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Abstract

LetT be a time scale. We study the nonlinear Sturm-Liouville problem

−u44(t) = λ f (t,u(σ(t))), t ∈ [0,1],

αu(0)−βu4(0) = 0, γu(σ(1))+δu4(σ(1)) = 0,

whereα,β,γ,δ≥ 0, γβ+αδ+αγσ(1) > 0. The inhomogeneous termf : T×R+ →R
is a sign-changing continuous function. Using Krasnosel’skiı̆’s cone-theoretic theo-
rem, we obtain existence theorems for at least one or two positive solutions.
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1 Introduction

We study

−u44(t) = λ f (t,u(σ(t))), t ∈ [0,1], (1.1)

αu(0)−βu4(0) = 0, γu(σ(1))+δu4(σ(1)) = 0, (1.2)

whereα,β,γ,δ ≥ 0 and γβ + αδ + αγσ(1) > 0, and f : T×R+ → R is a sign-changing
continuous function.

This manuscript is partially motivated by the results in the papers [1, 10, 12, 14]. In [1]
Agarwalet al. showed the existence of positive solutions to semipositone(n, p) conjugate
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boundary value problems. In [10], Kosmatov showed the existence of at least one positive
solution to them-point eigenvalue problem−[p(t)u′(t)]′ = λ f (t,u(t)),0 < t < 1, u′(0) =
0,∑m−2

i=1 αiu(ηi) = u(1), where∑m−2
i=1 αi < 1. Sun and Sun, [12], established the existence of

at least one positive solution to the singular semipositone boundary value problem−u′′+
m2u = λ f (t,u)+ g(t,u),0 < t < 1, u′(0) = 0,u′(1) = 0. Yu et al., in [14], gave sufficient
conditions for the existence of multiple positive solutions of the boundary value problem
x′′′−λ f (t,x) = 0,0 < t < 1, x(0) = x′(η) = x′′(1) = 0 where f is allowed to be singular at
t = 0 or t = 1.

We present some basic definitions which can be found in Atici and Guseinov [2],
Bohner and Peterson [3, 4], Hilger [7], and Kaymakcalanet al. [9].

A time scaleT is a closed nonempty subset ofR. Fort < supT andr > infT, we define
theforward jump operator, σ, and thebackward jump operator, ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T,

for all t ∈ T. If σ(t) > t, t is said to beright scattered, and ifσ(t) = t, t is said to beright
dense(rd). If ρ(t) < t, t is said to beleft scattered, and ifρ(t) = t, t is said to beleft dense
(ld). A function f is left-dense continuous, ld-continuous, iff is continuous at each left
dense point inT and its right-sided limits exist at each right dense points inT.

Foru: T→R andt ∈ T, (assumet is not left scattered ift = supT), we define thedelta
derivativeof u(t), u∆(t), to be the number (when it exists), with the property that, for each
ε > 0, there is a neighborhood,U , of t such that

∣∣u(σ(t))−u(s)−u4(t)(σ(t)−s)
∣∣≤ ε|σ(t)−s|,

for all s∈U .
In [7], Hilger established the following result.

Theorem 1.1. Assume thatf : T→ R and lett ∈ T, (if T has a left-scattered maximum at
m, let t ∈ T\{m}).

(i) If f is differential att, then f is continuous att.

(ii) If f is continuous att andt is right-scattered, thenf is differential att with

f4(t) =
f (σ(t))− f (t)

σ(t)− t
.

(iii) If f is differentiable att andt is right-dense, then

f4(t) = lim
s→t

f (t)− f (s)
t−s

.

The solution of the homogeneous dynamic equation (1.1) with the boundary conditions
(1.2) is the Green’s function

G(t,s) =
1
ρ

{
(αt +β)(γ(σ(1)−σ(s))+δ), t ≤ s,

(ασ(s)+β)(γ(σ(1)− t)+δ), σ(s)≤ t,
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whereρ = γβ+αδ+αγσ(1) > 0.
For the sake of completeness we present some properties of Green’s functionG(t,s),

which can be found in [4, 5, 6].

Lemma 1.2. The Green’s function satisfies

(i) G(t,s)≥ 0, (t,s) ∈ [0,σ(1)]× [0,1];

(ii) G(t,s) = G(σ(s),ρ(t)), t,s∈ [σ(0),1];

(iii) G(t,s)≤G(σ(s),s), (t,s) ∈ [0,σ(1)]× [0,1];

(iv) G(t,s)≥ κ1G(σ(s),s), (t,s) ∈
[

σ(1)
4 , 3σ(1)

4

]
× [0,1], where

κ1 = min

{
ασ(1)+4β

4(ασ(1)+β)
,

γσ(1)+4δ
4(γσ(1)+δ)

}
;

(v) G(t,s)≤ Γ, (t,s) ∈ [0,σ(1)]× [0,1], where

Γ =
1
4





β
α + δ

γ +σ(1), αγ 6= 0,
δ
γ +σ(1), α = 0,
β
α +σ(1), γ = 0.

