Positive Solutions of the Semipositone Sturm-Liouville Boundary Value Problem

Eric R. Kaufmann* and Nickolai Kosmatov ${ }^{\dagger}$
Department of Mathematics and Statistics
University of Arkansas at Little Rock
Little Rock, Arkansas 72204-1099, USA

(Communicated by Toka Diagana)

Abstract

Let \mathbb{T} be a time scale. We study the nonlinear Sturm-Liouville problem $$
\begin{gathered} -u^{\triangle \triangle}(t)=\lambda f(t, u(\sigma(t))), \quad t \in[0,1] \\ \alpha u(0)-\beta u^{\triangle}(0)=0, \quad \gamma u(\sigma(1))+\delta u^{\triangle}(\sigma(1))=0, \end{gathered}
$$ where $\alpha, \beta, \gamma, \delta \geq 0, \gamma \beta+\alpha \delta+\alpha \gamma \sigma(1)>0$. The inhomogeneous term $f: \mathbb{T} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a sign-changing continuous function. Using Krasnosel'skiĭ's cone-theoretic theorem, we obtain existence theorems for at least one or two positive solutions.

AMS Subject Classification: 34B10, 34B15, 34G20.
Keywords: fixed point theorem, Green's function, positive solutions, semipositone boundary value problem.

1 Introduction

We study

$$
\begin{gather*}
-u^{\triangle \triangle}(t)=\lambda f(t, u(\sigma(t))), \quad t \in[0,1] \tag{1.1}\\
\alpha u(0)-\beta u^{\triangle}(0)=0, \quad \gamma u(\sigma(1))+\delta u^{\triangle}(\sigma(1))=0, \tag{1.2}
\end{gather*}
$$

where $\alpha, \beta, \gamma, \delta \geq 0$ and $\gamma \beta+\alpha \delta+\alpha \gamma \sigma(1)>0$, and $f: \mathbb{T} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a sign-changing continuous function.

This manuscript is partially motivated by the results in the papers [1, 10, 12, 14]. In [1] Agarwal et al. showed the existence of positive solutions to semipositone (n, p) conjugate

[^0]boundary value problems. In [10], Kosmatov showed the existence of at least one positive solution to the m-point eigenvalue problem $-\left[p(t) u^{\prime}(t)\right]^{\prime}=\lambda f(t, u(t)), 0<t<1, u^{\prime}(0)=$ $0, \sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)=u(1)$, where $\sum_{i=1}^{m-2} \alpha_{i}<1$. Sun and Sun, [12], established the existence of at least one positive solution to the singular semipositone boundary value problem $-u^{\prime \prime}+$ $m^{2} u=\lambda f(t, u)+g(t, u), 0<t<1, u^{\prime}(0)=0, u^{\prime}(1)=0$. Yu et al., in [14], gave sufficient conditions for the existence of multiple positive solutions of the boundary value problem $x^{\prime \prime \prime}-\lambda f(t, x)=0,0<t<1, x(0)=x^{\prime}(\eta)=x^{\prime \prime}(1)=0$ where f is allowed to be singular at $t=0$ or $t=1$.

We present some basic definitions which can be found in Atici and Guseinov [2], Bohner and Peterson [3, 4], Hilger [7], and Kaymakcalan et al. [9].

A time scale \mathbb{T} is a closed nonempty subset of \mathbb{R}. For $t<\sup \mathbb{T}$ and $r>\inf \mathbb{T}$, we define the forward jump operator, σ, and the backward jump operator, ρ, respectively, by

$$
\begin{aligned}
\sigma(t) & =\inf \{\tau \in \mathbb{T} \mid \tau>t\} \in \mathbb{T}, \\
\rho(r) & =\sup \{\tau \in \mathbb{T} \mid \tau<r\} \in \mathbb{T},
\end{aligned}
$$

for all $t \in \mathbb{T}$. If $\sigma(t)>t, t$ is said to be right scattered, and if $\sigma(t)=t, t$ is said to be right dense (rd). If $\rho(t)<t, t$ is said to be left scattered, and if $\rho(t)=t, t$ is said to be left dense (ld). A function f is left-dense continuous, ld-continuous, if f is continuous at each left dense point in \mathbb{T} and its right-sided limits exist at each right dense points in \mathbb{T}.

