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Abstract
Let T be a time scale. We study the nonlinear Sturm-Liouville problem
—uA(t) = Af(t,u(o(t), te[o1],
au(0) —Bu”(0) =0, yu(a(1))+du™(a(1)) =0,

wherea, 3,y,6 > 0, yB+ad+ayo(1) > 0. The inhomogeneous terfn T x RT — R
is a sign-changing continuous function. Using Krasnosélskone-theoretic theo-
rem, we obtain existence theorems for at least one or two positive solutions.
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1 Introduction
We study
—UPA(t) = M (t,u(o(t))), tel0,1], (1.1)
au(0) —Bu”(0) =0, yu(o(1))+du”(o(1)) =0, (1.2)

wherea,B,y,d > 0 andyB +ad+ayo(l) >0, andf: T x R* — R is a sign-changing
continuous function.

This manuscript is partially motivated by the results in the papers [1, 10, 12, 14]. In[1]
Agarwalet al. showed the existence of positive solutions to semipositang) conjugate
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boundary value problems. In [10], Kosmatov showed the existence of at least one positive
solution to them-point eigenvalue problem [p(t)u'(t)] = Af(t,u(t)),0 <t < 1, U (0) =
0,5 ™ ?aju(n;) = u(1), wherey ™ ?a; < 1. Sun and Sun, [12], established the existence of
at least one positive solution to the singular semipositone boundary value prehiém
mPu = A f(t,u) +g(t,u),0 <t < 1,u(0) = 0,u(1) = 0. Yuetal, in [14], gave sufficient
conditions for the existence of multiple positive solutions of the boundary value problem
X" =N (t,x) =0,0<t < 1,x(0) =X(n) =X’(1) = 0wheref is allowed to be singular at
t=0ort=1.

We present some basic definitions which can be found in Atici and Guseinov [2],
Bohner and Peterson [3, 4], Hilger [7], and Kaymakcadaal. [9].

A time scal€T is a closed honempty subset®f Fort < supT andr > inf T, we define

theforward jump operatoro, and thebackward jump operatoip, respectively, by

ot)=inf{teT|t>t}eT,
p(r)=sup{teT|t<r}eT,
forallt € T. If o(t) > t, t is said to beight scatteredand ifa(t) =t, t is said to beight
densg(rd). If p(t) <t, t is said to bdeft scatteredand ifp(t) =t, t is said to bdeft dense
(Id). A function f is left-dense continuous, Id-continuous,fifis continuous at each left
dense point irT and its right-sided limits exist at each right dense points.in
Foru: T — R andt € T, (assume is not left scattered if = supT), we define thelelta

derivativeof u(t), u?(t), to be the number (when it exists), with the property that, for each
€ > 0, there is a neighborhood, of t such that

|u(a(t)) —u(s) —u*(t)(o(t) —9)| < ela(t) s,

forallseU.
In [7], Hilger established the following result.

Theorem 1.1. Assume that : T — R and lett € T, (if T has a left-scattered maximum at
m, lett € T\ {m}).

(i) If fis differential att, thenf is continuous at.

(i) If f is continuous at andt is right-scattered, thet is differential att with

~f(o)— ()
PO="So-t

(i) If f is differentiable at andt is right-dense, then

f2(t) = lim fO=f)

s—t t—s

The solution of the homogeneous dynamic equation (1.1) with the boundary conditions
(1.2) is the Green'’s function

1 {(at+s><v<o<1>—o<s>>+6>, t<s

G(t’s)zﬁ (@o(s)+B)(v(a(1) —t)+9), o(s) <t,
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wherep = yB+ad+aya(1) > 0.
For the sake of completeness we present some properties of Green’s fub(tisn
which can be found in [4, 5, 6].

Lemma 1.2. The Green'’s function satisfies
(i) G(t,s) >0, (t,s) € [0,0(1)] x [0,1];
(i) G(t,s)=G(o(s),p(t)),t,se[0(0),1];

(i) G(t,s) <G(o(s),s), (t,s) € [0,0(1)] x [0,1];

m)ap$zmew@ﬁym$eF%FTﬂxmﬁmmae

[ ao(l)+4B yo(l)+4d ).
“‘mm{%muwﬁrqwuwﬁﬁ’

(v) G(t,s) <T, (t,s) € [0,0(1)] x [0,1], where

P+2+0(1), ay#0,

r—1 8 1+0(1) a=0
4 y ) b

B o), y=0

We assume that the g€ a(1)] is such that

(= min{r eT: 1> 0;1)} and w= max{r eT: 1< 3021)}
exist and satisfy
o(1) 30(1)
—— < <
N
We assume also thatdf{w) = 1, theno(w) < a(1).
Define
K= min{K min o(oo),s)}
B b e G(a(s),s) [
Consider the equation
—utA(t) =g(a(t)), te[01], (1.3)

subject to the boundary conditions (1.2). The following result is obvious.