We assume that the set[0,σ(1)] is such that

ζ = min

{
τ ∈ T : τ≥ σ(1)

4

}
and ω = max

{
τ ∈ T : τ≤ 3σ(1)

4

}

exist and satisfy
σ(1)

4
≤ ζ < ω≤ 3σ(1)

4
.

We assume also that ifσ(ω) = 1, thenσ(ω) < σ(1).
Define

κ = min

{
κ1, min

s∈[ζ,ω]

G(σ(ω),s)
G(σ(s),s)

}
.

Consider the equation

−u44(t) = g(σ(t)), t ∈ [0,1], (1.3)

subject to the boundary conditions (1.2). The following result is obvious.

Lemma 1.3. Letg∈C(T,R+). Then

u(t) =
Z σ(1)

0
G(t,s)g(σ(s))4s, t ∈ [0,σ2(1)],

is the unique nonnegative solution of (1.3), (1.2).
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Let g≡ 1 and define, fort ∈ [0,σ2(1)],

u1(t) =
Z σ(1)

0
G(t,s)4s. (1.4)

For the solution (1.4) we define the constants

A = sup
t∈[0,σ2(1)]

u1(t) = sup
t∈[0,σ2(1)]

Z σ(1)

0
G(t,s)4s

and

B = sup
t∈[0,σ2(1)]

Z ω

ζ
G(t,s)4s.

Definition 1.4. Let B be a Banach space and letC ⊂ B be closed and nonempty. ThenC
is said to be a cone if

1. αu+βv∈ C for all u,v∈ C and for allα,β≥ 0, and

2. u,−u∈ C impliesu≡ 0.

We introduce the Banach spaceB =C([0,σ2(1)],R) with the norm‖u‖= supt∈[0,σ2(1)] |u(t)|.
In the Banach space, as in [4], we define a coneC ⊂ B by

C = {u∈ B : u(t)≥ 0 on[0,σ2(1)] and min
t∈[ζ,σ(ω)]

|u(t)| ≥ κ‖u‖}.

Based on the construction of the coneC , the following fixed point theorem due to
Krasnosel’skĭı [11] is central in obtaining our main results.

Theorem 1.5. LetB be a Banach space and letC ⊂ B be a cone inB. Assume thatΩ1, Ω2

are open with0∈Ω1, Ω1 ⊂Ω2, and let

T : C ∩ (Ω2\Ω1)→ C

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u∈ C ∩∂Ω1, and ‖Tu‖ ≥ ‖u‖, u∈ C ∩∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u∈ C ∩∂Ω1, and ‖Tu‖ ≤ ‖u‖, u∈ C ∩∂Ω2.

Then T has a fixed point inC ∩ (Ω2\Ω1).

At this point the standing assumptions of the inhomogeneous term of (1.1) are intro-
duced. Let

(A1) f ∈C(T×R+,R);

(A2) there existsM > 0 such thatf (t,z)+M ≥ 0 onT× [0,∞);
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Furthermore, using (A2), we define the functionfp : C([0,σ2(1)]×R,R+) by

fp(t,z) =

{
f (t,z)+M, (t,z) ∈ [0,σ(1)]× [0,∞),
f (t,0)+M, (t,z) ∈ [0,σ(1)]× (−∞,0).

(1.5)

Consider the dynamic equation

−u44(t) = λ fp(t,u(σ(t))−λMu1(σ(t))), t ∈ [0,1], (1.6)

subject to the boundary conditions (1.2).

Definition 1.6. By a positive solution of the boundary problem (1.1), (1.2) we understand a
functionu∈C2([0,σ2(1)],R+), which satisfies (1.1) on the interval[0,1] and the boundary
conditions (1.2).

Lemma 1.7. The functionu is a positive solution of the boundary problem (1.1), (1.2) if
and only if the functionv = u+ λMu1 is a solution of the boundary value problem (1.6),
(1.2) satisfying

v(σ(t)) > λMu1(σ(t)), (1.7)

for all t ∈ (0,1).

Proof. Suppose functionv a solution of the boundary problem (1.6), (1.2) withv(σ(t)) >
λMu1(σ(t)), t ∈ (0,1). Note that functionu1 satisfies, for allt ∈ [0,1],

−u44(t) = 1.

