On Absolute Cesìro Summability Factors of Infinite Series

Hikmet Seyhan Özarslan*
Department of Mathematics, Erciyes University, Kayseri 38039, TURKEY

(Communicated by Hüseyin Bor)

Abstract

In this paper, a general theorem concerning the $\varphi-|C, 1|_{k}$ summability factors of infinite series has been proved.

AMS Subject Classification: 40F05; 40D15; 40D25.
Keywords: Absolute Cesàro summability, infinite series, summability factors.

1 Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. By $\left(t_{n}\right)$, we denote the n-th $(C, 1)$ means of the sequence $\left(n a_{n}\right)$.The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

and it is said to be summable $\varphi-|C, 1|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

If we take $\varphi=n$, then $\varphi-|C, 1|_{k}$ summability reduces to $|C, 1|_{k}$ summability.

2 The Known Result.

Concerning the $|C, 1|_{k}$ summability factors, Mazhar [2] has proved the following theorem.

[^0]Theorem 2.1. If

$$
\begin{gather*}
\lambda_{m}=o(1) \quad \text { as } \quad m \rightarrow \infty, \tag{2.1}\\
\sum_{n=1}^{m} n \log n\left|\Delta^{2} \lambda_{n}\right|=O(1), \tag{2.2}\\
\sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v}=O(\log m) \quad \text { as } \quad m \rightarrow \infty, \tag{2.3}
\end{gather*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

3 The Main Result.

The aim of this paper is to generalize Theorem 2.1 for the $\varphi-|C, 1|_{k}$ summability. Now we shall prove the following theorem.

Theorem 3.1. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and the conditions (2.1)(2.2) of Theorem 2.1 are satisfied. If

$$
\begin{gather*}
\sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}\right|^{k}=O(\text { logm }) \text { as } m \rightarrow \infty \tag{3.1}\\
\sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k}}\right), \tag{3.2}
\end{gather*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
It should be noted that if we take $\varphi_{n}=n$ in Theorem 3.1, then we get Theorem 2.1. Because in this case condition (3.1) reduces to condition (2.3) and condition (3.2) reduces to

$$
\begin{equation*}
\sum_{n=v}^{m} \frac{1}{n^{2}}=O\left(\frac{1}{v}\right) \tag{3.3}
\end{equation*}
$$

but this always holds.

4 Proof of the Theorem 3.1.

Let T_{n} be the n-th $(C, 1)$ means of the sequence $\left(n a_{n} \lambda_{n}\right)$. Applying Abel's transformation, we get that

$$
\begin{aligned}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} & =\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{r=0}^{v} r a_{r}+\frac{\lambda_{n}}{n+1} \sum_{r=0}^{n} r a_{r} \\
& =\frac{1}{n+1} \sum_{v=0}^{n-1}(v+1) \Delta \lambda_{v} t_{v}+\lambda_{n} t_{n} \\
& =T_{n, 1}+T_{n, 2} .
\end{aligned}
$$

Since $\left|T_{n, 1}+T_{n, 2}\right|^{k}<2^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}\right)$, in order to complete the proof of the Theorem 3.1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2 \tag{4.1}
\end{equation*}
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k ', where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v}(v+1) t_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2 k}}\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2 k}} \sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}\left\{\sum_{v=1}^{n} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\left\{\sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+1}}\right\} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| \sum_{r=1}^{v} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k}+m\left|\Delta \lambda_{m}\right| \sum_{r=1}^{m} \frac{\varphi_{r}^{k-1}}{r^{k}}\left|t_{r}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| \log v+\sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| \log v+m\left|\Delta \lambda_{m}\right| \operatorname{logm} \\
& =O(1) a s \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of the Theorem 3.1. Finally,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, 2}\right|^{k} & =\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\lambda_{n} t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k}\left|\sum_{v=n}^{\infty} \Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \log v \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem 3.1. Therefore we get that

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2
$$

This completes the proof of Theorem 3.1.

References

[1] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. Lond. Math. Soc. 7 (1957), pp. 113-141.
[2] S. M. Mazhar, On $|C, 1|_{k}$ summability factors of infinite series. Indian J. Math. 14 (1972), pp. 45-48.
[3] H. Seyhan, The absolute summability methods . Ph.D. Thesis, Kayseri (1995), pp. 157.

[^0]: *E-mail address: seyhan@erciyes.edu.tr

