(0) = Xo,

where4 generates a strongly continuous semigromipt) );>o on a Banach spacéandB:U —

X a bounded linear control operator, withis another Banach space. The characterization of the
approximate controllability of (2.5) is given in the following lemma. For the proof, we refer to [9,
Prop. 2.1].

Lemma 2.5. The following assertions are equivalent:

i) (4,B) is approximately controllable.

i) (T(t)Bu,X)=0forallt>0andallueU = x =0.

i) (R(\,A4)Bu,X) =0forall A e p(4) and allue U = X =0.

(2.5)
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3 Main Results

In this section we study the approximate controllability of the nonautonomous past delay controlled
equation

X(t) = AX(t) + ®(%) +Bu(t), t>0, (3.0)
X(O) =X, X=0 .
For this purpose, we consider the controlled Cauchy problem
/ — >
X'(t) = AX(t)+ Bu(t), t>0, (3.2)
X(0) = Xo,

whereX (t) = () € £ = X x LP([-1,0],X), andBu(t) = (*§").
This Cauchy problem is wellposed and its mild solution is given by the variation of constants
formula Z
t

X =TOX+ _ T(t—s)<Bu(§S>)ds t>0.

For allt > 0, define the controllability operator

z
R :LY[0,t},U) — E xX, R(u):= Ot‘T(t —S) (Blgs)) ds (3.3)

Definition 3.1. By the approximate controllability (respX-approximate controllabilityl,-approximate
controllability) of the systern(B.1), we design

C rg(R)=E (3.4)

whereC = |, C = 1y the projection orX andC = I1; the projection orl, respectively.
We give now a characterization of the approximate controllability.

Proposition 3.2. The equatior{3.1) is approximately controllable if and only if
(RN, A+ D&y )Bu, X )x x- + (€MV (-,0)R(\, A+ Dg, )Bu, /)g g = Oforall A € p(4)and u € U
=X =1 =0.

Proof. As the approximate controllability of (3.1) is equivalent to one of (3.2), by Lemma 2.5 (iii),
this is equivalent to

(R(A,ﬂ)(%“),(}‘i)>:0 forall Aep(4) and ueU=x=1f =0,

and by (2.4) this is equivalent to

BY r)\CDR()\,Go) Bu X o
<(5)\r)\ (612 + 1d)R(A, Go) (), (f/>> =0 forallA € p(2) andue U

= X = f’ = 0. Thus, we obtain the claim. O
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The characterization of thg,-approximate controllability is given in the following proposition.
Proposition 3.3. The equatior(3.1)is Ly-approximately controllable if and only if
< &V(,00R\,A+®gy)Bu, f' >g =0 forall A € p(4) andue U = f' =0.

Proof. The condition (3.4) is equivalent to

Ut>0Uueu HZT(t) (Bou) =E
which, by the Laplace transform and its uniqueness (see [1]), is equivalent to

Un>wUYueu HZR()\M{Z[) (Bou) =E.

This is equivalent to
(MaR(A, A) (), f)=0 forall Aep(4) andall ueU = f' =0,
and again by (2.4), we obtain our claim. O

By the same proof, we obtain the characterization oidFegpproximate controllability (3.1).
Proposition 3.4. The equatior{3.1)is X-approximately controllable if and only if
<R\ A+®g))BuX >x x-=0 forall A € p(4) andue U = X =0.
We give sufficient conditions for the approximate controllability of the equation (3.1).

Proposition 3.5. Assume thatg(B) is dense irX. Then,

() the equation(3.1)is X-approximately controllable.

(i) span{&V(-,0)x,x € X, A € p(A4)} is dense irE if and only if (3.1) is Lp-approximately con-
trollable if and only if

Proof. (i) Let < R(A\,A+ ®¢))Bu,X >x x-=0 forall A € p(4) andu € U. Sincerg(B) andD(A)
are dense anR(A, A+ ®g,) is bijective, thend’ = 0.

(i) Similarly, the assertion €V (-,0)R(\, A+ ®¢,)Bu, f’ >gg-= 0 for all A € p(4) andu € U
becomes< €V (-,0)x, f’ >g g-= 0 for all

A € p(4) andx € X, and the additional assumption implies ttiat 0. The converse follows easily

by Proposition 3.3 .. O
We end this work by an example of a dynamical population system
R
Z(t,x)  =A0nz(t,X) —dZt,x)+ §b(a)v(t,a x)da— byv(t,r,x)
—bz(X)U(t,X), t> O,X € Qv
V(t,ax) =-—2v(t,ax)+Apv(t,ax)—dvt,ax) —b(@v(t,ax),t >0,

(3.5)
xeQ,0<a<r,

v(t,0,x) = f(x)z(t,x),t >0,x€ Q,
vit,ax) =2z(tx) =0, t>00<a<rxeoQ,
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wherez(t, x) is the density of the population at tihand positiorx € Q, andv(t, a, x) is the density
of the subpopulation of pregnant individuals with time of gestatipthat at timet is in position
X, for more details on this equation, see [3, 12]. The conirid an external action on the total
populationz.

In [3] we have showed in details how to transform this population equation into the following
abstract equation with nonautonomous past

{x’(t) = AX(t) + D(%) +Bu(t), t>0,

3.6
X(O) =X, Xo=0, ( )

where the operatoh = Ay — d generates an exponentially stalligsemigroup(S(t))i>o on X =
L%(Q).
The modified history functio; is

%(s,") = V(s,0)x(t+s,-) ift+s>0
XS = V(s s+t)g(t+s,:) ift+s<0,

where R
V(t,s) = <P@dogslo-d)  { <5<,

)

The delay operatob is given by
Zo
®@)=_ b(=5)f()o(s)ds—bif()o(-r), ¢ €C([-1,0],X).
The control operator iB:U = L2(Q) — X, Bu= bpu, whereb, andb, * are bounded functions.
Under these conditions, the operator is invertible. Hence, by Proposition 3.5, we have the following
result.

Proposition 3.6. The equatior{3.5)is X andL,-approximately controllable.

Proof. By Proposition 3.5 (i), the equation (3.5)Xsapproximately controllable.

To show thel_-approximate controllability, we have to verify thepan{eV (-,0)x,x € X, A €
p(4)} is dense irE = L2([-r,0],L%(Q)). LetA\,,n > 1, the sequence of eigenvalues of Dirichlet
Laplacian/Ap and{@,, n> 1} the basis of associated eigenvectors. FarE* = L?([—r,0],L%(Q)),
assume that 7

0
<eV(,0)@, ' >e= <€V (s0)@, f'(s) >x ds=0
r

foralln>1andA € p(4). Then
Zg R
g\Se™ 0 PO)dog=slo=0d) - @ §/(s) >y ds=0
—r
foralln>1andA € p(A4), which gives
Zo R
e)xse_ obe(o)doe—s(An—d)g:](S)dSZ 0
—r
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for all n> 1 andA € p(A4), with g,(s) :=< @, f'(s) >x is a scalar function orfi—r,0]. Now,
using Stone-Weierstrass we obtain that= 0 for all n > 1, and this yields that’ = 0. Thus, the
population equation ik>-approximately controllable. O
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