Lemma 1.3. Letg € C(T,R™). Then
Z 51)
u(t) = G(t,9)9(0(s) As, te[0,0%(1)],
0

is the unique nonnegative solution of (1.3), (1.2).

59
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Letg= 1 and define, fot € [0,0%(1)],
Z 5(1)
ui(t) = G(t,s) As. (1.4)
0

For the solution (1.4) we define the constants

Z o(1)
A= sup u(t)= sup G(t,s) As
te[0,02(1)] te[0,02(1)] O
and Z.,
B= sup G(t,s) As.
te[0,02(1)] ¢

Definition 1.4. Let B be a Banach space and étc B be closed and nonempty. Theh
is said to be a cone if

1. au+Bve Cforallu,ve Candforalla,3 >0, and
2. u,—u € Cimpliesu=0.

We introduce the Banach spaBe-= C([0,02(1)], R) with the norm|u|| = SURc[0,02(1)] U(L)]-
In the Banach space, as in [4], we define a cone B by

C ={ue B: u(t) > 0on[0,0?(1)] and mi(n)] lu(t)] > «||ul|}.

te[¢,o

Based on the construction of the coge the following fixed point theorem due to
Krasnosel'ski[11] is central in obtaining our main results.

Theorem 1.5. Let B be a Banach space and I€tC ‘B be a cone inB. Assume tha®;, Q,
are open with0 € Q1, Q; C Qy, and let

T:CN(Q2\Q1)—C
be a completely continuous operator such that either
@) ITul <|lull, ue €NoQ, and ||Tul| > ||u||, ue CNOQy, or
@) [|Tull > |lull, ue €cNoQ1, and ||Tul| < |jul|, ue CNIQ>.
Then T has a fixed point if N (Qz\ Q1).

At this point the standing assumptions of the inhomogeneous term of (1.1) are intro-
duced. Let

(A1) feC(T xR R);

(A2) there existdl > O such thatf (t,z)+M >0o0nT x [0, );
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Furthermore, usingA), we define the functiorfi,: C([0,0%(1)] x R,R") by

(t.2)— f(t,2)+M, (t,2) €[0,0(1)] x [0,0), (L.5)

P f(t,00+M, (t,2) €[0,0(1)] x (—,0). '
Consider the dynamic equation

—UPA(t) = Mp(t,u(a(t)) —AMu(a(t))), te0,1], (1.6)

subject to the boundary conditions (1.2).

Definition 1.6. By a positive solution of the boundary problem (1.1), (1.2) we understand a
functionu € C?([0,0%(1)],R*), which satisfies (1.1) on the intervi@l 1] and the boundary
conditions (1.2).

Lemma 1.7. The functionu is a positive solution of the boundary problem (1.1), (1.2) if
and only if the functiorv = u+ AMu; is a solution of the boundary value problem (1.6),
(1.2) satisfying

v(o(t)) > AMuz(o(t)), 1.7)

forallt € (0,1).

Proof. Suppose functiow a solution of the boundary problem (1.6), (1.2) witlo(t)) >
AMuy(o(t)), t € (0,1). Note that functiornu; satisfies, for alt € [0,1],

—utA ) =1
Then, for allt € [0, 1],
—UPA () = —(V=AMu)2A(1)
= —V*2(t) - M

= Afp(t,v(o(t))) —AM
= Af(t,v(a(t)) —AMug(o(1))) + M) —AM
= Af(tu(a(t))),

that is,u is a positive solution of (1.1).

Conversely, ifu is a positive solution of (1.1), (1.2), therio(t)) > AMug(o(t)), t €
(0,1). In addition,

—VAA(t) = —(U+AMup)SA ()
= —U"2(t)+AM
= Mf(t,u(o(t)))+AM
— A(fp(t,V(O(t)) — Aua(a(t))) — M) + AM
= A(fp(t,v(o(t)) ~AMus(o(1))),

that is,v satisfies (1.6).
It is clearv satisfies (1.2) if and only i@ satisfies (1.2). O
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An integral operatof ;. B — ‘B associated with the boundary value problem (1.6), (1.2)
is defined by
Z 5(1)
Thu(t) =A G(t,s) fp(s,u(o(s)) —AMuy(o(s))) As, te |0, o?(1)).
0

It is not difficult to establish the following two results.
Lemma 1.8. The operatofM, : C — C is completely continuous.

