SOLUTIONS OF A PAIR OF DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

Kai Lid and Lian-Zhong Yang *
School of Mathematics \& System Sciences
Shandong University
Jinan, Shandong, 250100, P.R. China.

(Communicated by Terry Mills)

Abstract

In this paper, we consider the common solutions of a pair of differential equations and give some of their applications in the uniqueness problem of entire functions.

AMS Subject Classification: 30D35; 30D20.
Keywords: Differential equation, Entire function, Entire solution, Uniqueness.

1 Introduction and main results

In the study of the solutions of complex differential equations, the growth of a solution is a very important property. For linear differential equations of the form

$$
\begin{equation*}
f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{0}(z) f=a(z), \tag{1.1}
\end{equation*}
$$

where $a(z), a_{0}(z), \cdots, a_{n-1}(z)$ are polynomials, it is known that any entire solution of (1.1) must be of finite order, and if some of the coefficients $a_{j}(z)(0 \leq j \leq n-1)$ are replaced by transcendental entire functions, then the equation (1.1) has at least one solution of infinite order. This can be proved by mainly using the Wiman-Valiron theory (see[5], [6]).

It is assumed that the reader is familiar with standard symbols and fundamental results of Nevanlinna Theory (see [8]). We say that two entire functions f and g share the polynomial $Q \mathrm{CM}$ (counting multiplicities), if $f-Q$ and $g-Q$ have the same zeros with the same multiplicities. If $f\left(z_{0}\right)=z_{0}$, then z_{0} is called a fixed point of f. We say that f and g have the same fixed points, if f and g share $z \mathrm{CM}$.

In this paper, by using the Nevanlinna Theory (see [8]), we consider the common solutions of a pair of differential equations

$$
f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{0}(z) f=a(z),
$$

[^0]$$
f^{(n+1)}+b_{n}(z) f^{(n)}+\cdots+b_{0}(z) f=b(z)
$$
with some special entire coefficients $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}, i=0, \cdots, n-1, j=0, \cdots, n$, and give some of their applications in the uniqueness theorem of meromorphic functions. The results improve the theorems given by Yang (see [9]).

Theorem 1.1. Let α be an entire function and β be a nonconstant entire function, Q be a polynomial of degree $q<n, n(\geq 2)$ be a positive integer. Then the following pair of differential equations

$$
\begin{equation*}
f^{(n)}-e^{\alpha} f=Q, \quad f^{\prime}-e^{\beta} f=Q-Q^{\prime} \tag{1.2}
\end{equation*}
$$

has no common solutions.
Corollary 1.2. If a pair of differential equations

$$
\begin{equation*}
f^{(n)}-e^{\alpha} f=z, \quad f^{\prime}-e^{\beta} f=z-1 \tag{1.3}
\end{equation*}
$$

has common solutions, where α and β are entire functions and $n(\geq 2)$ is a integer, then α and β must be constants and f assumes the form $f=C e^{z}-z, C$ is a nonzero constant.

Proof. By Theorem 1.1, β must be a constant, and so f is of finite order. From the first equation of (1.3), we know that α is also a constant. Solving (1.3), we get $f=C e^{z}-z, C$ is a nonzero constant.

Theorem 1.3. Let α and β be two nonconstant entire functions, $e^{\alpha-\beta} \not \equiv 1$. Then the following pair of differential equations

$$
\begin{equation*}
f^{(n)}-e^{\alpha} f=z, \quad f^{(n+1)}-e^{\beta} f=z \tag{1.4}
\end{equation*}
$$

has no common solutions.
Similarly as the proof of Corollary 1.2 , we have the following result.
Corollary 1.4. If a pair of differential equations

$$
f^{(n)}-e^{\alpha} f=z, \quad f^{(n+1)}-e^{\beta} f=z
$$

has common solutions, where α and β are entire functions, then f assumes the form $f=$ $C e^{z}-z$.