For $u: \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}$, (assume t is not left scattered if $t=\sup \mathbb{T}$), we define the delta derivative of $u(t), u^{\Delta}(t)$, to be the number (when it exists), with the property that, for each $\varepsilon>0$, there is a neighborhood, U, of t such that

$$
\left|u(\sigma(t))-u(s)-u^{\triangle}(t)(\sigma(t)-s)\right| \leq \varepsilon|\sigma(t)-s|,
$$

for all $s \in U$.
In [7], Hilger established the following result.
Theorem 1.1. Assume that $f: \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}$, (if \mathbb{T} has a left-scattered maximum at m, let $t \in \mathbb{T} \backslash\{m\}$).
(i) If f is differential at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differential at t with

$$
f^{\triangle}(t)=\frac{f(\sigma(t))-f(t)}{\sigma(t)-t} .
$$

(iii) If f is differentiable at t and t is right-dense, then

$$
f^{\triangle}(t)=\lim _{s \rightarrow t} \frac{f(t)-f(s)}{t-s} .
$$

The solution of the homogeneous dynamic equation (1.1) with the boundary conditions (1.2) is the Green's function

$$
G(t, s)=\frac{1}{\rho} \begin{cases}(\alpha t+\beta)(\gamma(\sigma(1)-\sigma(s))+\delta), & t \leq s, \\ (\alpha \sigma(s)+\beta)(\gamma(\sigma(1)-t)+\delta), & \sigma(s) \leq t\end{cases}
$$

where $\rho=\gamma \beta+\alpha \delta+\alpha \gamma \sigma(1)>0$.
For the sake of completeness we present some properties of Green's function $G(t, s)$, which can be found in $[4,5,6]$.

Lemma 1.2. The Green's function satisfies

(i) $G(t, s) \geq 0,(t, s) \in[0, \sigma(1)] \times[0,1]$;
(ii) $G(t, s)=G(\sigma(s), \rho(t)), t, s \in[\sigma(0), 1]$;
(iii) $G(t, s) \leq G(\sigma(s), s),(t, s) \in[0, \sigma(1)] \times[0,1]$;
(iv) $G(t, s) \geq \kappa_{1} G(\sigma(s), s),(t, s) \in\left[\frac{\sigma(1)}{4}, \frac{3 \sigma(1)}{4}\right] \times[0,1]$, where

$$
\kappa_{1}=\min \left\{\frac{\alpha \sigma(1)+4 \beta}{4(\alpha \sigma(1)+\beta)}, \frac{\gamma \sigma(1)+4 \delta}{4(\gamma \sigma(1)+\delta)}\right\} ;
$$

(v) $G(t, s) \leq \Gamma,(t, s) \in[0, \sigma(1)] \times[0,1]$, where

$$
\Gamma=\frac{1}{4} \begin{cases}\frac{\beta}{\alpha}+\frac{\delta}{\gamma}+\sigma(1), & \alpha \gamma \neq 0 \\ \frac{\delta}{\gamma}+\sigma(1), & \alpha=0 \\ \frac{\beta}{\alpha}+\sigma(1), & \gamma=0\end{cases}
$$

We assume that the set $[0, \sigma(1)]$ is such that

$$
\zeta=\min \left\{\tau \in \mathbb{T}: \tau \geq \frac{\sigma(1)}{4}\right\} \quad \text { and } \quad \omega=\max \left\{\tau \in \mathbb{T}: \tau \leq \frac{3 \sigma(1)}{4}\right\}
$$

exist and satisfy

$$
\frac{\sigma(1)}{4} \leq \zeta<\omega \leq \frac{3 \sigma(1)}{4}
$$

We assume also that if $\sigma(\omega)=1$, then $\sigma(\omega)<\sigma(1)$.
Define

$$
\kappa=\min \left\{\kappa_{1}, \min _{s \in[\zeta, \omega]} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)}\right\} .
$$

Consider the equation

$$
\begin{equation*}
-u^{\Delta \Delta}(t)=g(\sigma(t)), \quad t \in[0,1], \tag{1.3}
\end{equation*}
$$

subject to the boundary conditions (1.2). The following result is obvious.
Lemma 1.3. Let $g \in C\left(\mathbb{T}, \mathbb{R}^{+}\right)$. Then

$$
u(t)=\int_{0}^{\sigma(1)} G(t, s) g(\sigma(s)) \triangle s, \quad t \in\left[0, \sigma^{2}(1)\right],
$$

is the unique nonnegative solution of (1.3), (1.2).