Lemma 1.9. A functionu € B is a positive solution of the boundary value problem (1.6),
(1.2) if and only ifTy|~(u) = u.

The idea is obtain a positive (by Lemma 1.9) solution of the auxiliary boundary value
problem (1.6), (1.2). By virtue of Lemma 1.7, it will follow that the boundary value problem
(1.1), (1.2) has a positive solution.

2 Positive solutions

We present our main results.

Theorem 2.1. Assume the hypothesgs ) and (Az). Assume

(H1) lim, . 142 — o0 holds uniformly on the interva, .

Then, for a sufficiently small > 0, the boundary value problem (1.1), (1.2) has at least
one positive solution.

Proof. Let R; > 0 be fixed. Define
Br={ue B: |u| <R}

Let
K= max fo(t,2).
(t,2)€[0,6(1)] x[0,Ry]
DefineQ; = {ue B: |u|| < Ry}, then, forue CN0oQ4, we have

Z o(1)
[Tl = sup A G(t,s) fp(s,u(a(s)) —AMu(a(s))) As
te[0,02(1)] O
a(1)

< sup AK G(t,s) As
te[0,02(1)] 0

= AKA
< Ry,

provided € (0, £%]. Thatis,

[Taul| < Jjull, ueCnoQy, (2.1)
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for a sufficiently smalh > 0.
Fix A from the interval above. It follows from (1.5) anH{) that

. fo(t,z
jim (02 _ g,
7— 0 Z

uniformly on the interval{, w|. Hence there exists & > max{“\"TA, Rl} such that

2R
> -
fp(tvz) - )\KBv

forallt € [{,w] and allz> R*.
SetR, = & and define

Qy={ue B: ||ju| <R}
Then, foru e CN0Q,, we have
u(a(s)) —ui(o(s)) > K||ul| —AMuz(a(s)) > 2R* —AMA > R*
for all s€ [(,w]. Hence

R R
AB  AB’

fp(s,u(a(s)) —AMus(a(s))) >

forall se [, w].

Letue CNQy. Then

Z 501
Tau] = sup A G(t,s) fp(s,u(a(s)) —AMuy(o(s))) As
te0,02(1)] _0O

z w
> AN sup G(t,s) fp(s,u(a(s)) —AMuy(a(s))) As
te[0702(1)]za

A Ry
> A sup G(t,s) —= As
te[0,02(1)] ¢ AB

= R27

that is,
ITaull > |lull, ue CNaQy. (2.2)

By Lemma (1.8), the operatds, is completely continuous and preserves the cone
By Theorem 1.5, it follows from the inequalities (2.1) and (2.2) thahas a fixed point
Up € CN(Q2\ Q1). By Lemma 1.9, is a positive solution of the boundary value problem
(1.6), (1.2).

Supposeip(0) > 0 andup(o(1)) > 0 and settingn = min{uy(c(0)),up(c(1))}. Then
we obtain, for alk € [0,1],

up(o(t)) —AMuy(o(t)) > m—AMA>0

provided\ < ;. Thus the inequality (1.7) is fulfilled.



64 Eric R. Kaufmann and Nickolai Kosmatov

Supposeup(0) = 0 and up(o(1)) > 0. Then, cIearIy,uﬁ(O) > 0. If t=0Iis right-
scattered, thenp(o(0)) > a(0) > 0. With the choice of > 0 above, we can ensure (1.7)
forallt € (0,1). If t =0is right-dense, then there exists constants, > 0 and a neighbor-
hood (O, r] such that for alt € (0,r) we have, respectively,(t) > cit anduy(o(t)) < cat.
Choosing\ < MC , we obtain

Up(o(t)) —AMug(o(t)) > (cp —AMcz)a(t) >0

fort € (0,0(r)]. Setting, in additionA < (min{up(a(r)),up(c(1))})/MAvyields (1.7) for
allt € [r,1), and thus (1.7) holds for dlle (0,1).

The cases oiip(0) > 0 andup(o(1)) = 0 andup(0) = up(o(1)) = O are treated in a
similar fashion.