2 Some Lemmas

Lemma 2.1. [7] Let f be a nonconstant entire function, Q be a polynomial of degree q, and $n>q$. If $f, f^{\prime}, f^{(n)}$ share $Q C M$, then

$$
m\left(r, \frac{1}{f-Q}\right)=m\left(r, \frac{1}{f-Q^{\prime}}\right)+S(r, f)=S(r, f)
$$

Lemma 2.2. [3] Let f be a transcendental meromorphic function, k be a positive number, P be a nonzero polynomial. For any $\varepsilon>0$, then

$$
T(r, f) \leq\left(1+\frac{1}{k}+\varepsilon\right)\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-P}\right)\right\}+S(r, f)
$$

Lemma 2.3. Let f be a common entire solution of a pair of differential equations

$$
\frac{f^{(n)}-Q}{f-Q}=e^{\alpha}, \quad \frac{f^{\prime}-Q}{f-Q}=e^{\beta},
$$

where $n(\geq 2)$ be a positive integer and Q be a nonconstant polynomial of degree $q, n>q$, α and $\beta(\not \equiv \alpha)$ are nonconstant entire functions. Then

$$
T\left(r, e^{\alpha}\right)+T\left(r, e^{\beta}\right)=S(r, f) .
$$

Proof. Obviously f must be a transcendental entire function. From the conditions of Lemma 2.3, we know that $f, f^{\prime}, f^{(n)}$ share $Q \mathrm{CM}$. Set

$$
A(z)=\frac{f^{(n)}-f^{\prime}}{f-Q}, \quad B=\frac{f^{(n)}-Q}{f^{\prime}-Q} .
$$

Then from the lemma of logarithmic derivatives, Lemma 2.1, and $n>q$, we have

$$
\begin{aligned}
m(r, A)=m\left(r, \frac{f^{(n)}-f^{\prime}-Q^{\prime}+Q^{\prime}}{f-Q}\right) & =m\left(r, \frac{f^{(n)}-Q^{(n)}+Q^{(n)}-Q^{\prime}}{f-Q}\right)+S(r, f) \\
& \leq m\left(r, \frac{Q^{\prime}}{f-Q}\right)+S(r, f)
\end{aligned}
$$

Hence we get

$$
T(r, A)=S(r, f) .
$$

By the second fundamental theorem of Nevanlinna theory, we have

$$
\begin{aligned}
T(r, B) & \leq N(r, B)+N\left(r, \frac{1}{B}\right)+N\left(r, \frac{1}{B-1}\right)+S(r, B) \\
& \leq N\left(r, \frac{1}{A}\right)+S(r, B) \\
& \leq T(r, A)=S(r, f) .
\end{aligned}
$$

Noticing that $e^{\beta}=\frac{A}{B-1}$ and $e^{\alpha}=B e^{\beta}$, we get $T\left(r, e^{\beta}\right)=S(r, f)$ and $T\left(r, e^{\alpha}\right)=S(r, f)$, Lemma 2.3 is thus proved.
Lemma 2.4. Let f be a common entire solution of a pair of differential equations

$$
\frac{f^{(n)}-z}{f-z}=e^{\alpha}, \quad \frac{f^{(n+1)}-z}{f-z}=e^{\beta},
$$

where α and $\beta \not \equiv \alpha$ are nonconstant entire functions. Then

$$
T\left(r, e^{\alpha}\right)+T\left(r, e^{\beta}\right)=S(r, f) .
$$

Proof. If $n=1$, we easily get the result from Lemma 2.3. If $n \geq 2$, set

$$
A(z)=\frac{f^{(n+1)}-f^{(n)}}{f-z}, \quad B=\frac{f^{(n+1)}-z}{f^{(n)}-z} .
$$

By the same way as the proof of Lemma 2.3, we get $T(r, A)=S(r, f)$ and $T(r, B)=S(r, f)$.
Noticing that $e^{\beta}=\frac{A}{B-1}$ and $e^{\alpha}=B e^{\beta}$, we get $T\left(r, e^{\beta}\right)=S(r, f)$ and $T\left(r, e^{\alpha}\right)=S(r, f)$, Lemma 2.4 is thus proved.

3 Proof of Theorems

Proof of Theorem 1.1. Suppose that the pair of (1.2) has a solution $f(z)$, then $f(z)$ must be a nonconstant entire function which satisfies

$$
\begin{equation*}
f^{(n)}-e^{\alpha} f=Q, \quad f^{\prime}-e^{\beta} f=Q-Q^{\prime} . \tag{3.1}
\end{equation*}
$$

Set $f=F-Q$, then F satisfies

$$
\begin{equation*}
\frac{F^{(n)}-Q}{F-Q}=e^{\alpha}, \quad \frac{F^{\prime}-Q}{F-Q}=e^{\beta} . \tag{3.2}
\end{equation*}
$$