Let $g \equiv 1$ and define, for $t \in\left[0, \sigma^{2}(1)\right]$,

$$
\begin{equation*}
u_{1}(t)=\int_{0}^{\sigma(1)} G(t, s) \triangle s \tag{1.4}
\end{equation*}
$$

For the solution (1.4) we define the constants

$$
A=\sup _{t \in\left[0, \sigma^{2}(1)\right]} u_{1}(t)=\sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{0}^{\sigma(1)} G(t, s) \triangle s
$$

and

$$
B=\sup _{t \in\left[0, \boldsymbol{\sigma}^{2}(1)\right]} \int_{\zeta}^{\omega} G(t, s) \triangle s .
$$

Definition 1.4. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be closed and nonempty. Then \mathcal{C} is said to be a cone if

1. $\alpha u+\beta v \in \mathcal{C}$ for all $u, v \in \mathcal{C}$ and for all $\alpha, \beta \geq 0$, and
2. $u,-u \in \mathcal{C}$ implies $u \equiv 0$.

We introduce the Banach space $\mathcal{B}=C\left(\left[0, \sigma^{2}(1)\right], \mathbb{R}\right)$ with the norm $\|u\|=\sup _{t \in\left[0, \sigma^{2}(1)\right]}|u(t)|$. In the Banach space, as in [4], we define a cone $\mathcal{C} \subset \mathcal{B}$ by

$$
\mathcal{C}=\left\{u \in \mathcal{B}: u(t) \geq 0 \text { on }\left[0, \sigma^{2}(1)\right] \text { and } \min _{t \in[\zeta, \sigma(\omega)]}|u(t)| \geq \kappa\|u\|\right\}
$$

Based on the construction of the cone \mathcal{C}, the following fixed point theorem due to Krasnosel'skiŭ [11] is central in obtaining our main results.

Theorem 1.5. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume that Ω_{1}, Ω_{2} are open with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{C}
$$

be a completely continuous operator such that either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
At this point the standing assumptions of the inhomogeneous term of (1.1) are introduced. Let

$$
\left(A_{1}\right) f \in C\left(\mathbb{T} \times \mathbb{R}^{+}, \mathbb{R}\right)
$$

$\left(A_{2}\right)$ there exists $M>0$ such that $f(t, z)+M \geq 0$ on $\mathbb{T} \times[0, \infty) ;$

Furthermore, using $\left(A_{2}\right)$, we define the function $f_{p}: C\left(\left[0, \sigma^{2}(1)\right] \times \mathbb{R}, \mathbb{R}^{+}\right)$by

$$
f_{p}(t, z)= \begin{cases}f(t, z)+M, & (t, z) \in[0, \sigma(1)] \times[0, \infty) \tag{1.5}\\ f(t, 0)+M, & (t, z) \in[0, \sigma(1)] \times(-\infty, 0)\end{cases}
$$

Consider the dynamic equation

$$
\begin{equation*}
-u^{\triangle \triangle}(t)=\lambda f_{p}\left(t, u(\sigma(t))-\lambda M u_{1}(\sigma(t))\right), \quad t \in[0,1] \tag{1.6}
\end{equation*}
$$

subject to the boundary conditions (1.2).
Definition 1.6. By a positive solution of the boundary problem (1.1), (1.2) we understand a function $u \in C^{2}\left(\left[0, \sigma^{2}(1)\right], \mathbb{R}^{+}\right)$, which satisfies (1.1) on the interval $[0,1]$ and the boundary conditions (1.2).

