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Abstract

In this paper, we consider the common solutions of a pair of differential equations and
give some of their applications in the uniqueness problem of entire functions.
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1 Introduction and main results

In the study of the solutions of complex differential equations, the growth of a solution is a
very important property. For linear differential equations of the form

f e, 1(2f"Y 4. ray(z)f =a(2), (1.1)

wherea(z), ap(2),- - -, an—1(2) are polynomials, it is known that any entire solution of (1.1)
must be of finite order, and if some of the coefficieaj&) (0 < j < n— 1) are replaced by
transcendental entire functions, then the equation (1.1) has at least one solution of infinite
order. This can be proved by mainly using the Wiman-Valiron theory (see[5], [6]).

It is assumed that the reader is familiar with standard symbols and fundamental results
of Nevanlinna Theory (see [8]). We say that two entire functibasidg share the polyno-
mial Q CM (counting multiplicities), iff — Q andg— Q have the same zeros with the same
multiplicities. If f(z) = zy, thenz is called a fixed point of. We say thatf andg have
the same fixed points, if andg sharez CM.

In this paper, by using the Nevanlinna Theory (see [8]), we consider the common solu-
tions of a pair of differential equations

fWta, 1(2f" Y 4. 1 a(2)f =a(2),
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f(n+1) —|—bn(Z)f(n) +---+bo(2)f =b(2),

with some special entire coefficienfs;} and{b;},i=0,---,n—1, j=0,---,n, and give
some of their applications in the uniqueness theorem of meromorphic functions. The results
improve the theorems given by Yang (see [9]).

Theorem 1.1. Leta be an entire function an@ be a nonconstant entire functio@ be
a polynomial of degreg < n, n(> 2) be a positive integer. Then the following pair of
differential equations

f_e?f=Q, f-eff=0Q-0Q, (1.2)
has no common solutions.
Corollary 1.2. If a pair of differential equations
o f—Pf=z-1, (1.3)

has common solutions, whemeand 3 are entire functions and(> 2) is a integer, thera
and 3 must be constants anfdassumes the forrh= C& — z, C is a nonzero constant.

Proof. By Theorem 1.13 must be a constant, and $as of finite order. From the first
equation of (1.3), we know that is also a constant. Solving (1.3), we det C€&#—z Ciis
a nonzero constant.

Theorem 1.3. Leta andp be two nonconstant entire functior; P = 1. Then the follow-
ing pair of differential equations

f_eff=7z D) _ff—7 (1.4)
has no common solutions.
Similarly as the proof of Corollary 1.2, we have the following result.

Corollary 1.4. If a pair of differential equations
f_ef =z D _Bf—7
has common solutions, whemeand 3 are entire functions, theifi assumes the forrh =
Ce¢—-z
2 Some Lemmas

Lemma 2.1. [7] Let f be a nonconstant entire functio, be a polynomial of degreg,
andn> q. If f, f/, (" shareQ CM, then

1 1
f—Q> :m(r,f_iQ,)JrS(r, f)=9r,f).

Lemma 2.2. [3] Let f be a transcendental meromorphic functi&rhe a positive number,
P be a nonzero polynomial. For argy> 0, then

m(r,

1
flk—p

T(r,f) < (1+}+s){N(r,1)+N(r,

. f JH+S( ),
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Lemma 2.3. Let f be a common entire solution of a pair of differential equations

(n) _

rm-Q_ e, —Q =,
f—Q f—Q

wheren(> 2) be a positive integer an@ be a nonconstant polynomial of degmgen > q,

a andf3(# a) are nonconstant entire functions. Then

T(r,e")+T(r,é’) = Sr, f).

Proof. Obviouslyf must be a transcendental entire function. From the conditions of
Lemma 2.3, we know that, f/, f(" shareQ CM. Set

f(m) _ §/ fW_Q
AD="q B=rq
Then from the lemma of logarithmic derivatives , Lemma 2.1, andg, we have
B _ f/ QI+QI B f(n) _ Q(ﬂ) +Q(n) _ Q/
m(r.A) = mir, - o ) = mr —o )tSEn
< L)+ S,
Hence we get
T(r,A) =g, f).