From Lemma 2.3, we have

$$
T\left(r, e^{\alpha}\right)+T\left(r, e^{\beta}\right)=S(r, F)
$$

Taking the derivative on both sides of the second equation of (3.1) gives

$$
f^{\prime \prime}=e^{2 \beta} f+\beta^{\prime} e^{\beta} f+e^{\beta}\left(Q-Q^{\prime}\right)+\left(Q^{\prime}-Q^{\prime \prime}\right) .
$$

In the same manner, we have

$$
\begin{equation*}
f^{\prime \prime \prime}=\left(e^{3 \beta}+3 \beta^{\prime} e^{2 \beta}+\beta^{\prime \prime} e^{\beta}+\beta^{\prime 2} e^{\beta}\right) f+\left(e^{2 \beta}+2 \beta^{\prime} e^{\beta}\right)\left(Q-Q^{\prime}\right)+e^{\beta}\left(Q^{\prime}-Q^{\prime \prime}\right)+\left(Q^{\prime \prime}-Q^{\prime \prime \prime}\right) . \tag{3.3}
\end{equation*}
$$

By inducting in number n and noticing $n>q$, we obtain that

$$
\begin{equation*}
f^{(n)}=\left(e^{n \beta}+p_{1} e^{(n-1) \beta}+\cdots+p_{n-1} e^{\beta}\right) f+q_{1} e^{(n-1) \beta}+q_{2} e^{(n-2) \beta}+\cdots+q_{n-1} e^{\beta}+q_{n}, \tag{3.4}
\end{equation*}
$$

where $p_{i}(i=1,2, \cdots n-1)$ and $q_{j}(j=1,2, \cdots n)$ are the differential polynomials in β and Q. Set

$$
\begin{gather*}
e^{n \beta}+p_{1} e^{(n-1) \beta}+p_{2} e^{(n-2) \beta}+\cdots+p_{n-1} e^{\beta}=M, \tag{3.5}\\
q_{1} e^{(n-1) \beta}+q_{2} e^{(n-2) \beta}+\cdots+q_{n-1} e^{\beta}+q_{n}=N, \tag{3.6}
\end{gather*}
$$

then $f^{(n)}=M f+N$. From (3.2), we know that f and $f^{(n)}-Q$ have the same zeros with same multiplicities, by Lemma 2.2, for any $\varepsilon>0$, then

$$
\begin{aligned}
T(r, f) & \leq\left(1+\frac{1}{k}+\varepsilon\right)\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(n)}-Q}\right)\right\}+S(r, f) \\
& \leq 2\left(1+\frac{1}{k}+\varepsilon\right) N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

If $N \equiv Q$, then from (3.6), we get

$$
(n-1) T\left(r, e^{\beta}\right)=S\left(r, e^{\beta}\right) .
$$

This contradicts that β is a nonconstant entire function. If $N \not \equiv Q$, then

$$
\begin{aligned}
T(r, f) & \leq 2\left(1+\frac{1}{k}+\varepsilon\right) N\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq 2\left(1+\frac{1}{k}+\varepsilon\right) N\left(r, \frac{1}{N-Q}\right)+S(r, f)
\end{aligned}
$$

From Lemma 2.3, we get

$$
T(r, f)=S(r, f)
$$

This is a contradiction. Theorem 1.1 is thus proved.

Proof of Theorem 1.3

Suppose that the pair of equations (1.4) has a solution $F(z)$, then $F(z)$ must be a nonconstant entire function which satisfies

$$
\begin{equation*}
F^{(n)}-e^{\alpha} F=z, \quad F^{(n+1)}-e^{\beta} F=z . \tag{3.7}
\end{equation*}
$$

By differentiating the first equation and combining with the second equation of (3.7), we obtain

$$
F^{\prime} e^{\alpha}+F e^{\alpha} \alpha^{\prime}=e^{\beta} F+z-1 .
$$

Let $p=e^{-\alpha}, G=e^{\beta-\alpha}-\alpha^{\prime}$. Then $F^{\prime}=G F+(z-1) p$ and

$$
F^{\prime \prime}=\left(G^{2}+G^{\prime}\right) F+p[(z-1) G+1]+(z-1) p^{\prime} .
$$