Lemma 1.7. The function u is a positive solution of the boundary problem (1.1), (1.2) if and only if the function $v=u+\lambda M u_{1}$ is a solution of the boundary value problem (1.6), (1.2) satisfying

$$
\begin{equation*}
v(\sigma(t))>\lambda M u_{1}(\sigma(t)) \tag{1.7}
\end{equation*}
$$

for all $t \in(0,1)$.
Proof. Suppose function v a solution of the boundary problem (1.6), (1.2) with $v(\sigma(t))>$ $\lambda M u_{1}(\sigma(t)), t \in(0,1)$. Note that function u_{1} satisfies, for all $t \in[0,1]$,

$$
-u^{\triangle \triangle}(t)=1
$$

Then, for all $t \in[0,1]$,

$$
\begin{aligned}
-u^{\triangle \triangle}(t) & =-\left(v-\lambda M u_{1}\right)^{\triangle \triangle}(t) \\
& =-v^{\triangle \triangle}(t)-\lambda M \\
& =\lambda f_{p}(t, v(\sigma(t)))-\lambda M \\
& =\lambda\left(f\left(t, v(\sigma(t))-\lambda M u_{1}(\sigma(1))\right)+M\right)-\lambda M \\
& =\lambda f(t, u(\sigma(t)))
\end{aligned}
$$

that is, u is a positive solution of (1.1).
Conversely, if u is a positive solution of (1.1), (1.2), then $v(\sigma(t))>\lambda M u_{1}(\sigma(t)), t \in$ $(0,1)$. In addition,

$$
\begin{aligned}
-v^{\triangle \triangle}(t) & =-\left(u+\lambda M u_{1}\right)^{\triangle \triangle}(t) \\
& =-u^{\triangle \triangle}(t)+\lambda M \\
& =\lambda f(t, u(\sigma(t)))+\lambda M \\
& =\lambda\left(f_{p}\left(t, v(\sigma(t))-\lambda u_{1}(\sigma(t))\right)-M\right)+\lambda M \\
& =\lambda\left(f_{p}\left(t, v(\sigma(t))-\lambda M u_{1}(\sigma(t))\right)\right.
\end{aligned}
$$

that is, v satisfies (1.6).
It is clear v satisfies (1.2) if and only if u satisfies (1.2).

An integral operator $T: \mathcal{B} \rightarrow \mathcal{B}$ associated with the boundary value problem (1.6), (1.2) is defined by

$$
T_{\lambda} u(t)=\lambda \int_{0}^{\sigma(1)} G(t, s) f_{p}\left(s, u(\sigma(s))-\lambda M u_{1}(\sigma(s))\right) \Delta s, \quad t \in\left[0, \sigma^{2}(1)\right] .
$$

It is not difficult to establish the following two results.
Lemma 1.8. The operator $T_{\lambda}: \mathcal{C} \rightarrow \mathcal{C}$ is completely continuous.
Lemma 1.9. A function $u \in \mathcal{B}$ is a positive solution of the boundary value problem (1.6), (1.2) if and only if $T_{\lambda} \mid \mathcal{C}(u)=u$.

The idea is obtain a positive (by Lemma 1.9) solution of the auxiliary boundary value problem (1.6), (1.2). By virtue of Lemma 1.7, it will follow that the boundary value problem (1.1), (1.2) has a positive solution.

2 Positive solutions

We present our main results.
Theorem 2.1. Assume the hypotheses $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Assume
$\left(H_{1}\right) \lim _{z \rightarrow \infty} \frac{f(t, z)}{z}=\infty$ holds uniformly on the interval $[\zeta, \omega]$.
Then, for a sufficiently small $\lambda>0$, the boundary value problem (1.1), (1.2) has at least one positive solution.

Proof. Let $R_{1}>0$ be fixed. Define

$$
\mathcal{B}_{1}=\left\{u \in \mathcal{B}:\|u\|<R_{1}\right\} .
$$

Let

$$
K=\max _{(t, z) \in[0, \sigma(1)] \times\left[0, R_{1}\right]} f_{p}(t, z) .
$$