By the second fundamental theorem of Nevanlinna theory, we have
1 1
T(B) < N(LB)+N(r,Z)+N(r 5=) +S(r,B)

N(r, %\)—FS(I‘, B)
< T(r,A)=9(r,f).

Noticing thate? = 2; ande® = B, we getT(r,é®) = §(r, f) and T(r,e") = Sr, f),
Lemma 2.3 is thus proved.

IN

Lemma 2.4. Let f be a common entire solution of a pair of differential equations

f) —z
f—z

:ea7 f(n+l)_Z:eB7

f—2z

wherea andf3 # a are nonconstant entire functions. Then
T(re")+T(r,e) =S f).

Proof. If n = 1, we easily get the result from Lemma 2.3nl$ 2, set
f(n+1) _ £(n) f(+l) _ 5
- B=———".

fm—z

By the same way as the proof of Lemma 2.3, weD@tA) = S(r, f) andT (r,B) = S(r, f).
Noticing thate? = z2; ande” = B€?, we getT (r,é®) = §(r, f) and T (r,e") = S, f),
Lemma 2.4 is thus proved.

AZ) = f—z
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3 Proof of Theorems

Proof of Theorem 1.1 Suppose that the pair of (1.2) has a solutf@n), then f (z) must
be a nonconstant entire function which satisfies

fV_eff=Q, f-f=0-0Q. (3.1)

Setf = F — Q, thenF satisfies

(3.2)

From Lemma 2.3, we have
T(r,e")+T(r,e®) = S(r,F).
Taking the derivative on both sides of the second equation of (3.1) gives
f"=ePf+peff+fQ-Q)+(Q-Q).
In the same manner, we have

1" = (¥ +3pe® +p'e + B2 + (e +28'¢")(Q- Q) + (@ - Q") +(Q"-Q").
(3.3)
By inducting in numben and noticingn > g, we obtain that

£ = (&P + pre™ Pt 4 py1€f)f+ e VP e 2Pt gy 1P+ g, (3.4)

wherep;(i=1,2,---n—1) andq;(j = 1,2,---n) are the differential polynomials ifd and
Q. Set
enB + ple(nfl)B + pze(nfz)B 4.4 pn—leG — [\/l7 (35)

qle(n—l)B + qze(n_z)p’ 44 Qn—leB +0n =N, (36)

thenf(™ = Mf +N. From (3.2), we know thaf and f(" — Q have the same zeros with
same multiplicities, by Lemma 2.2, for aey> 0, then

1
f_Q
1 1
< 2(1+R+8)N(r,?)+5(r,f).

If N = Q, then from (3.6), we get
(n—1)T(r,e®) = §(r,eb).

This contradicts thgb is a nonconstant entire function.NfZ£ Q, then

TR < (L+= 48N ) +N,

X }+S 1)

T(r,f) < 2(1+%+E)N(r,%)+$(l’, f)

< 2(1+%+8)N(r,

N_Q)+S(r, f).



Solutions of a pair of differential equations 49

From Lemma 2.3, we get
T(r,f)=9(rf).

This is a contradiction. Theorem 1.1 is thus proved.

Proof of Theorem 1.3

Suppose that the pair of equations (1.4) has a soldgi@p, thenF(z) must be a non-
constant entire function which satisfies

FW_eF=z FMD_fF=z (3.7)

By differentiating the first equation and combining with the second equation of (3.7), we
obtain
F'e®+Fefa = fF +z—1.