By mathematical induction, for any positive integer n,

$$
\begin{equation*}
F^{(n)}=F\left(G^{n}+H_{n-1}\right)+p H_{n-1}+p^{\prime} H_{n-2}+\cdots+(z-1) p^{(n-1)} . \tag{3.8}
\end{equation*}
$$

(Here we denote by H_{j} a differential polynomial with degree j of G, which may not be the same each time it occurs). From (3.7) and (3.8), we have

$$
\begin{array}{r}
e^{\alpha} F+z=F\left(G^{n}+H_{n-1}\right)+p H_{n-1}+p^{\prime} H_{n-2}+\cdots+(z-1) p^{(n-1)}, \\
e^{\alpha}=G^{n}+H_{n-1}+\frac{1}{F}\left\{p H_{n-1}+p^{\prime} H_{n-2}+\cdots+(z-1) p^{(n-1)}-z\right\} . \tag{3.10}\\
\text { If } p H_{n-1}+p^{\prime} H_{n-2}+\cdots+(z-1) p^{(n-1)} \not \equiv z \text {, set } F=f-z \text {. Then (3.7) becomes }
\end{array}
$$

$$
\frac{f^{(n)}-z}{f-z}=e^{\alpha}, \quad \frac{f^{(n+1)}-z}{f-z}=e^{\beta} .
$$

From Lemma 2.4, we have

$$
T\left(r, e^{\alpha}\right)+T\left(r, e^{\beta}\right)=S(r, f)
$$

Together with (3.10), we have

$$
\begin{aligned}
T(r, F) & \leq n T(r, G)+\sum_{i=1}^{n-1} T\left(r, H_{i}\right)+\sum_{i=0}^{n-1} T\left(r, p^{(i)}\right)+O(1) \\
& \leq S(r, F)
\end{aligned}
$$

This is a contradiction. Hence we get

$$
\begin{equation*}
p H_{n-1}+p^{\prime} H_{n-2}+\cdots+(z-1) p^{(n-1)} \equiv z . \tag{3.11}
\end{equation*}
$$

From (3.10), we get

$$
\begin{equation*}
e^{\alpha} \equiv\left(e^{\alpha-\beta}\right)^{n}+l_{1}\left(e^{\alpha-\beta}\right)^{n-1}+\cdots+l_{n-1} e^{\alpha-\beta}+l_{n}, \tag{3.12}
\end{equation*}
$$

where $l_{j}(j=1, \cdots n)$ are polynomials in z, α, β and their derivatives. If there exists an set I with meas $I=+\infty$ such that

$$
\begin{equation*}
T\left(r, e^{\alpha-\beta}\right)=o\left\{T\left(r, e^{\alpha}\right)\right\}, \quad r \in I, \tag{3.13}
\end{equation*}
$$

then from (3.12) and (3.13), we have $T\left(r, e^{\alpha}\right)=o\left(T\left(r, e^{\alpha}\right)\right)$: this is impossible. So there exists a set E with finite linear measure such that

$$
\begin{equation*}
T\left(r, e^{\alpha-\beta}\right)=O\left\{T\left(r, e^{\alpha}\right)\right\}, \quad r \notin E, \tag{3.14}
\end{equation*}
$$

and

$$
\sum_{i=1}^{n} T\left(r, l_{i}\right)=O\left\{T\left(r, e^{\alpha-\beta}\right)\right\}, \quad r \notin E .
$$

From (3.12), we obtain

$$
\begin{equation*}
T\left(r, e^{\alpha}\right)=n T\left(r, e^{\alpha-\beta}\right)+o\left\{T\left(r, e^{\alpha-\beta}\right)\right\}, \quad r \notin E . \tag{3.15}
\end{equation*}
$$

On the other hand, from (3.11) and $p=e^{-\alpha}$, we have

$$
\begin{equation*}
z e^{\alpha}=H_{n-1}+\frac{p^{\prime}}{p} H_{n-2}+\cdots+\frac{p^{(n-2)}}{p} H_{1}+(z-1) \frac{p^{(n-1)}}{p}, \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(r, e^{\alpha}\right)=(n-1) T\left(r, e^{\alpha-\beta}\right)+o\left\{T\left(r, e^{\alpha-\beta}\right)\right\}, \quad r \notin E . \tag{3.17}
\end{equation*}
$$

From (3.15) and (3.17), we have

$$
T\left(r, e^{\alpha}\right)=o\left\{T\left(r, e^{\alpha-\beta}\right)\right\}, \quad r \notin E .
$$

This is a contradiction. Thus we complete the proof of Theorem 1.3.