Define $\Omega_{1}=\left\{u \in \mathcal{B}:\|u\|<R_{1}\right\}$, then, for $u \in \mathcal{C} \cap \partial \Omega_{1}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\sup _{t \in\left[0, \sigma^{2}(1)\right]} \lambda \int_{0}^{\sigma(1)} G(t, s) f_{p}\left(s, u(\sigma(s))-\lambda M u_{1}(\sigma(s))\right) \Delta s \\
& \leq \sup _{t \in\left[0, \sigma^{2}(1)\right]} \lambda K \int_{0}^{\sigma(1)} G(t, s) \triangle s \\
& =\lambda K A \\
& \leq R_{1}
\end{aligned}
$$

provided $\lambda \in\left(0, \frac{R_{1}}{K A}\right]$. That is,

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in \mathcal{C} \cap \partial \Omega_{1}, \tag{2.1}
\end{equation*}
$$

for a sufficiently small $\lambda>0$.
Fix λ from the interval above. It follows from (1.5) and $\left(H_{1}\right)$ that

$$
\lim _{z \rightarrow \infty} \frac{f_{p}(t, z)}{z}=\infty
$$

uniformly on the interval $[\zeta, \omega]$. Hence there exists an $R^{*}>\max \left\{\frac{\lambda M A}{\kappa}, R_{1}\right\}$ such that

$$
f_{p}(t, z) \geq \frac{2 R^{*}}{\lambda \kappa B}
$$

for all $t \in[\zeta, \omega]$ and all $z \geq R^{*}$.
Set $R_{2}=\frac{2 R^{*}}{\kappa}$ and define

$$
\Omega_{2}=\left\{u \in \mathcal{B}:\|u\|<R_{2}\right\}
$$

Then, for $u \in \mathcal{C} \cap \partial \Omega_{2}$, we have

$$
u(\sigma(s))-u_{1}(\sigma(s)) \geq \kappa\|u\|-\lambda M u_{1}(\sigma(s)) \geq 2 R^{*}-\lambda M A>R^{*}
$$

for all $s \in[\zeta, \omega]$. Hence

$$
f_{p}\left(s, u(\sigma(s))-\lambda M u_{1}(\sigma(s))\right) \geq \frac{2 R^{*}}{\lambda \kappa B}=\frac{R_{2}}{\lambda B}
$$

for all $s \in[\zeta, \omega]$.
Let $u \in \mathcal{C} \cap \Omega_{2}$. Then

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\sup _{t \in\left[0, \sigma^{2}(1)\right]} \lambda \int_{0}^{\sigma(1)} G(t, s) f_{p}\left(s, u(\sigma(s))-\lambda M u_{1}(\sigma(s))\right) \Delta s \\
& \geq \lambda \sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{\zeta}^{\omega} G(t, s) f_{p}\left(s, u(\sigma(s))-\lambda M u_{1}(\sigma(s))\right) \triangle s \\
& \geq \lambda \sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{\zeta}^{\omega} G(t, s) \frac{R_{2}}{\lambda B} \triangle s \\
& =R_{2}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \geq\|u\|, \quad u \in \mathcal{C} \cap \partial \Omega_{2} \tag{2.2}
\end{equation*}
$$

By Lemma (1.8), the operator T_{λ} is completely continuous and preserves the cone \mathcal{C}. By Theorem 1.5, it follows from the inequalities (2.1) and (2.2) that T_{λ} has a fixed point $u_{p} \in \mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. By Lemma 1.9, u_{p} is a positive solution of the boundary value problem (1.6), (1.2).

Suppose $u_{p}(0)>0$ and $u_{p}(\sigma(1))>0$ and setting $m=\min \left\{u_{p}(\sigma(0)), u_{p}(\sigma(1))\right\}$. Then we obtain, for all $t \in[0,1]$,

$$
u_{p}(\sigma(t))-\lambda M u_{1}(\sigma(t)) \geq m-\lambda M A>0
$$

provided $\lambda<\frac{m}{M A}$. Thus the inequality (1.7) is fulfilled.