Recall that we already have> 0 satisfyA < g% In addition, from the considerations
above we obtain, that in each case of boundary conditions (1.2), we can find a sufficiently
smallA > 0 such that Lemma 1.7 applies to yield that u, — AMuy is a positive solution
of the boundary value problem (1.1), (1.2). O

Example 2.2. Let T = (—,0]U{7,3}U{1—3%} _ U[L2) and consider the boundary
value problem

—UPB(t) =M f(u(a(t)), telo,1],
u(0) =0, u*(o(1))=0,

wheref (z) = 22/2 — Z/2. The Green functio(t,s) is

t, <
G(t,s):{ o(s), o(s)<t’

Note thato(1) = 1andky = 3, = %, andw= §RAIso o(w) = 2 < 1. Since,G(o(w),s) =
a(s), thenk = k1 = 7. Finally, A= SUR.(62(1)] o JUG(t,s) As= 24155,

The functionf satisfiesf (z) > —Z—‘gé forallz>0and itis easy to check thém ;. LZZ) —

. Hencef satisfies conditions (A1), (A2) and (H1). By Theorem 2.1 the boundary value
problem has at least one positive solution for small values of

Our next theorem is a multiplicity result.
Theorem 2.3. Assume the hypothes@s ) and (Az). Assume, in addition tdHy),
(H2) f(t,0)£00n[0,0(1)], and there exists> 0 such thatf (t,z) > 0on[0,0(1)] x [O,l].

Then, for a sufficiently small > 0, the boundary value problem (1.1), (1.2) has at least two
positive solutions.

Proof. Let, without loss of generality, the solutiong andu in the proof of Theorem 2.1
satisfy, for allt € (0,1),

U(o(t)) ~ 5up(a(t) > 0 (2.3)

and set = ||up||. Then|ju|| > 5
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It follows from (H,) that there exist constanitd. > 0 such thaO < f(t,z) <L, for all
(t,z) € [0,0(1)] x [0,1]. Define

_Jf(t,2, (t,2€[0,0(2)] x[0,1],
gp(t,Z) - {f( ( ) c ) % 0 (2-4)

which satisfies
0 S gp(tvz) S L7
for all (t,z) € [0,0(1)] x [0, ).
We introduce the dynamic equation

—US2(t) = Agp(t,2), t€[0,1], (2.5)

subject to the boundary condition (1.2). We use the same notation is in the proof of Theorem
2.1 to introduce an integral operaffr: B — B defined by
Z o(1)
Thut) = A G(t,9)gp(s,u(a(s))) As, te[0,02(1)].
0
The operatofly : C — C is completely continuous.
Letry = min{3,I} and introduce

K' = max t.2).
(Lz)e[Qc(l)]x[O,rl]gp( 2)

As in the proof of Theorem 2.1, we defi@¥ = {ue B: |u| < Ry}, and, forue CNoQ;,
obtain

Z 5(1)
[Hull = sup A G(t,9)gp(s,u(0(s))) As
te[0,02(1)] O

AK'A

r,

IN

providedA € (0,.2;]. Thatis,
ITaull < flull, uecnoy, (2.6)

if A > Ois sufficiently small.
It follows from (2.4) and H>) that

. t
||m M — 00
z—0t V4

uniformly on the interval{, w]. Hence there exists @h< rp < ry such that

z
> — .
gp(t7z) - )\KBv (2 7)

forallt € [(,w] and allz< .
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Define
b={ue B: |ul| <rz}.

Letue CNQ,. Then,u(o(s)) > kra, s€ [{,w], and, by (2.7),

Z 51)
ITul| = sup A G(t,s)gp(s,u(a(s))) As
te[0,02(1)] O
Z(A)
= A sup  G(t,5)gp(s u(o(s))) As
te[O,cZ(l)]ZZ
w
> AN sup G(t,s) u(a(s))
te[0,02(1)] ¢ AKB
= TIy

AS

that is,
ITaul| > |Jull, ue CNaQs. (2.8)

By Theorem 1.5, it follows from the inequalities (2.6) and (2.8) thatas a fixed point
U e CN(Q'1\Q%). We conclude that is a positive solution of the boundary value problem
(1.6), (1.2). Sincgfu/|| < rg <min{Z,I1} <|ul|, thenu' is also a (different fronu) positive
solution of (1.1), (1.2). In fact, by the first part dfif), f(t,0) # 0 on the interval0,o(1)],
and sinces(t,s) > 0, (t,s) € (0,0(1)) x (0,1), we see that

ut)=A  G(t,s)f(su(o(s))As, te[0,03(1)]

is a positive solution of the boundary value problem (1.1), (1.2).
0

Example 2.4. Let T = (—»,0]U{7,5}U{1—3} _ U[1 %) and consider the boundary
value problem

wheref(z) = 28/2 - 524/2 4 4.

The functionf satisfiesf (z) > Ofor all z> [0, 1) and for allz> 0, we havef (z) +M > 0,
whereM = L—"Q/E. Finally,lim,_,c LZZ) — o0, Hencef satisfies conditions (A1), (A2), (H1),
and (H2). By Theorem 2.3 the boundary value problem has at least two positive solutions
for small values oh.
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