4 Applications

In 1986, Jank et al. (see [4]) proved the next result.
Theorem A[4]. Let f be a nonconstant meromorphic function, let $a \neq 0$ be a finite constant. If $f, f^{\prime}, f^{\prime \prime}$ share the value $a \mathrm{CM}$, then $f=f^{\prime}$.

In 1998, Gundersen and Yang(see [2]) proved that every solution of the differential equation

$$
F^{(n)}-e^{\alpha(z)} F=1
$$

is infinite order, where $\alpha(z)$ is a nonconstant entire function. And they proved the following theorem.

Theorem B[2]. Let f be a nonconstant entire function of finite order, let $a \neq 0$ be a finite constant, and let n be a positive integer. If the value a is shared by $f, f^{(n)}, f^{(n+1)}$, then $f=f^{\prime}$.

Theorem A, B suggest the following question of Yi-Yang.
Question 1. Let f be a non-constant meromorphic function, let $a \neq 0$ be a finite constant, and let n and m be positive integers satisfying $n<m$. If $f, f^{(n)}, f^{(m)}$ share the value $a \mathrm{CM}$, where n and m are not both even or both odd, must $f \equiv f^{(n)}$?

The following example shows that the answer to Question 1 is, in general, negative. Let n and m be positive integers satisfying $m>n+1$, and let b be a constant which satisfies $b^{n}=b^{m} \neq 1$. Set $a=b^{n}$ and $f=e^{b z}+a-1$. Then $f, f^{(n)}, f^{(m)}$ share the value a CM, but $f \not \equiv f^{(n)}$.

Regarding to Theorem A, a natural question is:
Question 2. what can be said when the value a is replaced by a fixed point?
Regarding to the question 2, there have been some results.
Theorem C[7]. Let f be a nonconstant entire function, $n \geq 2$ be a positive integer. If $f, f^{\prime}, f^{(n)}$ have the same fixed points, then $f=f^{\prime}$.

Theorem $\mathbf{D}[1]$. Let f be a nonconstant entire function, n be a positive integer. If f, $f^{(n)}, f^{(n+1)}$ have the same fixed points, then $f=f^{\prime}$.

Using the theorems in our paper, we give Theorem C, D in a short proof.
Proof. From the conditions of Theorem C, we get

$$
\frac{f^{(n)}-z}{f-z}=e^{\alpha}, \quad \frac{f^{\prime}-z}{f-z}=e^{\beta}
$$

Set $F=f-z$, then we get the following pair of differential equations

$$
\begin{equation*}
F^{(n)}-e^{\alpha} F=z, \quad F^{\prime}-e^{\beta} F=z-1 \tag{4.1}
\end{equation*}
$$

From Corollary 1.2 , we get $F=C e^{z}-z$, which implies that $f=C e^{z}$ and $f=f^{\prime}, C$ is a nonzero constant. Similarly we get the proof of Theorem D.

References

[1] J. M. Chang and M. L. Fang., Entire functions that share a small function with their derivatives, Complex Var. Theory Appl. 49(12)(2004), pp. 871-895.
[2] G. Gundersen and L. Z. Yang., Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl. 223(1)(1998), pp. 88-95.
[3] X. H. Hua., On a problem of Hayman, Kodai Math. J. 13(3)(1990), pp. 386-390.
[4] G. Jank., E. Mues., and L. Volkmann., Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Var. Theory Appl. 6(1)(1986), pp. 51-71.
[5] I. Laine., Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, vol. 15, Berlin: Walter de Gruyter \& Co. 1993.
[6] G. Valiron., Lectures on the General Theory of Integral Functions, New York: Chelsea, 1949.
[7] J. P. Wang., Entire functions that share a polynomial with their derivatives, J. Math. Anal. Appl. 320(2)(2006), pp. 703-717.
[8] C. C. Yang and H. X. Yi., Uniqueness theory of meromorphic functions, Mathematics and its Applications, vol. 557, Dordrecht: Kluwer Academic Publishers Group, 2003.
[9] L. Z. Yang., Solutions of a pair of differential equations and their applications, Proc. Japan Acad. Ser. A. Math. Sci. 80(1)(2004), pp. 1-5.

[^0]: *E-mail address:liuk@mail.sdu.edu.cn, lzyang@sdu.edu.cn