Suppose $u_{p}(0)=0$ and $u_{p}(\sigma(1))>0$. Then, clearly, $u_{p}^{\triangle}(0)>0$. If $t=0$ is rightscattered, then $u_{p}(\sigma(0))>\sigma(0)>0$. With the choice of $\lambda>0$ above, we can ensure (1.7) for all $t \in(0,1)$. If $t=0$ is right-dense, then there exists constants $c_{1}, c_{2}>0$ and a neighborhood $(0, r]$ such that for all $t \in(0, r)$ we have, respectively, $u_{p}(t)>c_{1} t$ and $u_{1}(\sigma(t))<c_{2} t$. Choosing $\lambda<\frac{c_{1}}{M c_{2}}$, we obtain

$$
u_{p}(\sigma(t))-\lambda M u_{1}(\sigma(t))>\left(c_{1}-\lambda M c_{2}\right) \sigma(t)>0
$$

for $t \in(0, \sigma(r)]$. Setting, in addition, $\lambda<\left(\min \left\{u_{p}(\sigma(r)), u_{p}(\sigma(1))\right\}\right) / M A$ yields (1.7) for all $t \in[r, 1)$, and thus (1.7) holds for all $t \in(0,1)$.

The cases of $u_{p}(0)>0$ and $u_{p}(\sigma(1))=0$ and $u_{p}(0)=u_{p}(\sigma(1))=0$ are treated in a similar fashion.

Recall that we already have $\lambda>0$ satisfy $\lambda \leq \frac{R_{1}}{M A}$. In addition, from the considerations above we obtain, that in each case of boundary conditions (1.2), we can find a sufficiently small $\lambda>0$ such that Lemma 1.7 applies to yield that $u=u_{p}-\lambda M u_{1}$ is a positive solution of the boundary value problem (1.1), (1.2).

Example 2.2. Let $\mathbb{T}=(-\infty, 0] \cup\left\{\frac{1}{4}, \frac{1}{3}\right\} \cup\left\{1-\frac{1}{n}\right\}_{n \in \mathbb{N}} \cup[1, \infty)$ and consider the boundary value problem

$$
\begin{aligned}
-u^{\Delta \Delta}(t) & =\lambda f(u(\sigma(t))), \quad t \in[0,1], \\
u(0) & =0, \quad u^{\Delta}(\sigma(1))=0,
\end{aligned}
$$

where $f(z)=z^{3 / 2}-z^{1 / 2}$. The Green function $G(t, s)$ is

$$
G(t, s)=\left\{\begin{array}{cc}
t, & t \leq s \\
\sigma(s), & \sigma(s) \leq t
\end{array} .\right.
$$

Note that $\sigma(1)=1$ and $\kappa_{1}=\frac{1}{4}, \zeta=\frac{1}{4}$, and $\omega=\frac{3}{4}$. Also, $\sigma(\omega)=\frac{4}{5}<1$. Since, $G(\sigma(\omega), s)=$ $\sigma(s)$, then $\kappa=\kappa_{1}=\frac{1}{4}$. Finally, $A=\sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{0}^{\sigma(1)} G(t, s) \triangle s=\frac{24 \pi^{2}-155}{6}$.

The function f satisfies $f(z) \geq-\frac{2 \sqrt{3}}{9}$ for all $z \geq 0$ and it is easy to check that $\lim _{z \rightarrow \infty} \frac{f(z)}{z} \rightarrow$ ∞. Hence f satisfies conditions (A1), (A2) and (H1). By Theorem 2.1 the boundary value problem has at least one positive solution for small values of λ.

Our next theorem is a multiplicity result.
Theorem 2.3. Assume the hypotheses $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Assume, in addition to $\left(H_{1}\right)$,
$\left(H_{2}\right) f(t, 0) \not \equiv 0$ on $[0, \sigma(1)]$, and there exists $l>0$ such that $f(t, z) \geq 0$ on $[0, \sigma(1)] \times[0, l]$.
Then, for a sufficiently small $\lambda>0$, the boundary value problem (1.1), (1.2) has at least two positive solutions.

Proof. Let, without loss of generality, the solutions u_{p} and u in the proof of Theorem 2.1 satisfy, for all $t \in(0,1)$,

$$
\begin{equation*}
u(\sigma(t))-\frac{1}{2} u_{p}(\sigma(t))>0 \tag{2.3}
\end{equation*}
$$

and set $r=\left\|u_{p}\right\|$. Then $\|u\| \geq \frac{r}{2}$.