Then, for allt ∈ [0,1],

−u44(t) = −(v−λMu1)44(t)
= −v44(t)−λM

= λ fp(t,v(σ(t)))−λM

= λ( f (t,v(σ(t))−λMu1(σ(1)))+M)−λM

= λ f (t,u(σ(t))),

that is,u is a positive solution of (1.1).
Conversely, ifu is a positive solution of (1.1), (1.2), thenv(σ(t)) > λMu1(σ(t)), t ∈

(0,1). In addition,

−v44(t) = −(u+λMu1)44(t)
= −u44(t)+λM

= λ f (t,u(σ(t)))+λM

= λ( fp(t,v(σ(t))−λu1(σ(t)))−M)+λM

= λ( fp(t,v(σ(t))−λMu1(σ(t))),

that is,v satisfies (1.6).
It is clearv satisfies (1.2) if and only ifu satisfies (1.2).
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An integral operatorT : B →B associated with the boundary value problem (1.6), (1.2)
is defined by

Tλu(t) = λ
Z σ(1)

0
G(t,s) fp(s,u(σ(s))−λMu1(σ(s)))4s, t ∈ [0,σ2(1)].

It is not difficult to establish the following two results.

Lemma 1.8. The operatorTλ : C → C is completely continuous.

Lemma 1.9. A functionu∈ B is a positive solution of the boundary value problem (1.6),
(1.2) if and only ifTλ|C (u) = u.

The idea is obtain a positive (by Lemma 1.9) solution of the auxiliary boundary value
problem (1.6), (1.2). By virtue of Lemma 1.7, it will follow that the boundary value problem
(1.1), (1.2) has a positive solution.

2 Positive solutions

We present our main results.

Theorem 2.1. Assume the hypotheses(A1) and(A2). Assume

(H1) limz→∞
f (t,z)

z = ∞ holds uniformly on the interval[ζ,ω].

Then, for a sufficiently smallλ > 0, the boundary value problem (1.1), (1.2) has at least
one positive solution.

Proof. Let R1 > 0 be fixed. Define

B1 = {u∈ B : ‖u‖< R1}.

Let
K = max

(t,z)∈[0,σ(1)]×[0,R1]
fp(t,z).

DefineΩ1 = {u∈ B : ‖u‖< R1}, then, foru∈ C ∩∂Ω1, we have

‖Tλu‖ = sup
t∈[0,σ2(1)]

λ
Z σ(1)

0
G(t,s) fp(s,u(σ(s))−λMu1(σ(s)))4s

≤ sup
t∈[0,σ2(1)]

λK
Z σ(1)

0
G(t,s)4s

= λKA

≤ R1,

providedλ ∈ (
0, R1

KA

]
. That is,

‖Tλu‖ ≤ ‖u‖, u∈ C ∩∂Ω1, (2.1)
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for a sufficiently smallλ > 0.
Fix λ from the interval above. It follows from (1.5) and (H1) that

lim
z→∞

fp(t,z)
z

= ∞

uniformly on the interval[ζ,ω]. Hence there exists anR∗ > max
{

λMA
κ ,R1

}
such that

fp(t,z)≥ 2R∗

λκB
,

for all t ∈ [ζ,ω] and allz≥ R∗.
SetR2 = 2R∗

κ and define

Ω2 = {u∈ B : ‖u‖< R2}.

Then, foru∈ C ∩∂Ω2, we have

u(σ(s))−u1(σ(s))≥ κ‖u‖−λMu1(σ(s))≥ 2R∗−λMA > R∗

for all s∈ [ζ,ω]. Hence

fp(s,u(σ(s))−λMu1(σ(s)))≥ 2R∗

λκB
=

R2

λB
,

for all s∈ [ζ,ω].
Let u∈ C ∩Ω2. Then

‖Tλu‖ = sup
t∈[0,σ2(1)]

λ
Z σ(1)

0
G(t,s) fp(s,u(σ(s))−λMu1(σ(s)))4s

≥ λ sup
t∈[0,σ2(1)]

Z ω

ζ
G(t,s) fp(s,u(σ(s))−λMu1(σ(s)))4s

≥ λ sup
t∈[0,σ2(1)]

Z ω

ζ
G(t,s)

R2

λB
4s

= R2,

that is,
‖Tλu‖ ≥ ‖u‖, u∈ C ∩∂Ω2. (2.2)

By Lemma (1.8), the operatorTλ is completely continuous and preserves the coneC .
By Theorem 1.5, it follows from the inequalities (2.1) and (2.2) thatTλ has a fixed point
up ∈ C ∩ (Ω2\Ω1). By Lemma 1.9,up is a positive solution of the boundary value problem
(1.6), (1.2).