Letp=e9 G=€P"%—qa’. ThenF’ = GF +(z—1)pand
F"=(G°+G)F +pl(z-1)G+ 1+ (z—-1)p.
By mathematical induction, for any positive integer
FV = F(G"+Hn 1)+ pHr1+ PHn 2+ + (z— 1)p" Y. (3.8)

(Here we denote bid; a differential polynomial with degregof G, which may not be the
same each time it occurs). From (3.7) and (3.8), we have

€F +2=F(G"+Hn_1)+ pHy-1+ PHn_2+ -+ (z— 1) p"~Y), (3.9)

1
8 =G+ Hna+ ={pHh1+ PHn 2+ +(z-1)p" Y -z} (3.10)
If pHh 1+ PHn 2+~ +(z—1)p"Y #£ 7 setF = f —z Then (3.7) becomes

fn) _ 2 f(n+1) _

z
=, =

f—z f—z
From Lemma 2.4, we have

T(r,e")+T(r,é’) =9r, f).
Together with (3.10), we have

T(hF) < nT(r,G)+r§llT(r,Hi)+r§:T(r,p<i))+0(1)

|
< SrF).
This is a contradiction. Hence we get

pHr_1+ P Hyo+ -+ (z—1)p" YV =2z (3.11)
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From (3.10), we get
= (&P (e® )t e P, (3.12)

wherel(j = 1,---n) are polynomials irz, a, B and their derivatives. If there exists an bet
with measl= + such that

T(r,e"P)=o{T(r,e")}, rel, (3.13)
then from (3.12) and (3.13), we haVdr,e”) = o(T(r,€")): this is impossible. So there
exists a set E with finite linear measure such that

T(r,e" P)=0OfT(re")}, r¢E, (3.14)

and
n

ZT(r,Ii) =0O{T(r,e® P}, re¢E.
From (3.12), we obtain
T(r,e") =nT(r,e® P)+o{T(r,e" P)}, re¢E. (3.15)

On the other hand, from (3.11) apd= e %, we have

p/ p(n—Z) p(n—l)
zé = Hn_1+BHn_2+~-+ Hi 4 (z—1) o (3.16)
and
T(re")=Mn-1T(re P)+o{T(r,e" P)}, reE. (3.17)

From (3.15) and (3.17), we have
T(r,e")=o{T(r,e" P}, r¢E.

This is a contradiction. Thus we complete the proof of Theorem 1.3.

4 Applications

In 1986, Janlet al. (see [4]) proved the next result.
Theorem A[4]. Let f be a nhonconstant meromorphic function, &£ 0 be a finite
constant. Iff, f/, f” share the valua CM, thenf = f’.
In 1998, Gundersen and Yang(see [2]) proved that every solution of the differential
equation
FN _g@F —1

is infinite order, where(z) is a nonconstant entire function. And they proved the following
theorem.

Theorem B[2]. Let f be a nonconstant entire function of finite order,det O be a
finite constant, and letbe a positive integer. If the valwgs shared byf, f(W, f("+1) then
f=f.
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Theorem A, B suggest the following question of Yi-Yang.

Question 1 Let f be a non-constant meromorphic function,det 0 be a finite con-
stant, and leb andm be positive integers satisfying< m. If f, f(", f(™ share the value
a CM, wheren andm are not both even or both odd, mudst f(W?

The following example shows that the answer to Question 1 is, in general, negative. Let
n andm be positive integers satisfying > n+ 1, and letb be a constant which satisfies
b"=bM+£ 1. Seta=b"andf = &Z+a—1. Thenf, f(V, (™ share the valua CM, but
f£ 10,

Regarding to Theorem A, a natural question is:

Question 2 what can be said when the valaés replaced by a fixed point ?

Regarding to the question 2, there have been some results.

Theorem C[7]. Let f be a nonconstant entire functiom> 2 be a positive integer. If
f, £/, (" have the same fixed points, thén= f'.

Theorem D[1]. Let f be a nonconstant entire functiombpe a positive integer. If,
f(W, £("1) have the same fixed points, thén= f'.

Using the theorems in our paper, we give Theorem C, D in a short proof.

Proof. From the conditions of Theorem C, we get

fl—z
f_Z_eﬁ.

SetF = f — z, then we get the following pair of differential equations
FW_efF=z F -éfF=z-1 (4.1)

From Corollary 1.2, we gef = C€& — z, which implies thatf =Ce& andf = f/,Cis a
nonzero constant. Similarly we get the proof of Theorem D.
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