It follows from $\left(H_{2}\right)$ that there exist constants $l, L>0$ such that $0 \leq f(t, z) \leq L$, for all $(t, z) \in[0, \sigma(1)] \times[0, l]$. Define

$$
g_{p}(t, z)= \begin{cases}f(t, z), & (t, z) \in[0, \sigma(1)] \times[0, l] \tag{2.4}\\ f(t, r), & (t, l) \in[0, \sigma(1)] \times(l, \infty)\end{cases}
$$

which satisfies

$$
0 \leq g_{p}(t, z) \leq L
$$

for all $(t, z) \in[0, \sigma(1)] \times[0, \infty)$.
We introduce the dynamic equation

$$
\begin{equation*}
-u^{\triangle \triangle}(t)=\lambda g_{p}(t, z), \quad t \in[0,1] \tag{2.5}
\end{equation*}
$$

subject to the boundary condition (1.2). We use the same notation is in the proof of Theorem 2.1 to introduce an integral operator $T_{\lambda}: \mathcal{B} \rightarrow \mathcal{B}$ defined by

$$
T_{\lambda} u(t)=\lambda \int_{0}^{\sigma(1)} G(t, s) g_{p}(s, u(\sigma(s))) \triangle s, \quad t \in\left[0, \sigma^{2}(1)\right]
$$

The operator $T_{\lambda}: \mathcal{C} \rightarrow \mathcal{C}$ is completely continuous.
Let $r_{1}=\min \left\{\frac{r}{2}, l\right\}$ and introduce

$$
K^{\prime}=\max _{(t, z) \in[0, \sigma(1)] \times\left[0, r_{1}\right]} g_{p}(t, z)
$$

As in the proof of Theorem 2.1, we define $\Omega_{1}^{\prime}=\left\{u \in \mathcal{B}:\|u\|<R_{1}\right\}$, and, for $u \in \mathcal{C} \cap \partial \Omega_{1}^{\prime}$, obtain

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\sup _{t \in\left[0, \sigma^{2}(1)\right]} \lambda \int_{0}^{\sigma(1)} G(t, s) g_{p}(s, u(\sigma(s))) \Delta s \\
& =\lambda K^{\prime} A \\
& \leq r_{1}
\end{aligned}
$$

provided $\lambda \in\left(0, \frac{R_{1}}{K^{\prime} A}\right]$. That is,

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \leq\|u\|, \quad u \in \mathcal{C} \cap \partial \Omega_{1}^{\prime} \tag{2.6}
\end{equation*}
$$

if $\lambda>0$ is sufficiently small.
It follows from (2.4) and $\left(H_{2}\right)$ that

$$
\lim _{z \rightarrow 0^{+}} \frac{g_{p}(t, z)}{z}=\infty
$$

uniformly on the interval $[\zeta, \omega]$. Hence there exists an $0<r_{2}<r_{1}$ such that

$$
\begin{equation*}
g_{p}(t, z) \geq \frac{z}{\lambda \kappa B} \tag{2.7}
\end{equation*}
$$

for all $t \in[\zeta, \omega]$ and all $z \leq r_{2}$.

Define

$$
\Omega_{2}^{\prime}=\left\{u \in \mathcal{B}:\|u\|<r_{2}\right\} .
$$

Let $u \in \mathcal{C} \cap \Omega_{2}$. Then, $u(\sigma(s)) \geq \kappa r_{2}, s \in[\zeta, \omega]$, and, by (2.7),

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\sup _{t \in\left[0, \sigma^{2}(1)\right]} \lambda \int_{0}^{\sigma(1)} G(t, s) g_{p}(s, u(\sigma(s))) \triangle s \\
& \geq \lambda \sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{\zeta}^{\omega} G(t, s) g_{p}(s, u(\sigma(s))) \triangle s \\
& \geq \lambda \sup _{t \in\left[0, \sigma^{2}(1)\right]} \int_{\zeta}^{\omega} G(t, s) \frac{u(\sigma(s))}{\lambda \kappa B} \triangle s \\
& =r_{2},
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left\|T_{\lambda} u\right\| \geq\|u\|, \quad u \in \mathcal{C} \cap \partial \Omega_{2}^{\prime} . \tag{2.8}
\end{equation*}
$$