Supposeup(0) > 0 andup(σ(1)) > 0 and settingm= min{up(σ(0)),up(σ(1))}. Then
we obtain, for allt ∈ [0,1],

up(σ(t))−λMu1(σ(t))≥m−λMA > 0

providedλ < m
MA. Thus the inequality (1.7) is fulfilled.
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Supposeup(0) = 0 and up(σ(1)) > 0. Then, clearly,u4p (0) > 0. If t = 0 is right-
scattered, thenup(σ(0)) > σ(0) > 0. With the choice ofλ > 0 above, we can ensure (1.7)
for all t ∈ (0,1). If t = 0 is right-dense, then there exists constantsc1,c2 > 0 and a neighbor-
hood(0, r] such that for allt ∈ (0, r) we have, respectively,up(t) > c1t andu1(σ(t)) < c2t.
Choosingλ < c1

Mc2
, we obtain

up(σ(t))−λMu1(σ(t)) > (c1−λMc2)σ(t) > 0

for t ∈ (0,σ(r)]. Setting, in addition,λ <
(

min{up(σ(r)),up(σ(1))})/MA yields (1.7) for
all t ∈ [r,1), and thus (1.7) holds for allt ∈ (0,1).

The cases ofup(0) > 0 andup(σ(1)) = 0 andup(0) = up(σ(1)) = 0 are treated in a
similar fashion.

Recall that we already haveλ > 0 satisfyλ≤ R1
MA. In addition, from the considerations

above we obtain, that in each case of boundary conditions (1.2), we can find a sufficiently
smallλ > 0 such that Lemma 1.7 applies to yield thatu = up−λMu1 is a positive solution
of the boundary value problem (1.1), (1.2).

Example 2.2. Let T = (−∞,0]∪{
1
4, 1

3

}∪{
1− 1

n

}
n∈N∪ [1,∞) and consider the boundary

value problem

−u44(t) = λ f (u(σ(t))), t ∈ [0,1],

u(0) = 0, u4(σ(1)) = 0,

where f (z) = z3/2−z1/2. The Green functionG(t,s) is

G(t,s) =
{

t, t ≤ s
σ(s), σ(s)≤ t

.

Note thatσ(1) = 1 andκ1 = 1
4,ζ = 1

4, andω = 3
4. Also,σ(ω) = 4

5 < 1. Since,G(σ(ω),s) =

σ(s), thenκ = κ1 = 1
4. Finally,A = supt∈[0,σ2(1)]

R σ(1)
0 G(t,s)4s= 24π2−155

6 .

The functionf satisfiesf (z)≥−2
√

3
9 for all z≥0and it is easy to check thatlimz→∞

f (z)
z →

∞. Hencef satisfies conditions (A1), (A2) and (H1). By Theorem 2.1 the boundary value
problem has at least one positive solution for small values ofλ.

Our next theorem is a multiplicity result.

Theorem 2.3. Assume the hypotheses(A1) and(A2). Assume, in addition to (H1),

(H2) f (t,0) 6≡ 0 on [0,σ(1)], and there existsl > 0 such thatf (t,z)≥ 0 on [0,σ(1)]× [0, l ].

Then, for a sufficiently smallλ > 0, the boundary value problem (1.1), (1.2) has at least two
positive solutions.

Proof. Let, without loss of generality, the solutionsup andu in the proof of Theorem 2.1
satisfy, for allt ∈ (0,1),

u(σ(t))− 1
2

up(σ(t)) > 0 (2.3)

and setr = ‖up‖. Then‖u‖ ≥ r
2.
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It follows from (H2) that there exist constantsl ,L > 0 such that0≤ f (t,z) ≤ L, for all
(t,z) ∈ [0,σ(1)]× [0, l ]. Define

gp(t,z) =

{
f (t,z), (t,z) ∈ [0,σ(1)]× [0, l ],
f (t, r), (t, l) ∈ [0,σ(1)]× (l ,∞),

(2.4)

which satisfies
0≤ gp(t,z)≤ L,

for all (t,z) ∈ [0,σ(1)]× [0,∞).
We introduce the dynamic equation

−u44(t) = λgp(t,z), t ∈ [0,1], (2.5)

subject to the boundary condition (1.2). We use the same notation is in the proof of Theorem
2.1 to introduce an integral operatorTλ : B → B defined by

Tλu(t) = λ
Z σ(1)

0
G(t,s)gp(s,u(σ(s)))4s, t ∈ [0,σ2(1)].

The operatorTλ : C → C is completely continuous.
Let r1 = min{ r

2, l} and introduce

K′ = max
(t,z)∈[0,σ(1)]×[0,r1]

gp(t,z).