By Theorem 1.5, it follows from the inequalities (2.6) and (2.8) that T_{λ} has a fixed point $u^{\prime} \in \mathcal{C} \cap\left(\overline{\Omega^{\prime}}{ }_{1} \backslash \Omega_{2}^{\prime}\right)$. We conclude that u^{\prime} is a positive solution of the boundary value problem (1.6), (1.2). Since $\left\|u^{\prime}\right\| \leq r_{1} \leq \min \left\{\frac{r}{2}, l\right\} \leq\|u\|$, then u^{\prime} is also a (different from u) positive solution of $(1.1),(1.2)$. In fact, by the first part of $\left(H_{2}\right), f(t, 0) \not \equiv 0$ on the interval $[0, \sigma(1)]$, and since $G(t, s)>0,(t, s) \in(0, \sigma(1)) \times(0,1)$, we see that

$$
u(t)=\lambda \int_{0}^{\sigma(1)} G(t, s) f(s, u(\sigma(s))) \Delta s, \quad t \in\left[0, \sigma^{2}(1)\right],
$$

is a positive solution of the boundary value problem (1.1), (1.2).

Example 2.4. Let $\mathbb{T}=(-\infty, 0] \cup\left\{\frac{1}{4}, \frac{1}{3}\right\} \cup\left\{1-\frac{1}{n}\right\}_{n \in \mathbb{N}} \cup[1, \infty)$ and consider the boundary value problem

$$
\begin{aligned}
-u^{\Delta \Delta}(t) & =\lambda f(u(\sigma(t))), \quad t \in[0,1], \\
u(0) & =0, \quad u^{\Delta}(\sigma(1))=0,
\end{aligned}
$$

where $f(z)=z^{3 / 2}-5 z^{1 / 2}+4$.
The function f satisfies $f(z)>0$ for all $z \geq[0,1)$ and for all $z \geq 0$, we have $f(z)+M \geq 0$, where $M=\frac{10 \sqrt{15}}{9}$. Finally, $\lim _{z \rightarrow \infty} \frac{f(z)}{z} \rightarrow \infty$. Hence f satisfies conditions (A1), (A2), (H1), and (H2). By Theorem 2.3 the boundary value problem has at least two positive solutions for small values of λ.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Semipositone higher-order differential equations, Appl. Math. Lett. 17 (2004), 201-207.
[2] F. M. Atici and G. Sh. Guseinov, On Green's functions and positive solutions for boundary-value problems on time scales, J. Comput. Appl. Math. 141 (2002), 75-99.
[3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An introduction with Applications, Birkhäuser, Boston, 2001.
[4] M. Bohner and A. Peterson, ed. Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[5] L. Erbe and A. C. Peterson, Positive solutions of a nonlinear differential equation on a measure chain, Math. Comput. Modelling bf 32 (2000), no. 5-6, 571-585.
[6] J. Henderson, Multiple solutions for $2 m$-th order Sturm-Liouville boundary value problems on a measure chain J. Differential Equuations Appl., 6 (2000), no. 4, 417429.
[7] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18(1990), 18-56.
[8] E. R. Kaufmann and N. Kosmatov, Singular Conjugate Boundary Value Problems on a Time Scales, J. Difference Equ. Appl. 10 (2004), no. 2, 119-127.
[9] B. Kaymakcalan, V. Lakshmikantham, and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
[10] N. Kosmatov, Semipositone m-point boundary-value problems, Electron. J. of Differential Equations 2004 (2004), No. 119, 1-7.
[11] M. A. Krasnosel'skiñ, "Topological Methods in the Theory of Nonlinear Integral Equations", (English) Translated by A.H. Armstrong; A Pergamon Press Book, MacMillan, New York, 1964.
[12] Y.P. Sun and Y. Sun, Positive Solutions for Singular Semi-Positone Neumann Boundary-Value Problems, Electron. J. Differential Equations 2004 (2004), No. 133, 1-8.
[13] C. C. Tisdell, P. Drábek, and J. Henderson, Multiple solutions to dynamic equations on time scales, Commun. Appl. Nonlinear Anal. 11 (2004), no. 4, 25-42.
[14] H. Yu, L. Haiyan, and Y. Liu, Multiple positive solutions to third-order three-point singular semi-positone boundary value problems, Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004), No. 4, 409-422.

[^0]: *E-mail address: erkaufmann@ualr.edu
 ${ }^{\dagger}$ E-mail address: nxkosmatov@ualr.edu