As in the proof of Theorem 2.1, we defineΩ′
1 = {u∈ B : ‖u‖< R1}, and, foru∈ C ∩∂Ω′

1,
obtain

‖Tλu‖ = sup
t∈[0,σ2(1)]

λ
Z σ(1)

0
G(t,s)gp(s,u(σ(s)))4s

= λK′A
≤ r1,

providedλ ∈ (0, R1
K′A]. That is,

‖Tλu‖ ≤ ‖u‖, u∈ C ∩∂Ω′
1, (2.6)

if λ > 0 is sufficiently small.
It follows from (2.4) and (H2) that

lim
z→0+

gp(t,z)
z

= ∞

uniformly on the interval[ζ,ω]. Hence there exists an0 < r2 < r1 such that

gp(t,z)≥ z
λκB

, (2.7)

for all t ∈ [ζ,ω] and allz≤ r2.
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Define
Ω′

2 = {u∈ B : ‖u‖< r2}.
Let u∈ C ∩Ω2. Then,u(σ(s))≥ κr2, s∈ [ζ,ω], and, by (2.7),

‖Tλu‖ = sup
t∈[0,σ2(1)]

λ
Z σ(1)

0
G(t,s)gp(s,u(σ(s)))4s

≥ λ sup
t∈[0,σ2(1)]

Z ω

ζ
G(t,s)gp(s,u(σ(s)))4s

≥ λ sup
t∈[0,σ2(1)]

Z ω

ζ
G(t,s)

u(σ(s))
λκB

4s

= r2,

that is,
‖Tλu‖ ≥ ‖u‖, u∈ C ∩∂Ω′

2. (2.8)

By Theorem 1.5, it follows from the inequalities (2.6) and (2.8) thatTλ has a fixed point
u′ ∈ C ∩(Ω′

1\Ω′
2). We conclude thatu′ is a positive solution of the boundary value problem

(1.6), (1.2). Since‖u′‖ ≤ r1 ≤min{ r
2, l} ≤ ‖u‖, thenu′ is also a (different fromu) positive

solution of (1.1), (1.2). In fact, by the first part of (H2), f (t,0) 6≡ 0 on the interval[0,σ(1)],
and sinceG(t,s) > 0, (t,s) ∈ (0,σ(1))× (0,1), we see that

u(t) = λ
Z σ(1)

0
G(t,s) f (s,u(σ(s)))4s, t ∈ [0,σ2(1)],

is a positive solution of the boundary value problem (1.1), (1.2).

Example 2.4. Let T = (−∞,0]∪{
1
4, 1

3

}∪{
1− 1

n

}
n∈N∪ [1,∞) and consider the boundary

value problem

−u44(t) = λ f (u(σ(t))), t ∈ [0,1],

u(0) = 0, u4(σ(1)) = 0,

where f (z) = z3/2−5z1/2 +4.
The functionf satisfiesf (z) > 0 for all z≥ [0,1) and for allz≥ 0, we havef (z)+M≥ 0,

whereM = 10
√

15
9 . Finally, limz→∞

f (z)
z →∞. Hencef satisfies conditions (A1), (A2), (H1),

and (H2). By Theorem 2.3 the boundary value problem has at least two positive solutions
for small values ofλ.

References

[1] R. P. Agarwal, S. R. Grace and D. O’Regan, Semipositone higher-order differential
equations,Appl. Math. Lett.17 (2004), 201-207.

[2] F. M. Atici and G. Sh. Guseinov, On Green’s functions and positive solutions for
boundary-value problems on time scales,J. Comput. Appl. Math.141(2002), 75-99.



Positive Solutions of the Semipositone Sturm-Liouville BVP 67

[3] M. Bohner and A. Peterson,Dynamic Equations on Time Scales, An introduction
with Applications, Birkhäuser, Boston, 2001.
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[11] M. A. Krasnosel’skĭı, “Topological Methods in the Theory of Nonlinear Integral
Equations”, (English) Translated by A.H. Armstrong; A Pergamon Press Book,
MacMillan, New York, 1964.

[12] Y.P. Sun and Y. Sun, Positive Solutions for Singular Semi-Positone Neumann
Boundary-Value Problems,Electron. J. Differential Equations2004(2004), No. 133,
1-8.
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